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15.15 Entropy

The original statement of the second law of thermodynamics is concerned with the development 
of the theoretical aspect of heat engine, specially the Carnot’s cycles. This has little implication in 
the chemical processes.

For a chemist, attempts were made to answer the question of feasibility of a reaction. As is 
known that a state with minimum energy is the most stable state of a system, therefore, in this 
universe there is a natural tendency of all systems to stabilise by acquiring minimum energy. It was 
believed that all processes in which energy decreases (exothermic, having negative value of ΔH) 
occur spontaneously. Hence, decrease in enthalpy is the driving force behind the spontaneous 
processes. However, there are many endothermic reactions (ΔH positive) that are spontaneous. 
For example,

Water absorbs energy and is evaporated (endothermic process) but it is spontaneous in nature.
H2O (l) � H2O (g)                        ΔH = + 44.0 kJ mol–1

Melting of ice is endothermic but spontaneous. 
A crystal of potassium permanganate dropped in a beaker spontaneously diffuses in water 
without any perceptible change in the heat content.
Salts like ammonium nitrate dissolve spontaneously by absorption of heat.

How are these processes spontaneous? It is definite that this cannot be explained by considering the 
decrease in enthalpy alone. There are some additional contributory factors to the spontaneity of 
these reactions; it is this search for another factor that has resulted in describing another property 
of the system called entropy.

Entropy and its physical significance
To explain this term let us consider a process that does not involve energy changes or is endothermic.
Mixing of two gases Let us consider a box having two partitions, each having a different gas. 
When this partition is lifted, the diffusion of gases occurs and they get mixed up. We can also say 
that the gas molecules now have a larger space for their movement. In statistical language, we can 
say that the probability of finding a molecule at a particular place or point has decreased or the 
chaos has increased.
Conversion of solids into liquids When a solid melts into a liquid (ΔH= + ve), the particles 
have more freedom to move in the liquid state. Similarly, ammonium nitrate dissolves in water, 
the solid particles leave their lattice position and move about freely in the dissolved state. Hence, 
we can say that the randomness or disorder increases.
Entropy is a property that is used to express this extent of disorder or randomness of a system and 
may be defined as the thermodynamic property that is a measure of the randomness or disorder of 
the molecules of a system.

Mathematical formulation of entropy

The concept of entropy was first introduced in connection with the theory of heat engines and it 
is more important for engineers. It was only later that chemists could make use of it in chemical 
processes. 
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Entropy is expressed by the symbol ‘S’. Like internal energy and enthalpy, entropy is also a state 
function and therefore change in entropy depends only on the initial and final states of the system. 
Change in entropy is given by
ΔS = S (final state)−S (initial state).
For a reversible process at equilibrium, the change in entropy is expressed as 

dS = revdq
T

Thus, entropy change may be defined as the amount of heat absorbed by the system in a 
reversible manner divided by the absolute temperature at which the heat is absorbed.

Units of entropy
As entropy change is expressed as heat divided by temperature, the units of entropy are calories per 
degree (expressed as entropy unit eu, 1 eu = 1cal deg–1) or Joule per Kelvin (J K–1). (For 1 mole of 
a substance the units of entropy are cal deg–1mol–1. This is called molar entropy)

15.16 Second Law of Thermodynamics in Terms of Entropy

If gases are mixed in an isolated system, then there is no exchange of energy or matter between the 
system and the surroundings. The process occurs because the randomness or entropy increases. 
Hence, for a spontaneous process in an isolated system, entropy change is positive, that is, ΔS > 0. 
However, if the system is not isolated, the entropy changes of both the system and surroundings 
have to be taken into account. Then, the sum of entropy changes of the system (ΔSsystem) and the 
surrounding (ΔSsurroundings) gives the total entropy change (ΔStotal). 

ΔStotal = ΔSsystem + ΔSsurroundings

For a spontaneous process, ΔS total must be positive, that is, 

ΔStotal = ΔSsystem + ΔSsurroundings  > 0. 

The system and the surroundings together constitute the universe. Therefore, for a spontaneous 
change,

ΔS universe > 0. 

Hence, according to the second law of thermodynamics ‘in any natural process the energy of the 
universe is conserved but the entropy of the universe always increases’. 

Entropy is a state function
In the definition of entropy, the quantity qrev is not a state function and depends on the path of the 

reaction, whereas the revdq
T

 is a perfect differential. This can be shown as follows: 
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Suppose 1 mole of an ideal gas is undergoing a reversible expansion. From the first law,

dq dE dw
For work ansion dw PdV hence

rev = -
- =exp ,

rev v
V

RT E
dq dE PdV (1) ( PV RT , P similarly C

V T
∂⎛ ⎞= + = = = ⎜ ⎟⎝ ⎠∂

∵

vor dE C dT )=

V

rev V

RT
C dT dV

V
RT

or dq C dT dV
V

= +

= +∫ ∫
(2)

As revdq  is not an exact differential, it cannot be integrated. This is confirmed by observing the 
right hand side of Eq. (2) where RT

dV
V∫ cannot be evaluated unless we specify the path or in other 

words the relation between T and V is known. The value of V will be different for different values 
of T. Thus, revdq   depends on the path by which the gas is expanded. Dividing Eq. (2) by T on 
both sides we get 

rev V

V

V

dq C dT RT 1
dV

T T V T

C dT R
dV

T V

C ln T R ln V constant

= +

= +

= + +

∫ ∫ ∫

∫ ∫

It follows that revdq
T∫  can be evaluated; hence, revdq

T
 is an exact differential. Hence, we may 

conclude that entropy change dS is a perfect differential and hence entropy S is a state function. 

Thus, if a system changes from the initial state 1 to the final state 2, the entropy change is 

expressed by integrating the equation revdq
S

T
=  between the limits of the initial state 1 and final 

state 2.
2 2

rev

1 1
2

rev
2 1

1

dq
dS

T

dq
S S S

T

=

Δ = − =

∫ ∫

∫

where S1 and S2 are the entropies of the system in initial and final states respectively.
It must be born in mind that entropy change dS is equal to the amount of heat absorbed divided 

by the absolute temperature only when the process is carried out reversibly.
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15.17 Evaluation of Entropy

1. Entropy changes for an ideal gas
Consider a system consisting of n moles of an ideal gas occupying a volume V at a pressure 
P and temperature T. If revdq amount of heat is absorbed by the system reversibly, then the 
increase in entropy of the system dS is given by 

revdq
dS

T
=

(1) 

From the first law of thermodynamics, for a reversible process in which only pressure – 
volume work is involved
dq dE dwrev = -

For work expansion there is infinitesimal increase in volume dV against pressure P, hence
–dw = PdV

\ = +dq dE PdVrev (2)

Substituting the value of revdq  in  Eq. (1) we get 

dE PdV
dS

T
+=

(3)

For n moles of an ideal gas, we know that 

VPV nRT and dE nC dT= =

where CV is the molar heat at constant volume. 
Substituting these values in Eq. (3) we get, 

V
nRTnC dT dV

VdS
T

+
=

or           
2 2 2

1 1 1

S T V
V

S T V

nC dT dV
dS nR

T V
= +∫ ∫ ∫  (4)

If the entropy, volume and temperature of the system in the initial state are S1,V1 and T1 and in 
the final state are S2, V2 and T2 respectively, then integrating Eq. (4) between these limits we get

2 2 2

1 1 1

S T V

V
S T V

dT dV
dS nC nR

T V
= +∫ ∫ ∫

Assuming CV to be independent of temperature over the temperature range considered, we obtain 

2 2
2 1 V

1 1

T V
S S S nC ln nR ln .........(5)

T V
Δ = − = +

  
(5)
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For 1 mole of an ideal gas, 

2 2
V

1 1

T V
S C ln R ln .........(6)

T V
Δ = +

 

(6)

An alternate form of Eq. (5) involving pressure terms can be obtained in the following manner
If P1 is the pressure of the system in the initial state and P2 in the final state, then from the gas 
equation 

1 1 2 2

1 2

P V P V
T T

=

or         2 1 2

1 2 1

V P T
V P T

=

Substituting in Eq. (5) we obtain,

2 1 2
V

1 2 1

T P T
S nC ln nR ln

T P T
Δ = +

2 2 1
V

1 1 2

T T P
S nC ln nR ln nR ln

T T P
Δ = + +

( ) 2 1
V

1 2

V P

2 1
P

1 2

T P
n C R ln nR ln

T P
Since (C R) C Hence

T P
S nC ln nR ln

T P

= + +

+ =

Δ = +
  

(7)

From Eqs (5), (6) and (7), entropy change for an ideal gas can be calculated. These equations take 
different forms under different conditions.
(i) For isothermal process When T1 = T2 then Eqs (5) and (7) are reduced to

2
T

1

V
S nR ln ......(8)

V
Δ =

 
(8)

1
T

2

P
and S nR ln .....(9)

P
Δ = (9)

The subscript T in ΔST indicates that the process is occurring at constant temperature. In the 
expansion process V2 > V1   or P1 > P2., ΔST is positive but in contraction V2 < V1   or P1 < P2
and hence ΔST is negative. From this, it is concluded that in an isothermal expansion entropy 
increases and in contraction it decreases.

