LECTURE-22

Raoult’s law of Ideal Solution:

Raoult's Law states that for an ideal solution the partial vapor pressure of a component in solution is equal

to the mole fraction of that component times its vapor pressure when pure:
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= X; (where y; = 1. e. activity coefficient (y) is 1) (222)

Properties of Ideal Solution:

O The enthalpy of solution (or "enthalpy of mixing") is zero as is the volume change on mixing;
the closer to zero the enthalpy of solution is, the more "ideal" the behavior of the solution
becomes.

O The vapor pressure of the solution obeys Raoult’s law

O The activity coefficient of each component (which measures deviation from ideality) is equal

to one.
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ACTIVITY VS MOLE FRACTION (HENRY’S LAW):

Henry’s Law: Henry’s law stated as, if x5 — 0, then y5 — a constant yg. In other words, in
Henry’s law region for B.

g = YpXp (223)

[Where B is solute & A is solvent]

Similarly, to equation (223), we will also have

Ay = VA% (224)
Where for

o y'> 1, solution exhibits positive departure from Raoult’s law.

o y' <1, solution exhibits negative departure from Raoult’s law.
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The above Fig represents activity vs mole fraction curves for binary A-B solutions at constant

temperature.

It shows Raoult’s law line component A & B. Positive & negative departures from Raoult’s law

are illustrated for ag with X is leaner. This is basis for Henry’s law for binary solution.
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e Solute in binary dilute solution obeys Henry’s Law. Henry’s law is expected to be obeyed if

solute atoms are far from each other then we can ignore solute-solute interaction i.e. A-A

& B-B interactions.

* Inthe previous Fig (a) & (b), we have the curves for a; merge with Raoult’s law line if xg —

1. In other words, in the region where B obeys Henry’s law, A tends to obey Raoult’s law &

Vice versa.

Proof of the Above Statement:

From the Gibb’s-Duhem equation, we have

x,dGt + xgdGgt =0
= RT[x4d(Inay) + xgd(lnag)] =0
= RT x4d Inay + RT xgd lnag =0

= xadlInay, = — xgdlnag

(225)
(226)
(227)
(228)
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= dlnay = — z—Bd Inag
A

If B obeys Henry’s law, then
d (Inag) = d[In(ydxg) = d [Inyg + Inxg]
[ag = y9xgz From equation (223)]

=d(nag) =dInyg + dlnxg

=dlnag = dInxg
[SincedIny? = 0 as yj is constant]

Now from equation (229), we have

dlIna, = — i—Bd Inxg
A

(229)

(230)

(231)

(232)

(233)
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Again we know,

Xp dxp
=>d(lnay) = — — —
(nay) = - 2 22
dx
:»d(lnaA) = — =2
XA
. dlnx 1 dx
[Since — = > dinx = —

dx, + dxg =0 (Since x4+ xg = 1)

= de = _dxA

So, using equation (237) in equation (235), we will get

d(lnay,) = % =dlInx,

Taking integration of equation (238), we have

Inay =Inxy + Constant

(234)

(235)

(236)

(237)

(238)

(239)
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Let’s consider | as a constant, then In I will also a constant. Therefore, we can write equation

(239) as

Ina; =InX,+1Inl (240)
= Inay = In(Ixy) (241)
= Ay = IXA (242)

At x4, - 1,a4 - 1.Hencel =1

Hence, equation (242) will become
Ay = Xy (243)

i.e. A obeys Raoult’s law when B obeys Henry’s law.
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REGULAR SOLUTIONS:

Since most of the solutions are non-ideal so there is a great need to express the
thermodynamic quantity in these solutions in the form of analytical equations i.e. function
of temperature & composition.

Regular solution model first proposed by Hildebrand, on approximation the model is not
much more consistent.

Hildebrand defined a regular solution as one in which

—m —m,i

d -
Si = Si But Hzn * 0 (244)
i.e. As™= As™! But AH™ # 0 (245)
[Where “id” subscript refers to ideal solution]

In other words, a regular solution has the same entropy as an ideal solution of same

composition, but entropy is different from ideal solution.
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Excess Function: ror dealing with non-ideal solutions, a function known as excess function (or

molar excess property) used. It is only for extensive properties & defined as
Q* =Q— Q" (246)

Similarly, for partial molar excess properties the equation (246) will become

QX = Q- o (247)
[Here,
Q — Some extensive property (G, H, S........) of the actual solution.
Q' - Value of Q for ideal solution at same composition & temperature.
Q*° - Value of Q in excess of that of ideal solution.]
For standard state, we can write equation (246) and (247) as
Q* =(Q-2¢Q% (248)
=>Q*5 = AQ™ — AQ™1@ (249)
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0= = (Qi— @) - @~ eM (250)

QX = Q" — Q™™ (251)
[Since, Q° is added & Q° subtracted. So, equation (249) & (251) are same as equation (246) & (247)

respectively.

Hence, for a regular solution

G = H® —TS® = H® = HI" (252)
G*S = AH™ (253)

[Since for a regular solution no excess entropy, i.e., F = 0,5 =0andalso H** = H™ , H*® = AH™]
Again, G** = AG™ — AG™"=RT ¥, x;Ina; — RT ¥;x;Inx; = RT ¥, x; Iny; (254)

[Since, for ideal solution ( a; = x;)]



