VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VS\$UT), ODISHA **Even Mid Semester Examination for Academic Session 2024-25**

COURSE NAME: B. Tech

SEMESTER: 3rd

BRANCH NAME: EE (A and B), and EEE **Optimization & Soft Computing**

FULLMARKS:30

TIME:90 Minutes

-CO2

Answer All Questions.

The figures in the right-hand margin indicate Marks. Symbols carry usual meaning.

Q1.	Answer all Questions.	$[2 \times 3]$
(العلب	Define optimization problem. What is duality principle? What do you mean by soft computing? How is it different from Hard computing? Distinguish between fuzzy set and crisp set.	-CO1 -CO2 -CO3

[8] Q2.

- -CO1 a) Consider the well-known graph k-colouring problem. Here we are given a set of points (vertices) and a list of connections between them (edges). The task is to assign one of k colours to each vertex, so that no two vertices which are connected by an edge share the same colour.
 - i) Formalise this problem as a free optimisation problem.
 - ii) Formalise this problem as a constraint satisfaction problem.
 - iii) Formalise this problem as a constrained optimisation problem.

b) How are objective functions classified in the context of optimization? Explain using -CO1 suitable examples.

[8] a) Explain the trapezoidal membership function with the help of mathematical expression

93.

and relevant graph. Consider the following two fuzzy sets A and B defined over a universe of discourse [0,

3] of real numbers with their membership functions, $\mu_A(x) = \frac{x+5}{x+8}$ and $\mu_B(x) = 2^{-x}$. Determine the membership functions of the following:

- $A^c \cdot B^c$ i)
- ii) $A \cup B$
- iii) $A \cap B$
- $(A \cup B)^c$ iv)

OR

- a) Consider $X = \{a, b, c, d\}$, and $Y = \{1, 2, 3, 4\}$ be the universe of discourses. Let, $A = \{a, b, c, d\}$ -CO₂ $\{(a, 0.0), (b, 0.8), (c, 0.6), (d, 1)\}, B = \{(1, 0.2), (2, 1), (3, 0.8), (4, 0.2)\} \text{ and } C = \{(1, 0), (2, 1), (3, 0.8), (4, 0.2)\}$ (2, 0.6), (3, 0.8), (4, 0.6); are three fuzzy sets. Determine the implication relation "If x is A Then y is B Else y is C.
- b) Describe all the properties of Fuzzy sets.

a) Distinguish between Mamdani and Sugeno fuzzy inference system.

-CO3

b) Explain various De-fuzzification techniques with suitable examples.

OR

- What is a fuzzy implication? How does it differ from classical logical implication?
- -CO3
- Consider a fuzzy set A defined on the interval X = [0, 10] of integers by the membership function $\mu_A(x) = \frac{x}{x+2}$. Find α cut corresponding to $\alpha = 0.5$.