(ii) For an isobaric process When P1 = P2, Eq. (7) reduces to 

2
P P

1

T
S nC ln

T
Δ =

(10) 
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(iii) For an isochoric process When V1 = V2, then Eq. (6) reduces to 

2
V V

1

T
S nC ln

T
Δ =

(11) 

Solved examples

1. Calculate the change in entropy accompanying the isothermal expansion of 5 moles of an 
ideal gas at 330 K until its volume has increased six times. 
Solution

Entropy change during isothermal expansion of an ideal gas 

1 12
T

1
1

V 6
( S) 2.303nR log 2.303 5 8.314 J K mol log

V 1
2.303 5 8.314 0.7782 74.5 J K

− −

−

Δ = = × ×

= × × × =

2. Calculate the entropy change involved in expanding 1 mole of an ideal gas from 15 L  at 2 
atm pressure to 50 L at 1 atm pressure.( 1 1

PC 7.42 cal deg mol− −= )

Solution

2

2 1 2 1
p p 10 10

1 2 1 2

1 1
P

1 1
1

1 1 2 2

1 2

2 2 2

1 1 1

T P T P
S nC ln nR ln 2.303nC log 2.303 nR log

T P T P

n 1mole; C 7.42caldeg mol

R 1.987cal deg mol ; P 2 atm ; P 1 atm

P V P V
For an ideal gas 

T T

T P V 50 1 5
or

T P V 15 2 3

− −

− −

Δ = + = +

= =

= = =

=

×= = =
×

10 10

1

5 2
S 2.303 1 7.4 log 2.303 1 1.987 log

3 1

3.779 1.377 5.156 cal deg−

∴ Δ = × × + × ×

= + =

3. Calculate the entropy change when 3 moles of an ideal gas (Cv = 7.88 cal deg–1 mol–1) are 
heated from a volume of 200 L at 50 °C to a volume of 300 L at 150 °C.

Solution

2 2
V 10 10

1 1

T V
S 2.303 nC log 2.303 nR log

T V
Δ = +
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Here,  n = 3 mole, 1 1
VC 7.88 cal deg mol− −=  R = 1.987 cal deg–1 mol–1

T1 = 273 + 50 = 323 K; T2 = 273 +150 = 423 K; V1 = 200 L; V2 = 300 L. 

10 10

1

423 300
S 2.303 3 7.88 log 2.303 3 1.987 log

323 200
6.377 2.417 8.794 cal deg−

Δ = × × + × × ×

= + =

4. Calculate the entropy change when 1 mole of an ideal gas is heated from 20 °C to 40 °C at a 
constant pressure. The molar heat at constant pressure of the gas over this temperature range 
is 6.189 cal deg–1. 

Solution

For an isobaric process,

2

2
P P 10

1

1
P

1

P 10

1

T
S 2.303 nC log

T
Here
n 1mole ; C 6.189 cal deg
T 273 20 293 K ; T 273 40 313K

313
S 2.303 1 6.189 log

293
0.4087 cal deg

−

−

Δ =

= =
= + = = + =

Δ = × × ×

=

Practice problems

1. 1 mole of an ideal gas (CV = 12.55 J K–1 mol–1) is transferred from 298 K and 2 atm to 233 K 
and 0.4 atm. Calculate the value of entropy change in the system. 

[Ans 10.294 J K–1 mol–1]
2. 1 mole of an ideal gas (CV = 12.471 J K–1 mol–1) is heated from 300 to 600 K. Calculate 

entropy change when (a) volume is kept constant, (b) pressure is kept constant.
[Ans (a) 8.645  J K–1 mol–1  (b) 14.408 J K–1 mol–1]

3. Calculate the entropy change when 5 moles of an ideal gas undergoes isothermal expansion at 
20 °C from a pressure of 10 atm to a pressure of 2 atm.   [Ans  66.909 J deg–1]

4. Calculate the entropy change when 2 mole of an ideal gas is allowed to expand from a volume 
of 1 L to a volume of 10 L at 27 °C.                                                           [Ans 38.294 J K–1]

2. Entropy change in heating a solid or a liquid 
 When a solid or a liquid is heated without producing change in state, the heat change is  

given by
 Quantity of heat absorbed = mass × specific heat × temperature rise. 
                   = number of moles × molar heat × temperature rise.
 Thus, if m g of a solid or a liquid of specific heat s is heated reversibly through temperature 

dT, the amount of heat absorbed is given by
dqrev = msdT
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revdq msdT
Entropy change dS

T T
∴ = =

or  
2

1

T

T

msdT
S

T
Δ =∫ ∫   (12)

Assuming that s remains constant within the temperature limits T1 and T2, Eq. (12) on 
integration gives, 

2 2
10

1 1

T T
S ms ln 2.303 ms log

T T
Δ = = (13)

3. Entropy change during phase transition When matter changes from one phase to another 
like from the solid phase to the liquid phase or from liquid to gaseous phase, then it is 
termed as the phase transition. Melting of solid or vaporisation of liquid occurs at constant 
temperature as the two phases are in equilibrium at all times. The entropy change for these 
reactions may be calculated as

rev
trans

q
S

T
Δ =

 where q is the heat evolved or absorbed during transition and T is the temperature. For 
transformation of 1 mole of a substance at constant pressure, qrev is equal to the molar enthalpy 
change for that transformation, that is, qrev = ΔH trans. Let us consider some examples 

 (i) Entropy of fusion Entropy of fusion is the entropy change during the conversion of 1 
mole of the solid substance into liquid form at its melting point. For example, when ice 
melts, 

  Water (s)  Water (l)
  The change in entropy is given by

fusion
water ice fusion

f

H
S S S

T
Δ

− = Δ =
  

(14)

  where �Hfusion the enthalpy of fusion and Tf is the fusion temperature.

 (ii) Entropy of vaporisation Entropy of vaporisation is the change in entropy when 1 
mole of a liquid changes into vapor at its boiling point. The entropy of vaporisation of a 
liquid at its boiling point is

Δ
Δ = vap

vaporization
b

H
S

T   (15)

  where vapHΔ  is the entropy of vaporisation and Tb is the boiling point.
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Practice problems

1. Calculate the entropy change when 2 moles of lead is heated from 27 °C to 28 °C. The 
specific heat of lead over this temperature range is 0.03 cal g–1 and the atomic weight of lead 
is 207.

Solution

2
10

1

T
S 2.303 ms log

T
Δ =

Here, m = 2 × 207 = 414 g ;  s = 0.03 cal g–1 ;   T1 = 273 + 27 = 300 K ;  T2 = 273 + 28 = 301 K. 

10

1

301
S 2.303 414 0.03 log

300
0.0413cal K −

Δ = × × ×

=

2. Calculate the molar entropy of vaporisation of 1 mole of water at 100 °C. Latent heat of 
vaporisation of water at 100 °C is 540 cal/g.

Solution 

1 1
vap 1 1

b

H 540cal g 18g mol
S 26.059 cal mol K

T 373

− −
− −Δ ×

Δ = = =

3. Calculate the total entropy change when 5 moles of ice at 0 °C and 1 atm is converted into 
steam at 100 °C. The molar heat of fusion of ice and molar heat of vaporisation of water are 
1440 and 9720 cal mol–1. The molar heat capacity of water over this temperature range may 
be taken equal to 18 cal mol–1. 

Solution

The process is irreversible. To compute the entropy change, the given process may be imagined 
to be carried out reversibly in the following three steps 
(i) H2O (s) at 0 °C � H2O (l) at 0 °C.

(ii) H2O (l) at 0 °C � H2O (l) at 100 °C.

(iii) H2O (l) at 100 °C � H2O (g) at 100 °C.

The molar entropy change for process (i) is given by 

1 1fusion
1

f

H 1440
S 5.274 cal mol K

T 273
− −Δ

Δ = = =

The molar entropy change in process (ii) is given by 

2
2 P 10

1

1 1
10

T
S 2.303 C log

T
373

2.303 18 log 5.616 cal mol K
273

− −

Δ =

= × × =
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The molar entropy change in process (iii) is given by 

vap 1 1
3

b

H 9720
S 26.06cal mol K

T 373
− −Δ

Δ = = =

1 2 3The total molar entropy change S = S S S∴ Δ Δ + Δ + Δ

= 5.274 + 5.616 +26.06   = 36.95 cal K–1 mol–1.

The total entropy change for 5 moles = 5 × 36.95 = 184.75 cal K–1.

4. ΔSvap of acetone is 93.0 J K–1 mol–1. If the boiling point of acetone is 56 °C, calculate the heat 
required to vaporise 1 g of acetone.      
Solution

ΔSvap = 93.0 J K–1mol–1   ;   Tb = 273 + 56 = 329 K. 

−

−

ΔΔ =

Δ = Δ × = × =

∴ =

vap
b

1
vap b

1

H
S

T
H S T 93 329 30597 J mol

Heat required to vaporise 1 mole acetone = 58 g  = 30597 J mol  
30597

Heat required to vaporise 1 g acetone = 527.5 J
58

Practice problems

1. Determine the entropy of fusion of ice, if its latent heat of fusion is 6.025 kJ mol–1. 
                                                                              [Ans = 22.07 J K–1 mol–1]

2. Find the change in entropy when 1 mole of ethanol is evaporated at 351 K. The molar heat 
of vaporisation of ethanol is 9522 cal mol–1.             [Ans  = 27.128 cal K–1 mol–1]

3. 30.4 kJ of heat is required to melt 1 mole of sodium chloride. The entropy change during 
melting is 28.4 J mol–1 K–1. Calculate the melting point of sodium chloride.

