VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT) ODISHA

Even Semester Examination for session 2022-23

COURSE NAME: B.Tech SEMESTER: II

BRANCH NAME: B. Tech Civil ang q SUBJECT NAME: MATHEMATICS-II

Full Marks - 30

Time - 90 Minutes

Answer All Questions.

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

meaning.					
1. Answer all questions:	$[2 \times 3]$				
(a) Define exact differential equation and write the condition for exactness?	CO1				
(b) Express the following differential equation in linear form $\frac{dy}{dx} = \frac{y}{2x} + \frac{x^2}{2y}$	CO1				
(c) Define ordinary point and singular point of a differential equation.	CO2				
2. (a) Solve the following intial value problem $(2x\cos y + 3x^2y)dx + (x^3 - x^2\sin y - y)dy = 0, \ y(0) = 2. $ (b) Solve: $y'' - 3y' - 4y = 0, \ y(0) = 1, \ y'(0) = 0$ $A^2 - 3x - 4 : O$ OR	[4+4] CO1 CO1				
	001				
(c) Solve: $y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0$	CO1				
(d) Solve: $\frac{dy}{dx} + xy = x^3y^3$	CO1				
3. (a) Solve the following differential equation. $A + 2$ $x^2y'' - 2xy' + 2y = 0$ $M(M+1) - 2M + 2 = 0$	[4-4] CO1				
Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$	CO1				
OR					
(c) Use method of variation of parameter to solve $y'' + y = secx$	COI				
Solve: $(2x + e^x \sin y) \underline{dx} + e^x \cos y \underline{dy} = 0, \ y(0) = \frac{\pi}{2}$	CO1				
(a) Use power series method to solve the following differential equation $y'' - xy' + y = 0$	[8] CO2				
OR					
(b) (i) Use Rodrigue's formula to find the Legendre's polynomial of degree 1.5 (ii) If P_n is the Legendre's polynomial of degree n , then prove that $\int_{-1}^{1} P_m(x) \cdot P_n(x) dx = 0 \text{ if } m \neq n$	2,3 and 4. [4+4] _CO2				

Set-21(I)

B.Tech.-2nd (All Sec) Mathematics-II

Full Marks: 50

Time: $2\frac{1}{2}$ hours

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

Any supplementary materials to be provided

1. Answer all questions:

 2×5

51

 CO_{0}

- What is singular solution? Give an example of an ordinary differential equation which has singular solution.
 - (b) Find the center and radius of convergent of the power series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{3^n (n+1)^2} (x+1)^{2n+1}.$$

(c) Find the real and imaginary part of i'.

(d) Evaluate
$$\oint_{|z|=1} \frac{dz}{z^2+2}$$
.
(e) Write two assumptions for Newton's Raphson

2. (a) Find an integrating factor of the differential equation $(xy-1)dx + (x^2 - xy)dy = 0$ and solve.

Find the complete solution of
$$\frac{d^2y}{dx} + 6\frac{dy}{dx} + 73y = 8e^x \cos 4x.$$

formula. 1

$$\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$\sqrt{11} + 6\sqrt{11} + 73y = 8e^x \cos 4x.$$

$$x^{2} \frac{d^{2}y}{dx^{2}} + 3x \frac{dy}{dx} + y = 0, y(1) = 4, y'(1) = -2.$$

$$x^{2} y'' + 3xy + y = 0$$
B. Tech.-2nd (All Sec)/Mathematics-IISet-21(I)) (Continued)
$$m(m-1) + 3m + 4 = 0$$

(b) Determine a solution space of the ordinary differential equation
$$x^2 \frac{d^2y}{dx} + x \frac{dy}{dx} - 4y = 0.$$

(3)

3. (a) Solve the initial value problem

$$\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} + 2y = 0, y(0) = 1 = y'(0)$$

8

8

by power series method.

Or

m is given constant.

 $(1-x^2)\frac{d^2y}{dx} - 2x\frac{dy}{dx} + m(m+1)y = 0,$

B.Tech.-2nd (All Sec)/Mathematics-IISet-21(I)) (Turn Over)

Or

(a) Is the function $u(x, y) = x^3 - 3xy^2$ harmonic? If yes, find the corresponding analytic function

$$f(z) = u(x, y) + iv(x, y).$$

(5.) (a) Evaluate
$$\oint_{|z|=1} \frac{e^z \cos z}{\left(z - \frac{\pi}{2}\right)^2} dz$$
.

(b) Find the Laurent's series of $z^3 \frac{1}{c^2}$ with center 0.

Or

- (a) Identify the singularity and its type of $\frac{\sin z}{z^7}$. 3
- (b) Using residue theorem evaluate

$$\oint_{|z|=1} \frac{30z^2-23z+5}{(2z-1)^2(3z-1)} dz.$$

5

B.Tech.-2nd (All Sec)/Mathematics-IISet-21(I)) (Continued) (a) Solve the equation $x^4 - x - 5 = 0$ by secant method. Perform up to 4 iterations.

