B.Tech-3rd (EE)

Network Theory

Full Marks: 50

Time: 2.30 hours

Answer all questions.

The figures in the right-hand margin indicate marks.

Symbols carry usual meaning.

1. Answer all questions:

 2×5

- (a) Derive the expression of coefficient of coupling.
- (b) Find the value of C in the circuit shown in Figure 1 to get resonance.

Figure 1

(Turn Over)

- (c) What are the conditions of symmetry and reciprocity in a transmission two-port network?
- (d) What are the necessary conditions of stability of a network function? Check whether the system with characteristics polynomial $P(s) = s^4 + 3s^3 + 2s^2 + 5s + 1$ is stable or not?
- (e) What are the different types of filters? Mention the frequency limits for their pass band and attenuation band.
- 2. (a) Find the value of R_1 such that the following circuit given in Figure 2 is resonant. Here, $R_2 = 10 \Omega$, $\omega L = j6 \Omega$ and $\omega C = -j4 \Omega$.

B.Tech-3rd(EE)/N.T

(Continued)

(3)

- (b) (i) Derive the Transient Response of series RL-circuit with D.C excitation.
 - (ii) In the circuit shown in Figure 3, determine the complete solution for the current when switch is closed at t = 0, applied voltage is

$$V(t) = 20\cos\left(100t + \frac{\pi}{4}\right)$$
, resistance

 $R = 10 \Omega$ and capacitance $C = 2 \mu F$.

Figure 3

Or

(a) Find the current I_x resistor shown in Figure 4 using Thevenin's equivalent network.

B.Tech-3rd(EE)/N.T

(Turn Over)

Figure 4

- (b) A circuit consists of a resistance with 25Ω , an inductance with 50 mH and a capacitance with $20 \mu\text{F}$ in Series. The circuit is connected with a source of constant DC voltage with magnitude 100 V at t = 0. Draw the circuit showing the above information. Then write the equation of transient current and also find it.
- 3. (a) What are the different types of twoport networks? Define their dependent and independent parameters. Write the expression of equivalent parameters in case of two series networks.

(5)

(b) How a two-port network is different from one-port network? The given ABCD parameters of the two-port network are, A = 2, B = 0.9, C = 1.2, D = 0.5. Find its equivalent Y-parameters.

Or

(a) Find the h-parameters for the circuit shown in Figure 5.

Figure 5

(b) Derive the expression for Image impedances in terms of ABCD parameters.

B.Tech-3rd(EE)/N.T

(Continued)

B.Tech-3rd(EE)/N.T

(Turn Over)

(6)

- 4. (a) Two coupled coils have K = 0.6, $N_1 = 450$ turns, $N_2 = 750$ turns and mutual flux being 0.9 Weber. If primary current is 10 A, then find the primary and secondary coil inductances.
 - (b) Three impedances Z_A, Z_B and Z_C are connected in star. They are supplied from a source with 3-φ, 50 Hz and 100 V. Calculate the line current, power drawn by each impedance. Also, calculate the power factor.

Or

(a) What are the properties of a Hurwitz
polynomial? Test the following polynomial.

$$P(s) = s^4 + 11s^3 + 39s^2 + 51s + 20$$

(b) Explain two-wattmeter method for power and power factor calculation of a balanced three-phase load.

(7)

- 5. (a) What do you mean by positive real function? What are its properties?
 - (b) Driving point impedance of a network is given by $Z(s) = \frac{s^3 + 3s}{s^2 + 1}$. Realize the network.

Or

- (a) Discuss Foster's canonical form for LC network synthesis.
- (b) The driving point impedance is given by

$$Z(s) = \frac{s(s^2+2)(s^2+4)}{(s^2+1)(s^2+3)}$$

Obtain the first form of Cauer's network.

6. (a) For the graph shown in Figure 6 find incidence and cut set matrices.

B.Tech-3rd(EE)/N.T

(Turn Over)

B.Tech-3rd(EE)/N.T

(Continued)

(8)

Figure 6

- (b) Define the following with appropriate diagrams.
 - (i) Branch (ii) Loop (iii) Node (iv) Tree and (v) Co-tree.

Or

(a) For the circuit shown in Figure 7, draw the oriented graph and write the (i) incidence matrix, (ii) tie-set matrix, and (iii) f-cut-set matrix.

Figure 7

(b) Draw the oriented graph for the following reduced incidence matrix. Write its (i) incidence matrix and (ii) tie-set matrix.

$$A = \begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

B.Tech-3rd(EE)/N.T

(Continued)

B.Tech-3rd(EE)/N.T

BE-200