[Ans = 1070.4 K]
4. If  ΔS = 109.8 J K–1 mol–1  and boiling point of ethanol = 78.5 °C, find out the enthalpy  of 

vaporisation per mole for ethanol                                             [Ans 38.595 kJ mol–1]

15.18 Entropy Changes in a Reversible Process

Total entropy change of the universe can be evaluated by considering the entropy change of the 
system as well as that of the surroundings. When a system gains heat, the surrounding loses heat 
and hence their entropies also change. The total change in entropy will, therefore, be equal to the 
algebraic sum of the entropy change of the system and the surroundings, that is, 

ΔS = ΔSsystem + ΔSsurrounding 
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If an ideal gas undergoes an isothermal reversible expansion and absorbs heat   equal to qrev at 
temperature T, then the entropy change of the gas, that is, system is given by

rev
system

q
S

T
Δ =

As the expansion is reversible, the system is in equilibrium with its surroundings at all times during 
the expansion. Hence, the surroundings lose an amount of heat equal to qrev or we can say that the 
surrounding absorb (–) qrev of heat. The entropy change of the surroundings is given by

rev
surroundings

system surroundings

rev rev

q
S

T
 the total entropy change of the universe,
S= S S

q q
T T

S 0

Δ = −

∴
Δ Δ + Δ

= −

Δ = (16)

Hence, it can be concluded that for a reversible process the total entropy change of the universe is 
zero.

However a thermodynamically irreversible process is always accompanied by an increase in 
entropy of the system and surroundings taken together .

D DS Ssystem surroundings+ >0

15.19 Entropy Change in a Irreversible Process 

In an irreversible or spontaneous process, the entropy of the universe increases. This can be 
illustrated by taking the following examples 
(i) Isothermal expansion of an ideal gas Consider an irreversible isothermal expansion of an 

ideal gas. Suppose n moles of an ideal gas expands irreversibly from a volume V1 to a volume 
V2, as systemSΔ   is independent of the path of the change it is given by 

2
system

1

V
S nR ln

V
Δ =

The entropy change of the surroundings will, however, be different. Let us take the extreme 
case of isothermal free expansion, that is, expansion in vacuum. In this case no work is done 
by the gas, that is, w = 0. For an isothermal process, ΔE = 0. According to the first law of 
thermodynamics, 

q = ΔE – w. 

   = 0 + 0 = 0. 

This shows that no heat is absorbed by the system and as such no heat will be given up by the 
surroundings and consequently 
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surroundingsS 0Δ =

system surroundings

 the total entropy change of the universe- 
S = S S

∴
Δ Δ + Δ

2

1

V
nR ln 0

V
= +

or    2

1

V
S nR ln

V
Δ =

As V2 > V1, the value of ΔS is positive; hence, in an irreversible expansion of an ideal gas the 
entropy of the universe increases.

German physicist Rudolf Clausius (1822–1888) summed up the first and second law stating 
that: the energy of the universe remains constant and the entropy of the universe tends towards 
a maximum. 

15.20 Entropy of Mixing

When different gases are allowed to mix freely at constant temperature and pressure, there is an 
increase in entropy. On mixing, the molecules of each gas are free to move in a large volume, that 
is, their randomness increases and hence entropy increases.

Quantitative expression
Entropy change (dS) for 1 mole of an ideal gas is given by 

V
dT dV

dS C R
T V

= +

Assuming Cv to be constant for an ideal gas and integrating this equation, we get

V

V 0 0

V 0

/
P 0 P V

/
0 0

dT dV
dS C R

T V
S C ln T R ln V S {S integration constant} (17)

RT
Now V

P
Placing the value of V in Eq. (17), we have 

S C ln T R ln T R lnR R lnP S

S C ln T R lnP S ( C C R)

where S R lnR S

∵

= +

= + + =

=

= + + − +

= − + = +

= +

∫ ∫ ∫
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Now, let us consider a gaseous mixture containing n1, n2, …, etc., moles of various gases and let 
their partial pressures be p1, p2 …, etc., respectively, then entropy of the mixture is 

/ /
1 P 1 0 2 P 2 0

/
P 0

S n (C ln T R ln p S ) n (C ln T R ln p S ) ...........

n(C ln T R ln p S )

= − + + − + +

= − +∑

/
P 0

Now partial presure (p) = Mole fraction(X) Total pressure P

S n(C ln T R lnP R ln X S )

×

∴ = − + +∑

Entropy change during mixing of ideal gases
Suppose n1, n2, …, etc., are the number of moles of ideal gas 1, 2, … etc., and V1, V2, … etc., are 
the volumes of the individual gas. Then, at constant temperature 

[ ] [ ]
mixing final initial

1 1 2 1 1 2 1 2 2 2

S S S

n R ln(V V .....) n R ln V n R ln(V V .....) n R ln V ......

Δ = −

= + + − − + + − +

= − −
+ + + +

= = = =
+ + + +

1 2
1 2

1 2 1 2

1 1 2 2
1 2

1 2 i 1 2 i

V V
n R ln n R ln

(V V .....) (V V .....)
V n V n

But X ; X
(V V .....) n (V V .....) n

where in  is the total number of moles in the gases in the system and X gives the mole fraction of 
the individual gases.

[ ]mixing 1 1 2 2

i i

i i i i

S R n ln X n ln X

R n ln X

R X ln X ( X n ) (18)∵

∴Δ = − + …

= −

= − ∝
∑
∑

It is interesting to note that mole fraction Xi of any gas in a mixture must be less than unity, its 
logarithm is negative, hence mixingSΔ  as defined by Eq. (18) is always positive. Hence, the mixing of 
two or more gases is always accompanied by an increase in entropy. 

Solved examples

1. Calculate the entropy of mixing of 1 mole of N2 and 2 moles of O2, assuming the gases to be 
ideal. Express the result in S.I. units.

Solution

[ ]Δ = − +

= = = =

mix 1 1 2 2

2 2
1 2

S per mole 2.303R n log X n log X

moles of N moles of O1 2
X ; X

Total number of moles 3 Total number of moles 3

�����������	
��
�����	����
���������	������������	������	������������������	���
���������������������������	
��
�����	����
���	� ��!�����"����#$���%�&�
���"'�������(�"�)��������*��*�))'��$
+�
���������,��
������,�������������$��'��!����
�����



860  Engineering Chemistry: Fundamentals and Applications

1
mix

1

1 1 2 2
S 2.303 8.314 log log  J K

3 3 3 3
1 2 3

2.303 8.314 log3 log  J K
3 3 2

2.303 8

−

−

⎡ ⎤Δ = − × +⎢ ⎥⎣ ⎦
⎡ ⎤= + × +⎢ ⎥⎣ ⎦

= × 1

1

1
mix

.314(0.1590 0.1174) J K

5.29 J K

for3 moles S 3 5.29 15.87 J K

−

−

−

+

=

Δ = × =

2. At NTP, 2.8 L of oxygen were mixed with 19.6 L of hydrogen. Calculate the increase in 
entropy, assuming ideal gas behavior. 

Solution
Here, 

[ ]

1 21 1

1 2

mixing 1 1 2 2

1 1

2.8  L 19.6L
n 0.125 mol; n = 0.875 mol

22.4 L mol 22.4 L mol
0.125 0.875X 0.125 and X 0.875

0.125 + 0.875 0.125 + 0.875
S = R 2.303 n log X n log X

= 8.314 J K mol 2.303 [0.125 mol log 0.125 0.875 mol log 0.87

- -

- -

= = =

= = = =

D - ¥ +

- ¥ +

1

5]
= 8.314 2.303 [ 0.1129 0.0507]

= 8.314 2.303 ( 0.1636) 3.132 J K-

- ¥ - -

¥ ¥ - =

3. The mixing of gases is always accompanied by an increase in entropy. Show that in the 
formation of a binary mixture of two ideal gases the maximum entropy increase results when 
X1 = X2 = 0.5 

Solution

For a binary mixture the entropy per mole of the mixture formed is given by 

[ ]Δ = − +mixing 1 1 2 2S R X ln X X ln X

[ ]= − + − −1 1 1 1R X ln X (1 X )ln(1 X )

       For entropy of mixing to be maximum, the first derivative mixing

1

( S )

X

Δδ
δ

 should be zero and the 

second derivative should be negative. Differentiating ΔSmixing with respect to X1 we get 

mixing 1 1
1 1

1 1 1

1 1

1 1

( S ) X 1 X
R ln X ( 1) ( 1)ln(1 X )

X X 1 X
R(ln X 1 1) ln(1 X ) 0

or ln X 1 1 ln(1 X ) 0

Δ ⎡ ⎤−= − + + − + − −⎢ ⎥−⎣ ⎦
− + − − − =

+ − − − =

δ
δ
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1
1 1

1

1 1

X
or ln 0 or X 1 X

1 X
2X 1 X 1/ 2 0.5

= = −
−

= = =

And hence X2 = 1–0.5 = 0.5. 

Practice problems

1. 1 mole of H2 and 9 moles of N2 are mixed at 298 K and 1 atmosphere. Assuming the ideal 
behavior of the gas, calculate the entropy of mixing per mole of the mixture formed. 

