
LECTURE-22

Raoult’s law of Ideal Solution:

Raoult's Law states that for an ideal solution the partial vapor pressure of a component in solution is equal

to the mole fraction of that component times its vapor pressure when pure:

𝑎𝑖 =
𝑃𝐴

𝑃𝐴
0 = 𝑥𝑖 (where 𝛾𝑖 = 1 i. e. activity coefficient (γ) is 1) (222)

Properties of Ideal Solution:

 The enthalpy of solution (or "enthalpy of mixing") is zero as is the volume change on mixing;

the closer to zero the enthalpy of solution is, the more "ideal" the behavior of the solution

becomes.

 The vapor pressure of the solution obeys Raoult’s law

 The activity coefficient of each component (which measures deviation from ideality) is equal

to one.
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Continued…

ACTIVITY VS MOLE FRACTION (HENRY’S LAW):

Henry’s Law: Henry’s law stated as, if 𝑥𝐵 → 0, then 𝛾𝐵 → 𝑎 constant 𝛾𝐵
0. In other words, in

Henry’s law region for B.

𝑎𝐵 = 𝛾𝐵
0𝑥𝐵 (223)

[Where B is solute & A is solvent]

Similarly, to equation (223), we will also have

𝑎𝐴 = 𝛾𝐴
0𝑥𝐴 (224)

Where for

o 𝛾𝑖 > 1 , solution exhibits positive departure from Raoult’s law.

o 𝛾𝑖 < 1, solution exhibits negative departure from Raoult’s law.
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Continued…

Fig (a) Positive & (b) Negative

deviations from the Raoult’s

law for component B in the

binary A-B solution; Henry’s

law lines for B are also

shown.

• The above Fig represents activity vs mole fraction curves for binary A-B solutions at constant

temperature.

• It shows Raoult’s law line component A & B. Positive & negative departures from Raoult’s law

are illustrated for aB with XB is leaner. This is basis for Henry’s law for binary solution.
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• Solute in binary dilute solution obeys Henry’s Law. Henry’s law is expected to be obeyed if

solute atoms are far from each other then we can ignore solute-solute interaction i.e. A-A

& B-B interactions.

• In the previous Fig (a) & (b), we have the curves for aB merge with Raoult’s law line if 𝑥𝐵 →

1. In other words, in the region where B obeys Henry’s law, A tends to obey Raoult’s law &

Vice versa.

Proof of the Above Statement:

From the Gibb’s-Duhem equation, we have 

𝑥𝐴𝑑𝐺𝐴
𝑚 + 𝑥𝐵𝑑𝐺𝐵

𝑚 = 0 (225)

⇒ 𝑅𝑇[𝑥𝐴𝑑 𝑙𝑛𝑎𝐴 + 𝑥𝐵𝑑 𝑙𝑛𝑎𝐵 ] = 0 (226)

⇒ 𝑅𝑇 𝑥𝐴 𝑑 𝑙𝑛𝑎𝐴 + 𝑅𝑇 𝑥𝐵 𝑑 𝑙𝑛𝑎𝐵 = 0 (227)

⇒ 𝑥𝐴 𝑑 𝑙𝑛𝑎𝐴 = − 𝑥𝐵 𝑑 𝑙𝑛𝑎𝐵 (228)
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⇒ 𝑑 𝑙𝑛𝑎𝐴 = −
𝑥𝐵

𝑥𝐴
𝑑 𝑙𝑛𝑎𝐵 (229)

If B obeys Henry’s law, then

𝑑 𝑙𝑛𝑎𝐵 = 𝑑[ln 𝛾𝐵
0𝑥𝐵 = 𝑑 [ln 𝛾𝐵

0 + 𝑙𝑛𝑥𝐵] (230)

[𝑎𝐵 = 𝛾𝐵
0𝑥𝐵 From equation (223)]

⇒𝑑 ln𝑎𝐵 = 𝑑 ln 𝛾𝐵
0 + 𝑑 ln 𝑥𝐵 (231)

⇒𝑑 ln𝑎𝐵 = 𝑑 ln 𝑥𝐵 (232) 

[Since 𝑑 ln 𝛾𝐵
0 = 0 as  𝛾𝐵

0 is constant]

Now from equation (229), we have

𝑑 𝑙𝑛𝑎𝐴 = −
𝑥𝐵

𝑥𝐴
𝑑 𝑙𝑛𝑥𝐵 (233)                                           
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⇒𝑑 ln𝑎𝐴 = −
𝑥𝐵

𝑥𝐴

𝑑𝑥𝐵

𝑥𝐵
(234)

⇒d ln aA = −
𝑑𝑥𝐵

𝑥𝐴
(235) 

[Since 
𝑑 ln 𝑥

𝑑𝑥
=

1

𝑥
⇒ 𝑑𝑙𝑛𝑥 =

𝑑𝑥

𝑥
]

