LECTURE-22

Raoult's law of Ideal Solution:

Raoult's Law states that for an ideal solution the partial vapor pressure of a component in solution is equal to the mole fraction of that component times its vapor pressure when pure:

$$a_i = \frac{P_A}{P_A^0} = x_i$$
 (where $\gamma_i = 1$ i. e. activity coefficient (γ) is 1) (222)

Properties of Ideal Solution:

- ☐ The enthalpy of solution (or "enthalpy of mixing") is zero as is the volume change on mixing; the closer to zero the enthalpy of solution is, the more "ideal" the behavior of the solution becomes.
- ☐ The vapor pressure of the solution obeys Raoult's law
- ☐ The activity coefficient of each component (which measures deviation from ideality) is equal to one.

ACTIVITY VS MOLE FRACTION (HENRY'S LAW):

Henry's Law: Henry's law stated as, if $x_B \to 0$, then $\gamma_B \to a$ constant γ_B^0 . In other words, in Henry's law region for B.

$$a_B = \gamma_B^0 x_B \tag{223}$$

[Where B is solute & A is solvent]

Similarly, to equation (223), we will also have

$$a_A = \gamma_A^0 x_A \tag{224}$$

Where for

- $\circ \gamma^i > 1$, solution exhibits positive departure from Raoult's law.
- $\circ \gamma^i < 1$, solution exhibits negative departure from Raoult's law.

Fig (a) Positive & (b) Negative deviations from the Raoult's law for component B in the binary A-B solution; Henry's law lines for B are also shown.

- The above Fig represents activity vs mole fraction curves for binary A-B solutions at constant temperature.
- It shows Raoult's law line component A & B. Positive & negative departures from Raoult's law are illustrated for a_B with X_B is leaner. This is basis for Henry's law for binary solution.

- Solute in binary dilute solution obeys Henry's Law. Henry's law is expected to be obeyed if solute atoms are far from each other then we can ignore solute-solute interaction i.e. A-A & B-B interactions.
- In the previous Fig (a) & (b), we have the curves for a_B merge with Raoult's law line if x_B →
 1. In other words, in the region where B obeys Henry's law, A tends to obey Raoult's law &
 Vice versa.

Proof of the Above Statement:

From the Gibb's-Duhem equation, we have

$$x_A \overline{dG_A^m} + x_B dG_B^m = 0 (225)$$

$$\Rightarrow RT[x_A d(lna_A) + x_B d(lna_B)] = 0$$
 (226)

$$\Rightarrow RT x_A d \ln a_A + RT x_B d \ln a_B = 0$$
 (227)

$$\Rightarrow x_A d \ln a_A = -x_B d \ln a_B \tag{228}$$

$$\Rightarrow d \ln a_A = -\frac{x_B}{x_A} d \ln a_B \tag{229}$$

If B obeys Henry's law, then

$$d(\ln a_B) = d[\ln(\gamma_B^0 x_B) = d[\ln \gamma_B^0 + \ln x_B]$$
 (230)

 $[a_B = \gamma_B^0 x_B \text{ From equation (223)}]$

$$\Rightarrow d(\ln a_B) = d \ln \gamma_B^0 + d \ln x_B \tag{231}$$

$$\Rightarrow d \ln a_B = d \ln x_B \tag{232}$$

[Since $d \ln \gamma_B^0 = 0$ as γ_B^0 is constant]

Now from equation (229), we have

$$d \ln a_A = -\frac{x_B}{x_A} d \ln x_B \tag{233}$$

$$\Rightarrow d(\ln a_A) = -\frac{x_B}{x_A} \frac{dx_B}{x_B} \tag{234}$$

$$\Rightarrow d(\ln a_A) = -\frac{dx_B}{x_A} \tag{235}$$

[Since
$$\frac{d \ln x}{dx} = \frac{1}{x} \implies d \ln x = \frac{dx}{x}$$
]

Again we know,

$$dx_A + dx_B = 0$$
 (Since $x_A + x_B = 1$) (236)

$$\Rightarrow dx_B = -dx_A \tag{237}$$

So, using equation (237) in equation (235), we will get

$$d(\ln a_A) = \frac{dx_A}{x_A} = d\ln x_A \tag{238}$$

Taking integration of equation (238), we have

$$\ln a_A = \ln x_A + Constant \tag{239}$$

Let's consider I as a constant, then $\ln I$ will also a constant. Therefore, we can write equation (239) as

$$\ln a_A = \ln X_A + \ln I \tag{240}$$

$$\Rightarrow \ln a_A = \ln(Ix_A) \tag{241}$$

$$\Rightarrow a_A = Ix_A \tag{242}$$

At $x_A \rightarrow 1$, $a_A \rightarrow 1$. Hence I = 1

Hence, equation (242) will become

$$a_A = x_A \tag{243}$$

i.e. A obeys Raoult's law when B obeys Henry's law.

REGULAR SOLUTIONS:

- Since most of the solutions are non-ideal so there is a great need to express the thermodynamic quantity in these solutions in the form of analytical equations i.e. function of temperature & composition.
- Regular solution model first proposed by Hildebrand, on approximation the model is not much more consistent.
- Hildebrand defined a regular solution as one in which

$$\overline{S_i}^m = \overline{S_i}^{m,id} \text{ But } \overline{H_i^m} \neq 0$$
 (244)

i.e.
$$\Delta s^m = \Delta s^{m,id}$$
 But $\Delta H^m \neq 0$ (245)

[Where "id" subscript refers to ideal solution]

• In other words, a regular solution has the same entropy as an ideal solution of same composition, but entropy is different from ideal solution.

Excess Function: For dealing with non-ideal solutions, a function known as excess function (or

molar excess property) used. It is only for extensive properties & defined as

$$Q^{xs} = Q - Q^{id} (246)$$

Similarly, for partial molar excess properties the equation (246) will become

$$\overline{Q_i^{xs}} = \overline{Q_i} - \overline{Q_i^{id}} \tag{247}$$

[Here,

Q – Some extensive property (G, H, S......) of the actual solution.

 Q^{id} - Value of Q for ideal solution at same composition & temperature.

 Q^{xs} - Value of Q in excess of that of ideal solution.]

For standard state, we can write equation (246) and (247) as

$$Q^{xs} = (Q - Q^0) \tag{248}$$

$$\Rightarrow Q^{XS} = \Delta Q^m - \Delta Q^{m,id} \tag{249}$$

$$\overline{Q^{XS}} = (\overline{Q_i} - Q_i^0) - (\overline{Q_i^{id}} - Q_i^0)$$

$$\overline{Q_i^{XS}} = \overline{Q_i^m} - \overline{Q_i^{m,id}}$$
(250)

[Since, Q^0 is added & Q^0 subtracted. So, equation (249) & (251) are same as equation (246) & (247) respectively.

Hence, for a regular solution

$$\overline{G_i^{xs}} = \overline{H_i^{xs}} - T\overline{S_i^{xs}} = \overline{H_i^{xs}} = \overline{H_i^m}$$
 (252)

$$G^{xs} = \Delta H^m \tag{253}$$

[Since for a regular solution no excess entropy, i.e., $\overline{S_i^{xs}}=0$, $S^{xs}=0$ and also $\overline{H_i^{xs}}=\overline{H_i^m}$, $H^{xs}=\Delta H^m$]

Again,
$$G^{xs} = \Delta G^m - \Delta G^{m,id} = RT \sum_i x_i \ln a_i - RT \sum_i x_i \ln x_i = RT \sum_i x_i \ln \gamma_i$$
 (254)

[Since, for ideal solution ($a_i = x_i$)]