                                                                  [Ans 2.704 J K–1 mol–1 ]

15.21 Free Energy Function (G) and Work Function(A) 

The feasibility of a process or chemical reaction cannot be determined by enthalpy change or 
entropy change alone. Both the functions are essential to predict the spontaneity or feasibility of a 
chemical reaction. The functions which incorporate both energy and entropy change are the free 
energy function and work function represented by G and A respectively . Both these functions are 
state functions, that is, their value depends only on the initial and final state of the system. They 
are given by 

A E TS
G H TS

= -
= -

Physical significance of work function Consider an isothermal change from initial state 
denoted by subscript 1 to the final state denoted by the subscript 2. 

A1 = E1– TS1    and    A2 = E2 – TS2 

Change in work function at constant temperature is given by 

A2 – A1 = (E2 – E1) – T (S2 – S1) 

ΔA = ΔE – TΔS (1) 

∵ revq
S ,

T
Δ =  where qrev is the heat taken up when the reaction is carried out in a reversible 

manner. Substituting the value of ΔS in Eq. (1) we get 

Δ ΔA E qrev= −
(2)

According to the first law of thermodynamics, for a reversible isothermal process 

ΔE = q + w hence 

w E qrev rev= -D
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If work is done by the system it is negative so that    

− = −w E qrev revΔ
(3)

Comparing Eq. (2) and (3) we get,

- =DA wrev

Thus, at constant temperature decrease in the function A is equal to the reversible work done by the 
system. As reversible work is the maximum work that can be obtained from a given thermodynamic 
change in state, in an isothermal process the decrease in work function is a measure of the maximum 
work obtainable from the change in state. The work function A is also referred to as Helmholtz free 
energy or the Helmholtz function .

Similarly considering the free energy function G we have 

G = H – TS 

If at constant temperature the thermodynamic functions in the initial and final states are 
represented G1, H1, S1 and G2, H2, S2 respectively then 

G G H H T S S or G H T S2 1 2 1 2 1- = - - - = -( ) ( ) D D D

As studied earlier at constant pressure 

D D D
D D D D

H E P V
G E P V T S

= +
\ = + -

or G A P V A E T SD D D D D D= + = -∵

Since ΔA is equal to –w hence,   

D D D DG w P V or G w P V= - + - = - 

Since PΔV gives the work expansion of the gas at constant pressure hence the term – ΔG  is 
a measure of work other than the work due to change in volume at constant temperature and 
pressure. This work other than the work due to the change in volume is termed as the net work. 
thus 

Net work = - = -w P V GD D

The quantity ΔG is termed as the Gibbs free energy or simply free energy and –ΔG gives the 
decrease in free energy. Since ΔG measures work other than the work due to change in volume 
hence the net work is a measure of the electrical or chemical work.

Variation of free energy on pressure and temperature

By definition,

G = H – TS 
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Since  H = E + PV 

� G = E + PV – TS. 

By partial differentiation we get 

dG  dE PdV VdP TdS SdT  = + + − −   (1)

From the first law of thermodynamics, 

dq dE dw= -

If the work done is only due to expansion then 

- =

\ = +

dw PdV

dq dE PdV

or dE dq PdV= - (2)

It is assumed that the process is reversible and no work other than that of volume change is 
occurring, hence 

dq TdS=

Substituting the value of dq in Eq. (2), we get

dE TdS PdV= −   (3)

Putting the value of dE in Eq. (1), we get

dG  VdP SdT = −   (4)

This equation takes different forms under different conditions
(i) At constant temperature, that is, when dT = 0, Eq. (4) takes the form 

T

dG VdP
G

or V
P

=
∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠   

(5)

(ii) At constant pressure, that is, when dP = 0, Eq. (4) takes the form 

dG = – SdT

or  
P

G
S

T
∂⎛ ⎞ = −⎜ ⎟⎝ ⎠∂

  (6)
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Free energy change with pressure for an ideal gas
At constant temperature, it follows that 

dG = VdP (7) 

If the pressure changes from P1 to P2, the corresponding free energy will change from G1 to G2. 
Integrating Eq. (7) between these limits, we get

2 2

1 1

G P

G P

dG VdP  

for an ideal gas 
nRT

V= 
P

=∫ ∫

  

(8)

2 2

1 1

G P

G P

2
2 1

1

Substituting the value of V in Eq. (8), we get 

nRT
dG dP  

P

P
or  G = G -G =nRTln

P

=

Δ

∫ ∫

2 1

1 2

P V
or  G =2.303 nRTlog 2.303 nRTlog

P V
Δ = (9)

where V1 and V2 are the initial and final volumes, respectively. As G is a state function, Eq. (9) gives 
free energy change whether the reaction is carried out reversibly or irreversibly.

Solved examples

1. Calculate the free energy change when 4 moles of an ideal gas expands from a pressure of 10 
to 1 atm at 25 °C.

Solution

2

1

P
G =2.303 nRTlog

P
Δ

Here, n = 4 moles;  R = 8.314 J K–1 mol–1;   T = 273 + 25 = 298 K;  P1 = 10 atm;  P2 = 1 atm. 

1
G = 2.303 4 8.314 298 log

10
22823.39 J

Δ × × ×

= −
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2. ΔG for a reaction at 300 K is –16 kcal; ΔH for the reaction is –10 kcal. What is the entropy 
of the reaction? What will be ΔG at 330 K?

Solution

(i) 

1 1

G = H – T S 
H– G 10 kcal 16 kcal

or S = = = 0.02 kcalK = 20 calK
T 300K

− −

Δ Δ Δ
Δ Δ − +Δ

(ii) ΔG at 330 K = �H–T�S 

                     = –10 kcal – 330 K × 0.02 kcal K–1 = – 16.6 kcal. 

3. Calculate ΔG for the conversion of 1 mole of water at 100 °C and 1 atm to steam at 100 °C 
and 0.5 atm pressures.

Solution

ΔG = (ΔG for the conversion of H2O (l) at 100 °C and 1 atm to steam at 100 °C and 1 atm). 
+ (ΔG for the transition of steam at 100 °C from 1 atm to 0.5 atm). 
The first term on the RHS is zero, as H2O (l) and H2O (g) are in equilibrium at 100 °C and 
1 atm pressure. 

The second term is = 2

1

P
2.303 nRT log

P

10
0.5

G 2.303 1 1.987 373 log
1

Δ = × × × ×

= 2.303 × 1× 1.987 × 373 × (– 0.3010)

= – 513.82 cal

Practice problems

1. 4 mole of an ideal gas is compressed isothermally at 300 K from 2.02 × 105 N m–2 to 4.04 × 
105 N m–2 pressure. Calculate the free energy change for the process. [Ans  6916.63 J]

2. One mole of an ideal gas at 27 °C expands isothermally and reversibly from initial volume of 
2 dm3 to a final volume of 20 dm3 against a pressure that is gradually reduced. Calculate q, w, 
ΔE, ΔH, ΔA, ΔG and ΔS. 

            [Ans q = 5744 J mol–1;   w = −5744 J mol–1;   ΔE= 0;   ΔH= 0;   ΔA = −5744 J mol–1. 
                     ΔG = −5744 J mol–1 and ΔS = 19.15 J K–1 mol–1]

3. Calculate ΔG for the formation of H2O (l) from its elements at 25 °C. ΔHf = –286 kJ. 
Entropies of H2 (g), O2 (g) and H2O (g) are 130.6, 205.0 and 70.3 J K–1 mol–1, respectively. 

                                                                   [Ans ΔG = −237.5 kJ]
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15.22 Gibbs–Helmholtz Equation 

At constant pressure, the change of free energy with temperature is given by 

P

G
S

T
∂⎛ ⎞ = −⎜ ⎟∂⎝ ⎠   (10)

Suppose a system changes reversibly and isothermally from state 1 to state 2. If the free energy and 
entropy of the system in state 1 are G1 and S1 respectively, and in state 2 are G2 and S2 respectively, 
then the entropy change of the system is given by 

ΔS = S2  –  S1  (11)

From Eq. (10) we can write

1 2
1 2

P P

G G
S and S

T T
∂ ∂⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Substituting the values of S1 and S2 in Eq. (11) we get 

2 1

P P

G G
S

T T
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞Δ = − −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

Or   

2 1

P

P

(G G
or S

T
G

or S
T

∂ −⎛ ⎞Δ = −⎜ ⎟∂⎝ ⎠
∂Δ⎛ ⎞Δ = −⎜ ⎟∂⎝ ⎠

  (12)

For an isothermal process, ΔG = ΔH – TΔS  
Substituting the value of ΔS from Eq. (12) in this equation we get,

P

G
G H T ......(13)

T
∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟∂⎝ ⎠   (13)

This equation was derived by J.W. Gibbs and H. Von Helmholtz and is known as the Gibbs–
Helmholtz equation 

A corresponding equation for the work function A and internal energy E for an isothermal reversible 
process at constant volume yields another form of the Gibbs–Helmholtz equation – 

V

A
A E T

T
∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟∂⎝ ⎠

(14)

Solved problems

1. For the following reaction 

N2(g) + 3 H2(g) � 2NH3 (g) 
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The free energy change at 25 °C and 35 °C are –3.98 and – 3.37 kcal. Calculate the heat of 
reaction at 35 °C. 

Solution

P

2 1

P 2 1

1 2

1 2

P

G
G H T

T
G G G

also
T T T

Here G 3.98 kcal; G 3.37 kcal
T 273 25 298K ; T 273 35 308K

G 3.37 ( 3.98) 0.61
0.061

T 308 298 10

∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟⎝ ⎠∂
∂Δ −⎛ ⎞ =⎜ ⎟⎝ ⎠∂ −

= − = −
= + = = + =

∂Δ − − −⎛ ⎞∴ = = =⎜ ⎟⎝ ⎠∂ −

At 35 °C   ΔG = −3.37 kcal;    T = 308 K.

