B. Tech - 3rd (EE/EEE) ## **Electrical Machines - I** Full Marks: 50 *Time* : 2 : 30 hours Answer all questions. The figures in the right-hand margin indicate marks. Symbols carry usual meaning. Any supplementary materials to be provided. 1. Answer all questions. - 2×5 - Why transformer rating is expressed in terms of kVA? - (b) Name of the various parts of a D.C. machine. Explain the construction of any one part. - (c) Define critical filed resistance and critical speed of a D.C. shunt generator. - (d) Why D.C. series motor should not be started at no load. - (e) Draw with relevant circuit and emf phasor diagram of a Yyo 3-phase transformer connection. - 2. A 200 kVA, 1-phase transformer has an efficiency of 98% at full load. If the maximum efficiency occurs at $\frac{3}{4}$ full load, calculate the - (i) Iron losses - (ii) Copper losses at full load, - (iii)Efficiency at half full load and - (iv) Efficiency at 1/5 full load. Assume a p.f of 0.8 at all loads. Or What is voltage regulation of a transformer? Derive the conditions for maximum and zero voltage regulation in a transformer. Also derive expression for maximum efficiency of a 1-phase transformer and for load at maximum efficiency. 8 3. Explain the effect of armature reaction in a D.C. shunt generator. How are its demagnetizing and cross magnetizing ampere turn calculated. Or A 6-pole, 120kW, 500V, wave wound DC shunt generator has 756 armature conductors. The shunt filed resistance 50Ω when delivering full load the brushes are displaced from the geometrical neutral axis by 24 electrical degrees. Find the demagnetizing ampere turns/pole and cross magnetizing ampere turns/pole. Also determine the number of additional shunt field turns required to neutralize the demagnetizing effect. - A. A 230V DC shunt generator has a full load current of 150A. Its armature and field resistances are 0.1Ω and 230 Ω respectively. The stray losses are 1500W. Find the 8 - (i) Prime mover output in kW, when the generator is on full load, - (ii) Full load efficiency, and - (iii) load current at which generator efficiency is maximum. ## Or What is compound generator? Draw the external characteristics of over, level and under compounded generators and explain. 8 5. A 200 V, DC series motor runs at 750 rpm when taking a current of 30 A. The resistance of the armature is 0.5Ω and field is 0.3Ω . If the current remains constant, calculate the resistance necessary to reduce the speed to 250 rpm. Or What are advantages of Hopkinson's test over Swinburne's test and what are it limit. - 6. A 3-phase step-down transformer is connected to 6600V mains and it takes 20A. Calculate the secondary line voltage, line current and output for the following connections. - (i) Y-Y - (ii) $\Lambda \Lambda$ - (iii)Y- Δ - $(iv)\Delta-Y$ Turns ratio per phase is 10. B.Tech-3rd (EE/EEE) Elect. Machine-I Or Draw the Phasor diagrams and winding connection of three-phase transformer for: 8 (i) Phase displacement of zero degrees - (ii) Phase displacement of -30 degrees - (iii) Phase displacement of +30 degrees - (iv) Phase displacement of 180 degrees