Again we know,

𝑑𝑥𝐴 + 𝑑𝑥𝐵 = 0 (𝑆𝑖𝑛𝑐𝑒 𝑥𝐴+ 𝑥𝐵 = 1) (236)

⇒ 𝑑𝑥𝐵 = − 𝑑𝑥𝐴 (237)

So, using equation (237) in equation (235), we will get

𝑑 𝑙𝑛𝑎𝐴 =
𝑑𝑥𝐴

𝑥𝐴
= 𝑑 ln 𝑥𝐴 (238)

Taking integration of equation (238), we have

ln 𝑎𝐴 = ln 𝑥𝐴 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (239)
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Continued…
Let’s consider I as a constant, then ln 𝐼 will also a constant. Therefore, we can write equation 

(239) as

ln 𝑎𝐴 = ln𝑋𝐴 + ln 𝐼 (240) 

⇒ ln𝑎𝐴 = ln(𝐼𝑥𝐴) (241)

⇒ 𝑎𝐴 = 𝐼𝑥𝐴 (242)

At  𝑥𝐴 → 1, 𝑎𝐴 → 1. Hence 𝐼 = 1

Hence, equation (242) will become

𝑎𝐴 = 𝑥𝐴 (243)

i.e.  A obeys Raoult’s law when B obeys Henry’s law.
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REGULAR SOLUTIONS:

• Since most of the solutions are non-ideal so there is a great need to express the

thermodynamic quantity in these solutions in the form of analytical equations i.e. function

of temperature & composition.

• Regular solution model first proposed by Hildebrand, on approximation the model is not

much more consistent.

• Hildebrand defined a regular solution as one in which

Si
m
= Si

m,id
But 𝐻𝑖

𝑚 ≠ 0 (244)

i.e. ∆𝑠𝑚= ∆𝑠𝑚,𝑖𝑑 But ∆𝐻𝑚 ≠ 0 (245)

[Where “id” subscript refers to ideal solution]

• In other words, a regular solution has the same entropy as an ideal solution of same

composition, but entropy is different from ideal solution.
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Excess Function: For dealing with non-ideal solutions, a function known as excess function (or

molar excess property) used. It is only for extensive properties & defined as

𝑄𝑥𝑠 = 𝑄 − 𝑄𝑖𝑑 (246) 

Similarly, for partial molar excess properties the equation (246) will become

𝑄𝑖
𝑥𝑠 = 𝑄𝑖 − 𝑄𝑖

𝑖𝑑 (247)

[Here,

Q – Some extensive property (G, H, S……..) of the actual solution.

𝑄𝑖𝑑 - Value of Q for ideal solution at same composition & temperature.

𝑄𝑥𝑠 - Value of Q in excess of that of ideal solution.]

For standard state, we can write equation (246) and (247) as

𝑄𝑥𝑠 = (𝑄 − 𝑄0) (248)

⇒𝑄𝑋𝑆 = ∆𝑄𝑚 − ∆𝑄𝑚,𝑖𝑑 (249)
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𝑄𝑥𝑠 = 𝑄𝑖 − 𝑄𝑖
0 − (𝑄𝑖

𝑖𝑑 − 𝑄𝑖
0) (250)

𝑄𝑖
𝑋𝑆 = 𝑄𝑖

𝑚 − 𝑄𝑖
𝑚,𝑖𝑑 (251)

[Since, 𝑄0 is added & 𝑄0 subtracted. So, equation (249) & (251) are same as equation (246) & (247)

respectively.

Hence, for a regular solution

𝐺𝑖
𝑥𝑠 = 𝐻𝑖

𝑥𝑠 − 𝑇𝑆𝑖
𝑥𝑠 = 𝐻𝑖

𝑥𝑠 = 𝐻𝑖
𝑚 (252)

𝐺𝑥𝑠 = ∆𝐻𝑚 (253)

[Since for a regular solution no excess entropy, i.e., 𝑆𝑖
𝑥𝑠 = 0, 𝑆𝑥𝑠 = 0 and also 𝐻𝑖

𝑥𝑠 = 𝐻𝑖
𝑚 , 𝐻𝑥𝑠 = ∆𝐻𝑚]

Again,   𝐺𝑥𝑠 = ∆𝐺𝑚 − ∆𝐺𝑚,𝑖𝑑= 𝑅𝑇 σ𝑖 𝑥𝑖 𝑙𝑛𝑎𝑖 − 𝑅𝑇 σ𝑖 𝑥𝑖 ln 𝑥𝑖 = 𝑅𝑇 σ𝑖 𝑥𝑖 𝑙𝑛𝛾𝑖 (254) 

[Since, for ideal solution ( 𝑎𝑖 = 𝑥𝑖)]
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