3.37 H 308(0.061)
H 3.37 18.79 22.16 kcal

− = Δ +
Δ = − − = −

2. For the following reaction

H2 (g) + ½ O2 (g) � H2O (l) 

The value of enthalpy change and free energy change are −68.32 and −56.69 kcal respectively 
at 25 °C. Calculate the value of free energy change at 30 °C. 
Solution

P

G
G H T

T
∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟∂⎝ ⎠

P

Here G 56.69 kcal; H 68.32 kcal T 273 25 298K

G 56.69 68.32
0.039

T 298

Δ = − Δ = − = + =
∂Δ − +⎛ ⎞∴ = =⎜ ⎟⎝ ⎠∂

Assuming that 
P

G
T

∂Δ⎛ ⎞
⎜ ⎟∂⎝ ⎠

 remains constant over this range of temperature, at 30 °C we can 
write 

G 68.32 303 0.039
68.32 11.81
56.51 kcal

Δ = − + ×
= − +
= −
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Practice problems

1. The free energy change for a reaction is – 86.5 kJ per mole at 298 K and – 83.50 kJ per mole 
at 308 K. Calculate the enthalpy change (ΔH) for the reaction at 303 K. 

                                                                                                                         [Ans = –175.9 kJ]
2. Calculate ΔA and ΔG for the reversible compression of one mole of an ideal gas from 2 atm 

to 100 atm at 30.2 °C. [Ans ΔA = 2357.25 cal;  ΔG = 2357.25 cal]

15.23 Claypeyron–Clausius Equation

This equation finds application in one component and in the two-phase systems. Let us consider 
two phases A and B of the same component in equilibrium with each other at constant temperature 
T and pressure P. This equilibrium may be represented as 

A  B 

Suppose free energies per mole of the substance in the two phases A and B are GA and GB, 
respectively. As the system is in equilibrium, there is no change in free energy, that is, 

GA = GB  (1) 

If the temperature is raised to T + dT, the pressure P will increase to P + dP. For this change, the 
molar free energy becomes GA+ dGA and GB + dGB, respectively.
As the two phases are in equilibrium, 

GA+ dGA = GB + dGB  (2) 

As for this phase change the work done is only because of the volume change, the change in 
energies dGA and dGB may be calculated by the equation

 dG = V.dP – S.dT  (3) 

Therefore, it can be written as 

dGA = VAdP – SAdT  (4) 

dGB = VBdP – SBdT  (5) 

VA and VB are the molar volumes of the phases A and B respectively, and SA and SB are their 
corresponding enthalpies. Hence, 

VAdP – SAdT     = VBdP – SBdT     

or 
B A

B A B A

S SdP S
dT V V V V

− Δ= =
− −  (6)

where Δ S = molar entropy change and VB–VA is the change in volume when 1 mole of substance 
changes from A to B. 
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From Gibbs–Helmholtz equation

ΔG = ΔH–TΔS (7)

�  ΔG = 0 (Eq. 1). Hence, Eq. (7) may be written as  

ΔH–TΔS = 0   or  H
S .....(8)

T
ΔΔ =   (8)

Placing this in Eq. (6) we get 

B A

dP H
,

dT T(V V )
Δ=

−   (9)

This is the Claypeyron – Clausius equation. ΔH represents the change in enthalpy for phase change 

at temperature T and 
dP
dT  represents the rate of change of pressure with temperature. 

Integrated form of Claypeyron – Clausius equation for liquid – vapor equilibrium

In liquid vapor equilibrium VV >> VL, hence  V L VV V V− ≈
The Claypeyron–Clausius equation takes the form 

V

V

HdP
dT TV

Δ
=

  (10)

Assuming the vapours behave ideally,

V V
RT

PV RT or V
P

= =

Inserting this value in Eq. (10)

V
2

H1 dP
P dT RT

Δ
=

Integrating, on the assumption that �HV is constant over a small temperature change, we get 

1

2 1

1

V2

1 2

V2

1 2

HP 1 1
ln

P R T T

T THP
ln

P R T T

⎛ ⎞Δ
= −⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞−Δ
= ⎜ ⎟⎜ ⎟⎝ ⎠

where P1 and P2 are the vapor pressures at T1 and T2 respectively. Molar heat of vaporisation at 
different temperatures can be computed with this equation. 

Solved examples

1. The latent heat of vaporisation of benzene at its boiling point (80 °C) is 7413 cal mol–1. What 
is the vapor pressure of benzene at 27 °C. 
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Solution

ΔHV = 7413 cal mol–1  ;  T1 = 80 °C = 353 K;   P1 = 1 atm = 760 mm Hg 

T2 = 27 °C = 300 K;    P2 = ? 

V2 2 1

1 2 1

HP T T
log

P 2.303 R T T
⎡ ⎤Δ −

= ⎢ ⎥
⎣ ⎦

1
2

1 1

7413 cal molP 300 353
log

760 mmHg 2.303 1.987 cal mol K 300 353
7413 ( 53)

0.8107
2.303 1.987 300 353

−

− −

−⎡ ⎤= ⎢ ⎥× ×⎣ ⎦
× −= = −

× × ×

2

2

2

760 mm Hg
log 0.8107

P
760 mm Hg

or Antilog 0.8107 6.4670
P

Hence P 760 / 6.4670 117.52 mm Hg

=

= =

= =

2. If the atmospheric pressure is 535 mm of mercury, find the temperature at which water will 
boil. Latent heat of vaporisation of water is 545.5 cal/g.

Solution

P1 = 535 mm Hg                ;         P2 = 1 atm = 760 mm Hg 

T1 = ?                                 ;          T2 = 100 + 273 = 373 K

ΔHv = 545.5 cal/g = 545.5 × 18 cal/mol = 9819 cal mol–1 

R = 1.987 cal K–1 mol–1 

V2 2 1

1 2 1

HP T T
log

P 2.303R T T
⎡ ⎤Δ −= ⎢ ⎥
⎣ ⎦

1

1 1
1

1

1 1

1

1

9819cal mol760 1 1
log

535 2.303 1.987 cal K mol T 373
1 1 0.1524 2.303 1.987

0.00007102
T 373 9819

1
or 0.002681 K 0.00007102 K

T
1

T 363.37 K
0.00275202

−

− −

− −

⎡ ⎤
= −⎢ ⎥× ⎣ ⎦

× ×
− = =

− =

= =
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Practice problems

1. The latent heat of vaporisation of water is 540 cal/g at about 100 °C. Calculate the pressure at 
which water must be heated to produce superheated steam at 150 °C.          [Ans 4.709 atm]

15.24 Vant Hoff Isotherm

Consider the general reaction 

A + B  �  C + D  (1) 
We know that 

( )T

dG VdP SdT
At constant temperature     dG VdP
The free energy change for 1 mole of any gas at constant temperature is given by
dG=VdP   for an ideal gas PV=RT   or V= RT/P 

dP
Hence dG = RT. 

P

= −
=

∵

Integrating,

º

dP
dG  RT  

P
G G RT lnP

=

= +

∫ ∫
  

(2)

Here, G° is the integration constant and is known as the standard free energy, that is, G° = G when 
P =1 atm.

Let the free energy per mole of A, B, C, D at their respective pressures PA, PB, PC, PD are GA, GB, 
GC, GD respectively. Then the free energy of A per mole at temperature T is 

A A AG G RT lnP°= +

Similarly, free energies of B, C and D are as follows:
º

B B B

º
C C C

º
D D D

G G RT lnP

G G RT lnP

G G RT lnP

= +

= +

= +

The change in free energy ΔG is 

ΔG = Gproducts – Greactants = [(GC + GD) – (GA + GB)];  hence, 

( ) ( )º º º º
C C D D A A B B

º º º º C D
C D A B

A B

º C D

A B

G G RT lnP G RT lnP G RT lnP G RT lnP
P P

(G G G G ) RT ln
P P

P P
G G RT ln

P P

Δ = + + + − + + +
×

= + − − +
×

×
= Δ +

×
(3)
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ΔG0 = Standard free energy of reaction (1); 

but at equilibrium  ΔG = 0. 

Therefore, º
eq0 G RT ln K= Δ +

or 0
eqG RT ln K ...... 4Δ = −     (4)

where Keq= C D

A B

P P
P P

×
×

On substituting this value of ºGΔ  in Eq. (3) 

C D
eq

A B

P P
G RT ln K RT ln

P P
×

Δ = − +
×   (5)

For the general reaction; aA + bB � cC + dD; the Eq. (5) becomes 
c d

C D
eq a b

A B

(P ) (P )
G RT ln K RT ln

(P ) (P )
×

Δ = − +
×   (6)

This expression is termed as the Van’t Hoff isotherm. It gives a quantitative relationship for the 
free energy change in a chemical reaction.

Van’t Hoff isochore It deals with the variation of equilibrium constant with temperature. 