(b) Using Newton's forward difference interpolation find the value of f at x = 0.8 and x = 1.2 form the given data. W

			,	
x	1	2	3	4
f(x)	6	11	18	27

Or

(a) Evaluate

iterations.

$$\int_0^1 x e^{-x^2} dx$$
by Simpon's $\frac{1}{3}$ rd rule with $n = 4$.

(b) Solve the initial value problem

$$y' - xy^2 = 0$$
, $y(0) = 0$, $h = 0.1$

by improved Euler's method. Perform three

BE - 1.000

B.Tech.-2nd (All Sec)/Mathematics-IISet-21(I))

Set-21(I)

B.Tech.-1st (Sec.-A to N) Mathematics-I

Full Marks: 50

Time: $2\frac{1}{2}$ hours

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

Any supplementary materials to be provided

1. Answer all questions:

 2×5

- (a) Prove that between any two real roots of $e^x \sin x = 1$, there is at least one real root of $e^x \cos x = 1$.
- (b) Prove or disprove that every bounded sequence is convergent.
- (c) Find the components of the vector \vec{v} with initial point (3, 2, 0) and terminal point (5, -2, 0).

- (d) Find a basis of the vector space \mathbb{R}^2 over \mathbb{R} . Then determine its dimension.
- (e) Prove that the eigenvalues of Hermitian matrices are real.
- (a) Using Lagrange's Mean Value Theorem show that

$$0 < \lceil \log(1+x) \rceil^{-1} - x^{-1} < 1, \forall x > 0.$$

(b) Test the convergence of the improper integral

$$\int_0^\infty \frac{\sin^2 x}{r^2} \, dx. \tag{4}$$

(Continued)

Or

(a) Examine the validity of the hypothesis and the conclusion of Rolle's theorem for the function f(x) = |x| on [-1, 1]. If it satisfies Rolle's theorem then find the points where the derivative is zero.

(b) Show that

$$\int_0^\infty \frac{x^{m-1}}{(1+x)^{m+n}} dx = \beta(m,n), \text{ for } m > 0, n > 0.$$

- 3. (a) Show that the sequence $\{s_n\}$; where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ cannot converge.
 - (b) Find a Fourier series to represent $x x^2$ from $x = -\pi$ to $x = \pi$. Hence show that

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}.$$

Or

(a) Show that every convergent sequence is bounded.

(b) If
$$f(x) = \begin{cases} 0, & -\pi \le x \le 0 \\ \sin x, & 0 \le x \le \pi, \end{cases}$$

then prove that

$$f(x) = \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}.$$

4. (a) If the vector field is given by

$$\vec{F} = (x^2 - y^2 + x)\hat{i} - (2xy + y)\hat{j}.$$

Is this field irrational? If so find its scalar potential.

(b) Show that the function

$$f(x,y) = \begin{cases} \frac{xy}{(x^2 + y^2)^{\frac{1}{2}}}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$$

is continuous at origin.

Or

(a) Suppose

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

Show that $\lim_{(x,y)\to(0.0)} f(x,y) = 0.$ 4

(b) Let

$$f(x,y) = \begin{cases} \frac{x^2 y}{(x^4 + y^2)}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Show that f(x, y) possesses first partial

derivatives everywhere including origin.

5. (a) Solve the system of linear equation by

Gaussian elimination method:
$$x_1 - x_2 = 1$$
,
 $-x_1 + 2x_2 - x_3 = 1$, $-x_2 + 2x_3 - x_4 = 1$, $-x_3 + 2x_4 = 1$.

(b) Determine whether or not W is a subspace of \mathbb{R}^3 where W consists of all vectors $(x, y, z) \in \mathbb{R}^3$ such that x = 2y = 3z.

Or

(a) For what value of b the rank of the matrix

$$A = \begin{pmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ b & 13 & 10 \end{pmatrix}$$
 is 2.

B.Tech.-1st (Sec.-A to N)/Mathematics-I(Set-21(I)) (Turn Over)

B.Tech.-1st (Sec.-A to N)/Mathematics-I(Set-21(I))

(Continued)

- (b) Extend the set $\{(1, 2, 3)\}$ to a basis of \mathbb{R}^3 .
- 6. (a) Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{pmatrix} 3 & -1 & 1 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$$

(b) Transform the quadratic form

$$x_1^2 - 24x_1x_2 - 6x_2^2 = 5$$

it to principal axes

Or

(a) Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{pmatrix} 0 & 1+i & 0 \\ 1-i & 0 & 1+i \\ 0 & 1-i & 0 \end{pmatrix}.$$

$$A = \begin{pmatrix} 3 & 10 & -15 \\ -18 & 39 & 9 \\ -24 & 40 & -15 \end{pmatrix}.$$

4

B.Tech.-1st (Sec.-A to NyMathematics-I(Set-21(1)) (Continued)