0
eqG RT ln KΔ = −

eq
G ( H T S ) H S

ln K
RT RT RT R
Δ ° − Δ ° − Δ ° Δ ° Δ °= − = = − +

º º º º

1 2
1 2

º º
2 1

2 1
1 2 1 2

º
2 2 1

1 1 2

º
2 2 1

1 1 2

H S H S
ln K and ln K

RT R RT R

T TH 1 1 H
or ln K ln K

R T T R T T

K T TH
ln or

K R T T

K T TH
log

K 2.303R T T

Δ Δ Δ Δ∴ = − + = − +

⎛ ⎞ ⎛ ⎞−Δ Δ− = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞−Δ= ⎜ ⎟
⎝ ⎠

⎛ ⎞−Δ= ⎜ ⎟
⎝ ⎠ (7)

This expression, called the Van’t Hoff isochore, can be used to calculate equilibrium constant at 
T2 if its value at T1 is known. 

Solved example

1. The equilibrium constant for the reaction
H2 (g) + S (s)  H2S (g) is 18.5 at 925 K and 9.25 at 1000 K. Calculate standard enthalpy 
of the reaction. Also calculate ΔG0 and ΔS0 at 925 K.
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Solution

From Van’t Hoff isochore, 

º
2 2 1

1 1 2

K T TH
log

K 2.303R T T
⎛ ⎞−Δ= ⎜ ⎟
⎝ ⎠

º
1000K

1 1
925K

º

º 1 1

K H 1000 925
log

K 2.303 8.314 J K mol 925 1000

9.25 H 75
log

18.5 2.303 8.314 925000

H 71080 J mol 71.08 kJ mol

− −

− −

Δ −⎛ ⎞= ⎜ ⎟⎝ ⎠× ×

Δ ⎛ ⎞= ⎜ ⎟⎝ ⎠×

Δ = − = −

º
eq

1

1

1

º º
º

1
1 1

now; G 2.303RT log K

2.303 8.314 J mol 925 log18.5

22400 J mol

22.4 kJ mol

H G
S

T
( 71080 22400) J mol

52.6 J K mol
925

−

−

−

−
− −

Δ = −

= − × ×

= −

= −

Δ − ΔΔ =

− += = −

Practice problems

1. The equilibrium constant of the reaction 2SO2 + O2  2SO3 at 528 °C is 98.0 and at 680 °C 
is 10.5. Find the heat of reaction.                      [Ans − 93273.33 J]

2. The equilibrium constant K for the reaction 
N2 + 3H2   2NH3 is 1.064 × 10–4 at 400 °C and 0.144 × 10–4 at 500 °C. Calculate the mean 
heat of formation of 1 g mol of ammonia from its elements in this temperature range.

                                                                              [Ans  ΔH = –12575 cal]

15.25 Maxwell’s Thermodynamic Relations 

We know that 

H = E + PV

A = E – TS.
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and G = H–TS   or    G = E + PV – TS 

The differential forms of these equations can be written as 

dH = dE + PdV + VdP (1)

dA = dE – TdS–SdT (2)

dG  = dE + PdV +VdP – TdS – SdT  (3)

As dE= TdS−PdV, substituting the value of dE in Eqs. (1), (2) and (3), we get 

dH = TdS + VdP (4)

dA = –SdT – PdV (5)

dG = VdP – SdT (6) 

The above three Eqs. (4), (5) and (6) along with the equation dE = TdS – PdV are the four 
fundamental equations of thermodynamics. 

Derivation of Maxwell’s equations

If an exact differential dZ can be put in the form  
yx

M N
dZ Mdx Ndy then

y x
⎛ ⎞∂ ∂⎛ ⎞= + =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 is 

known as the Euler’s relation. This can be used to obtain the Maxwell’s relations.
From the fundamental thermodynamic equations, we have 

dH = TdS + VdP

compare with  dZ Mdx Ndy= +

By the Euler relation,

S P

T V
P S

∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (7)

T V

dA SdT PdV
using Euler's relation 

S P
V T

dG VdP SdT

= − −

∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
= −

(8)

P T

V S
T P

dE TdS PdV

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
= −

 
(9)

on comparing with Euler's relation we get 

∂
∂

⎛
⎝⎜

⎞
⎠⎟ = − ∂

∂
⎛
⎝⎜

⎞
⎠⎟

T
V

P
SS V

(10)
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These above four equations are known as Maxwell’s relations. The relations (8) and (9) are re-
ferred to as isothermal relations and the relations (7) and (10) are isoentropic or adiabatic. 

15.26 Spontaneity and Equilibrium

Equilibria and spontaneity change can be explained in terms of various thermodynamic functions. 
Entropy (S) and free energy (G) are the important thermodynamic functions used for predicting 
equilibrium. 

Entropy as a criterion of equilibrium and spontaneity change
By the first law of thermodynamics dq = dE + PdV, where dq is the quantity of heat absorbed and 
dE is the change in the internal energy of the system and PdV, the mechanical work done by the 
system. Suppose the process is reversible 

rev rev

rev rev

dq dE (PdV)
dq dE (PdV)

but, dS dS
T T

= +
+

= ∴ =
(1)

If the process is irreversible, then

irrev irrevdq dE (PdV)
T T

+
=

  
(2)

In both these expressions, dE is the same, as E is a thermodynamic property that depends only 
on the initial and final states of the system and not on the path, whether reversible or irreversible. 

If the reversible process occurs at constant internal energy (E) and volume (V), then from 
equation, ∂ =E,VS 0.  As the condition for reversible change is also the condition for equilibrium, 
we have

E,VS 0∂ = (3)

Comparing the right hand sides of the Eqs. (1) and (2), rev irrev(PdV) (PdV)> , as for the given initial 
and final states, the work done is maximum for a reversible process. 

irrev irrev

E,V

dq dE (PdV)
dS or dS

T T
or S 0

+
∴ > >

∂ > (4)

This is the condition for a spontaneous process. Equations (3) and (4) are combined and the 
condition for spontaneous change and equilibrium are expressed as 

E,VS 0∂ ≥

In an analogous manner, it would follow from Eqs. (1) and (2), that for equilibrium S,VE 0∂ =  and 
for a spontaneous process S,VE 0∂ < . Combining the two conditions, 

S,VE 0∂ ≤
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Thus, in any spontaneous process taking place at constant E and V, the entropy increases ultimately 
reaching a maximum value at equilibrium. Once the equilibrium is reached, there occurs no more 
change in entropy. A system with constant E and V is also known as an isolated system and the 
universe is one such system. As spontaneous processes continuously occur in the universe, the 
entropy of the universe is increasing. 

Similarly, in any spontaneous process taking place at constant S and V, the internal energy goes 
on decreasing, ultimately attaining a minimum value at equilibrium.

Gibbs free energy (G) as a criterion of equilibrium and spontaneous change 

By definition,

G = H – TS 

= E + PV – TS 

where H is the enthalpy of the system
For an infinitesimal change. 

= + + − −
= − + + −

I term II term

dG dE PdV VdP TdS SdT
VdP SdT dE PdV TdS����� �������

At constant temperature and pressure, the first term becomes zero and hence T,PG dE PdV TdS∂ = + − . 
If we assume the work done by the system to be work of expansion (PdV) then 

dq = dE + PdV 

T,PG dq TdS∴∂ = − . If the process is reversible then  revdq dq TdS= =   and hence 

T,PG 0∂ =

As already indicated, the condition for a reversible process is also a condition for equilibrium, hence 
for equilibrium 

T,PG 0∂ =

rev rev

irrev irrev

rev irrev

rev irrev

T,P

T,P irrev

irrev rev

rev

dq dE (PdV) and
dq dE (PdV)
since       (PdV) (PdV)
Hence dq dq
Consider the expression- 

G dq TdS
For irreversible process.
G dq TdS

But, dq dq
and dq TdS

d

= +
= +

>
>

∂ = −

∂ = −
<

=
∴ irrevq TdS<

Hence, for an irreversible or spontaneous process and equilibrium T,PG 0∂ <
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Combining the conditions for spontaneous process and equilibrium, 

T,PG 0∂ ≤

Thus, for any spontaneous process taking place at constant temperature and pressure, the free 
energy of the system decreases, ultimately attaining a minimum value at equilibrium. 

In an analogous manner, the conditions for spontaneous change and equilibrium can be 
expressed in terms of the Helmholtz free energy (A) as 

T,VA 0 where A E TS∂ ≤ = −

Entropy and free energy criteria compared
The free energy criteria for spontaneous change and equilibrium are more useful than the entropy 
criteria. Recapitulating these criteria,

E,V T,PS 0 and G 0∂ ≥ ∂ ≤

It is difficult to keep internal energy of a system constant, whereas the temperature and pressure 
can be easily kept constant. Hence, G has a greater utility. This point can be viewed in an alternative 
manner. A system with constant E, V is an isolated system, which may be taken to constitute 
both the system and the surrounding. Hence, in using the entropy criterion, it is essential to 
make measurements on both system and surroundings. However, it is rather difficult to make 
measurement on the surroundings. Hence, the criterion of entropy is less useful.

Solved examples

1. Enthalpy and entropy changes of a reaction are 40.63 kJ mol–1 and 108.8 J K–1 mol–1, 
respectively. Predict the feasibility of the reaction at 27 °C.

Solution

ΔH = 40.63 kJ mol–1 = 40630 J mol–1;  ΔS = 108.8 J K–1 mol–1; T = 27+273 = 300 K 

ΔG = ΔH – TΔS 

      = 40630–300 × 108.8 = +7990 J mol–1 = 7.99 kJ mol–1 

As ΔG is positive, the reaction is not feasible. 

2. ΔH and ΔS for the reaction, 
Ag2O (s) � 2Ag(s) + ½ O2 (g)     
are 30.56 kJ mol–1 and 66.0 J K–1 mol–1, respectively. Calculate the temperature at which the 
free energy change for the reaction will be zero. Predict whether the forward reaction will be 
favored above or below this temperature.

Solution

According to Gibb Helmholtz equation,

ΔG = ΔH − TΔS 
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Summary

Important thermodynamic relations

1. DE = q + w
 Heat (q) absorbed by the system = + q
 Heat released to the surrounding = – q
 Work done by the system (work expansion) = –w 
 Work done on the system (work compression) = +w.

2. H E P VΔ = Δ + Δ

P Vq q P V= + Δ

At equilibrium, ΔG = 0 so that  

0 = ΔH – TΔS       or             ΔH = TΔS   

H
T

S
Δ=
Δ

 Here,   ΔH = 30.56 kJ mol–1 = 30560 J mol–1   and ΔS = 66 J K–1 mol–1

30560
T 463K

66
= =

In the above reaction, both ΔH and ΔS are positive, therefore the reaction will be spontaneous 
above 463 K, so that the term TΔS becomes greater than ΔH and ΔG becomes negative. 

Practice problems

1. For the melting of ice at 25 °C,  H2O (s) � H2O (l)  
The enthalpy of fusion is 6.97 kJ mol–1 and entropy of fusion is 25.4 J mol–1 K–1. Calculate 
the free energy change and predict whether the melting of ice is spontaneous or not at this 
temperature. 

                     [Ans ΔG = –0.6 kJ mol–1. As ΔG is negative, hence the reaction is spontaneous]
2. The values of ΔH and ΔS for two reactions are given below

Reaction A               ΔH = –10.5 × 103 J mol–1

                                          ΔS = +31 J K–1 mol–1

Reaction B               ΔH = –11.7 × 103 J mol–1

                                          ΔS = –105 J K–1 mol–1

Predict whether these reactions are spontaneous or not at 298 K. 
                                                [Ans Reaction A: spontaneous; reaction B: non-spontaneous]
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3. P V
P V

H E
C , C

T T
∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

For an ideal gas

T T T T

E E H H
0 , 0 , 0 0

P V P V
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

PV nRT=

P VC C R− =

Isothermal process for an ideal gas 

ΔE = 0; ΔH = 0, q = w 

w nRT
V
V

nRT
P
P

nRT
V
Vrev = - = - = -ln ln . log2

1

1

2
10

2

1
2 303

w PdV P V V nRT
P
Pirrev

V

V

= - = - - = -Ê
ËÁ

ˆ
¯̃Ú ( )

1

2

2 1
1

2
1

Work done in isochoric process = 0 dV 0=∵

Work done against zero external pressure = 0 (if a gas expands against vacuum no 
work is done). 

Adiabatic processes for an ideal gas

w E q= =D ∵ 0

For reversible process,
1 1PV constant ;   TV constant; T / P constant− −= = =γ γ γ γ

Work done in a reversible process 

w nC T
V
Vv

R
Cv= Ê

ËÁ
ˆ
¯̃

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜1

1

2
1

w nC T
P
Pv= Ê

ËÁ
ˆ
¯̃

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜

-

1
2

1

1

1

g
g

w
P V P V= -

-
2 2 1 1

1g
P VR C C= −
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P

V

C
C

=γ

 g  for a monoatomic gas = 5/3.

For monoatomic gas     1 1 1 1
P VC 5 cal K mol ; C 3 cal K mol− − − −= =

- = -Ê
ËÁ

ˆ
¯̃

w nRT
T
T

P
Pirrev 1

2

1

2

1

DE P
nRT

P
nRT

P
= -Ê

ËÁ
ˆ
¯̃2

1

1

2

2

( ) 2 1
P 2 1 1

1

P P
H C T T nRT

P
⎛ ⎞−Δ = − = ⎜ ⎟
⎝ ⎠

Work (isothermal) > Work (adiabatic) 

Kirchhoff’s equation =   
P

P

( H)
C

T
∂ Δ⎡ ⎤ = Δ⎢ ⎥∂⎣ ⎦

2

1

T

2 1 P P 2 1
T

H H C dT C (T T )Δ − Δ = Δ =Δ −∫

Joule–Thomson co-efficient  J.T
H

T
P

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
μ

Second law of thermodynamics 

1 2

1

q qHeat converted into work
Heat drawn from the source q

η −
= =

2 4
1 2

1 3

2
1

1

V VRT ln RT ln
V V

VRT ln
V

−
= = 1 2 1 2

1 1 1

T T q q w
T q q
− −= =

Entropy 

2

1

T
rev

T

dq
S

T
Δ = ∫

vap fusion
vap fusion

b f

H H
S ; S

T T
Δ Δ

Δ = Δ =

rev
tran

q
S

T
Δ =
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Entropy changes for an ideal gas

2 2
V

1 1

T V
S nC ln nR ln

T V
Δ = +

2 1
p

1 2

T P
S nC ln nR ln

T P
Δ = +

For isothermal process 2 1
T

1 2

V P
S nR ln nR ln

V P
Δ = =

For isobaric process 2
P P

1

T
S nC ln

T
Δ =

For isochoric process  2
V V

1

T
S nC ln

T
Δ =

Entropy change in heating a solid or liquid  2

1

T
S ms ln

T
Δ =

Entropy of mixing.  
mix i iS R n ln X= − ∑

Free energy

G H T SΔ = Δ − Δ

For ideal gas

dG VdP SdT= −

2 1

1 2

P V
G nRT ln nRT ln

P V
Δ = =

Gibb’s Helmholtz equation 

P

G
G H T

T
∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟⎝ ⎠∂

Another form 

V

A
A E T

T
∂Δ⎛ ⎞Δ = Δ + ⎜ ⎟⎝ ⎠∂

Fundamental thermodynamic equations

dE = TdS – PdV
dH = TdS + VdP
dA = –SdT – PdV
dG = –SdT + VdP
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Maxwell’s relations 
Adiabatic or isentropic

S V

S P

T P
V S
T V
P S

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

For isothermal 

T P

T V

S V
P T

S P
V T

∂ ∂⎛ ⎞ ⎛ ⎞− =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Spontaneity and equilibrium

For spontaneity and equilibrium 

E,V

S,V

T,P

T,V

S 0
E 0
G 0
A 0

∂ ≥
∂ ≤
∂ ≤
∂ ≤

Claypeyron–Clausius equation

B A

V2 2 1

1 1 2

dP H
dT T(V V )

HP T T
ln

P R T T

Δ
=

−
⎡ ⎤Δ −

= ⎢ ⎥
⎣ ⎦

Vant Hoff isotherm 

C D
eq

A B

P P
G RT ln K RT ln

P P
×

Δ = − +
×

Vant Hoff isochore 

º
2 2 1

1 1 2

K T TH
log

K 2.303R T T
⎛ ⎞−Δ= ⎜ ⎟
⎝ ⎠
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Review Questions

1. Distinguish between
(i) Open system and closed system
(ii) Isothermal process and adiabatic process 
(iii) Extensive properties and intensive properties 
(iv) Reversible process and irreversible process
(v) Homogeneous system and heterogeneous system
(vi) Isobaric and isochoric processes. 

2. State and explain the first law of thermodynamics
3. What do you understand by the term ‘Internal energy’ and ‘Enthalpy’ of a system. Show that 

the heat absorbed by a system at constant volume is equal to the increase in its internal energy, 
while that absorbed at constant pressure is equal to the increase in enthalpy.

4. What is meant by thermodynamically reversible and irreversible processes? Show that the 
work done by a system is maximum when it is expanded isothermally and reversibly.

5. Define work. Prove that the work done is path-dependent.
6. Define heat capacity of a system. Show from thermodynamical considerations that for an 

ideal gas 
(i) Cv = dE/dT
(ii) Cp = dH/dT

7. Obtain different relationships between Cp and Cv for any system and then prove that  
Cp – Cv = R for one mole of an ideal gas.

8. For an ideal gas, prove that

T

E
(i) 0

P
∂⎛ ⎞ =⎜ ⎟⎝ ⎠∂

( )ii
E
V T

∂
∂

⎛
⎝⎜

⎞
⎠⎟ = 0

( )iii
H
P T

∂
∂

⎛
⎝⎜

⎞
⎠⎟ = 0

9. In an adiabatic reversible expansion of an ideal gas show that 

(i) PV constant=γ

(ii) V

R
C PV constant=

(iii) 1T / P constant− =γ γ
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10. Show that the work of an adiabatic reversible expansion of an ideal gas is less than that of an 
isothermal reversible expansion.

11. Define the following terms 
(i)  Heat of reaction 
(ii)  Heat of formation
(iii)  Heat of combustion
(iv)  Heat of neutralisation
(v)  Heat of solution
(vi)  Heat of fusion 
(vii)  Heat of vaporisation 
(viii) Heat of sublimation

12. State and explain the following laws of thermochemistry 
(i) Lavoisier and Laplace’s laws
(ii) Hess’s law of constant heat summation. 

13. Derive the Kirchhoff equation. Explain how it can be utilized to find out the heat of reaction 
at one temperature if the heat of reaction at another temperature is known.

14. What is enthalpy of a system? How is it related to internal energy? What is the relationship 
between ΔH and ΔE?

15. Show that Joule–Thomson porous plug experiment is isenthalpic. Obtain an expression for 
Joule–Thomson coefficient and comment on its sign.

16. What are Joule–Thomson coefficient and inversion temperature? How would an ideal gas 
behave in a Joule–Thomson experiment?

17. Explain the following
(i) Entropy and its physical significance
(ii) Free energy and its physical significance 
(iii) Spontaneous and non-spontaneous processes

18. Give the various statements of the second law of thermodynamics and show that all of them 
lead to the same goal.

19. Derive the concept of entropy from the second law of thermodynamics.
20. Derive the expression for the efficiency of the heat engine with the help of Carnot’s cycle. 

Prove that the efficiency of a heat engine is always less than unity.
21. Derive the following expression for the change in entropy of an ideal gas 

2 2
V

1 1

T V
S C ln R ln

T V
Δ = +

22. Prove thermodynamically that in an isothermal spontaneous expansion process the entropy is 
always increasing.

23. Derive an expression for the entropy change during mixing of ideal gases.
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24. Derive the Gibbs–Helmholtz equation 
25. Prove that

V2 2 1

1 1 2

HP T T
ln

P R T T
⎡ ⎤Δ −= ⎢ ⎥
⎣ ⎦

26. What is meant by Van’t Hoff reaction? Derive an expression for the reaction isotherm of the 
general reaction. 

aA + bB � cC + dD

27. Explain the concept of Helmholtz free energy and Gibb’s free energy. Describe the relationship 
between the two.

28. If dE= TdS–PdV, prove that 

S V

T P
V S

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

29. What is spontaneity of a reaction? Describe the criteria for a chemical reaction to be 
spontaneous.

30. Derive the various forms of Maxwell’s relations.

Multiple Choice Questions

1. A wall which allows neither matter nor energy to pass through it is called
(a) A rigid wall (b) An impermeable wall
(c) Adiabatic wall (d) Diathermal wall 

2. Which of the following is not an intensive property 
(a) Volume (b) Pressure
(c) Temperature (d) Viscosity 

3. Which of the following is not a extensive property
(a) Heat capacity (b) Enthalpy
(c) Entropy (d) Chemical potential 

4. A thermodynamic process occurring at constant temperature is 
(a) Isobaric process (b) Isochoric process
(c) Isothermal process (d) Adiabatic process 

5. When a gas is subjected to adiabatic expansion, it gets cooled due to
(a) Loss of kinetic energy (b) Fall in temperature
(c) Decrease in velocity (d) Energy is used in doing work 
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6. Which of the following expresses the first law of thermodynamics
(a) w q E= + Δ (b) E q wΔ = +
(c) 2 1q E E w= − + (d) All of the above

7. For a reversible process the value of ΔS is given by the expression
(a) revq / T (b) revT q+

(c) H / TΔ Δ (d) revq T×

8. Heat and temperature are 
(a) Intensive properties
(b) Extensive properties     
(c) Extensive and intensive properties respectively
(d) None of the above

9. According to the second law of thermodynamics heat is partly converted into useful work and 
part of it  
(a) Changes into kinetic energy 
(b) Changes into electric energy
(c) Is always wasted 
(d) None of the above  

10. Which of the following expressions is not correct

(a) p

v

C
C

γ = (b) 1TV constantγ − =

(c) P
constant

Vγ = (d) 1

T
constant

P

γ

γ − =

11. For a gaseous reaction, N2O4 � 2NO2 

(a) ΔH > ΔE (b) ΔH < ΔE
(c) ΔH = ΔE (d) ΔH = 0   

12. For the reaction NaOH + HCl � NaCl + H2O; the change in enthalpy is called
(a) Heat of reaction (b) Heat of formation
(c) Heat of neutralisation (d) Heat of combustion  

13. The enthalpies of combustion of C and CO are –390 kJ mol–1 and –278 kJ mol–1 respectively. 
The enthalpy of formation of CO is  
(a) 668 kJ mol–1 (b) 112 kJ mol–1

(c) –112 kJ mol–1 (d) –668 kJ mol–1

14. The enthalpies of formation of N2O and NO are 82 and 90 kJ mol–1. The enthalpy of reaction  
2N2O (g) + O2 (g)  �  4NO(g) is 
(a) 8 kJ (b) –16 kJ
(c) 88 kJ (d) 196 kJ
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15. Calculate the temperature at which ΔG = 5.2 kJ mol–1,  ΔH =145.6 kJ mol–1 and ΔS =116  
kJ mol–1  =116  for a chemical reaction
(a) 130 K (b) 1210 K
(c) 1300 °C (d) 130 °C

16. Which of the following process has a negative value of ΔS
(a) Decomposition of lime (b) Dissociation of sugar in water
(c) Evaporation of water (d) Stretching of rubber band 

17. One liter–atmosphere is nearly equal to
(a) 185.0 J (b) 101.3 J
(c) 8.31 J (d) 4.18  J

18. A temperature at which gas becomes cooler on expansion is called 
(a) Inversion temperature (b) Critical temperature
(c) Boyle temperature (d) Transition temperature      

19. Which of the following is not a state function
(a) Internal energy (b) Entropy
(c) Work (d) Heat absorbed under isochoric conditions 

20. The free energy ΔG = 0    when
(a) The system is at equilibrium  (b) Catalyst is added
(c) Reactants are initially mixed thoroughly (d) Reactants are completely consumed  

21. An endothermic reaction A � B proceeds spontaneously. The correct statement is
(a) ΔH is positive and TΔS > ΔH (b) ΔH is positive  and  ΔH> TΔS
(c) ΔS is negative  and TΔS > ΔH (d) ΔG and ΔH both are negative 

22. Consider the reactions
(i) H2 + ½ O2 � H2O                                ΔH = – 68.39 kcal 
(ii) K + H2O + aq  � KOH(aq) + ½ H2        ΔH = – 48 kcal 
(iii) KOH + aq � KOH (aq) ΔH = –14 kcal 
The heat of formation of KOH is
(a) – 68.39 + 48 – 14 (b) – 68.39 –48 +14
(c) 68.39 – 48 + 14 (d) 68.39 + 48 +14

23. The enthalpy of combustion of cyclohexane, cyclohexene and H2 are –3920, –3800 and –24 
kJ mol–1. Heat of hydrogenation of cyclohexene is  
(a) –121 kJ mol–1 (b) –242 kJ mol–1

(c) +121 kJ mol–1 (d) +242 kJ mol–1

24. According to the Hess’s law 
(a) Energy can be converted from one form to another 
(b) Δ= n

p cK K RT
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(c) The enthalpy change of a given chemical reaction is same whether the process occurs in   
       one or more steps
(d) Energy can be absorbed or released in a reaction but the total energy change of the   
       reacting system and its surroundings remain constant

25. A hypothetical reaction A � 2B proceeds via the following sequence of steps
(i) A � C       : ΔH = q1

(ii) C � D      : ΔH = q2

(iii) ½ D � B  : ΔH = q3

The heat of reaction is
(a) q1 – q2 +  q3 (b) q1 + q2 – 2q3

(c) q1 + q2 + 2q3 (d) q1 + 2q2 – 2q3

26. Which of the following equation represents the fundamental thermodynamic relation
(a) dH = TdS +VdP (b) dA = – SdT – PdV
(c) dG = VdP – SdT (d) All the above 

27. For Claypeyron–Clausius equation 2

1

log .......
P
P

=

(a) vapH
R

Δ
(b) vap

1 2

H 1 1
R T T

Δ ⎛ ⎞
−⎜ ⎟⎝ ⎠

(c) vap

1 2

H 1 1
2.303R T T
Δ ⎛ ⎞

−⎜ ⎟⎝ ⎠
 (d) vap

1 2

H 1 1
2.303R T T
−Δ ⎛ ⎞

−⎜ ⎟⎝ ⎠

28. 

V

A
T ?
T

Δ⎡ ⎤⎛ ⎞∂ ⎜ ⎟⎢ ⎥⎝ ⎠
⎢ ⎥ =

∂⎢ ⎥
⎢ ⎥⎣ ⎦

(a) 2

E
T
Δ

− (b) 2

H
T
Δ

−

(c) 
2

E
T
Δ (d) 2

H
T
Δ  

29. Choose the correct expression

(a) 
V

S P
V TT

∂ ∂⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
(b) 

T V

S P
V T

∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

(c) ∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠T P

S V
V T

(d) 
∂ ∂⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠T P

S V
P T
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30. The Joule–Thomson coefficient mJT is defined by 

(a) 
S

T
P

∂⎛ ⎞
⎜ ⎟⎝ ⎠∂

(b) 
S

P
T

∂⎛ ⎞
⎜ ⎟⎝ ⎠∂

(c) 
H

T
P

∂⎛ ⎞
⎜ ⎟⎝ ⎠∂

(d) 
H

P
T

∂⎛ ⎞
⎜ ⎟⎝ ⎠∂

Solution

1 (c)  2 (a) 3 (d) 4  (c) 5 (d) 6 (b) 7 (a) 8 (c)
9 (c) 10 (c) 11 (a) 12 (c) 13 (c) 14 (d) 15 (b) 16 (d) 
17 (b) 18 (a) 19 (c) 20 (a) 21 (a) 22 (b) 23 (a) 24 (c) 
25 (c) 26 (d) 27 (c) 28 (a) 29 (b) 30 (c)
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