
BCAC 232:

Data Structures

SORTING

 Sorting is process of arranging the elements in a particular order. The
order may be ascending order or descending order. The advantage of
sorting is effective data accessing.

 Types of sorting: There are 2 types of sorting.

1. Internal sorting

2. External sorting

 Internal sorting: If all the elements (records) to be sorted are in the
main memory then such a sorting is called internal sorting.

 External sorting: If some of the elements (records) to be sorted are in
the secondary storage or disk such a sorting is called External
sorting.

Types of sorting techniques:

1. Bubble sort (Exchange sort or Sinking sort).

2. Selection sort.

3. Insertion sort.

4. Quick sort.

5. Merge sort.

6. Heap sort.

7. Shell sort

8. Radix sort.

9. Address calculation sort.

Efficiency of a sorting technique:

 How to select a sorting technique for a given set of elements?

 There are number of sorting techniques available to sort a given array

of data items. Each sorting technique has its own advantages and

disadvantages. Different techniques are useful in different applications.

 There are 3 most important factors are counted while selecting a

sorting technique, which are.

1. Coding time: The amount of time invested in writing full length

sorting program.

2. Execution time (Time complicity): The amounts of time required

execute the sorting program. This normally frequency of execution of

statements in a program i.e. number of times statements are

executed.

3. Memory requirement (Space complicity): The amount of memory

required to store the entire sorting program in main memory while

execution.

Analysis of a sorting technique:

 Analysis of a sorting technique depends of three factors, which are code

time, time complicity and space complicity. Among these 3 factors while

analyzing a sorting technique we mainly concentrate more on the time

complicity.

 The time complicity is amount of time required to execute the sorting

program. Which is analyzed in terms of 3 cases

1. Best case

2. Worst case

3. Average case

BUBBLE SORT

 It is most popular sorting technique among all other techniques

because is very simple to understand and implement. It is also called

exchange or sinking sort

 Working of Bubble Sort

 The algorithm begins by comparing the element at the bottom of the

array with next element. If the first element is grater the second

element, then are swapped or exchanged.

 This process in then repeated for next two elements i.e. for second and

third element. After n-1 comparisons the largest of all data items

bubbles up to the top of the array.

 The first n-1 comparisons constitute first pass. During second pass

number of comparison is one les than previous pass i.e. there are n-2

comparisons in the second pass. During second pass second largest

element bubbles up to the last but one position.

 Consider following array A of elements.

A

A[0] A[1] A[2] A[3] A[4]

Begin the sort by comparing first two elements

Compare A[0] and A[1]. Since 30>10, interchange

Compare A[1] and A[2]. Since 30>5, interchange Pass 1

Compare A[2] and A[3]. Since 30>20, interchange

Compare A[3] and A[4]. Since 30>15, interchange

Largest element 30 has bubble up to last position

30 10 5 20 15

30 10 5 20 15

10 30 5 20 15

10 5 30 20 15

10 5 20 30 15

10 5 20 15 30

Compare A[0] and A[1]. Since 10>5, interchange

Compare A[1] and A[2]. Since 10<20, no interchange Pass 2

Compare A[2] and A[3]. Since 20>15, interchange

Second largest element bubbles up to the position last but one.

Compare A[0] and A[1]. Since 5<10, no interchange

Pass 3

Compare A[1] and A[2]. Since 10<15, no interchange

Third largest element is in its right position.

Compare A[0] and A[2]. Since 5>10, no interchange Pass 4

Final sorted array after n-1 passes.

10 5 20 15 30

5 10 20 15 30

5 10 20 15 30

5 10 15 20 30

5 10 15 20 30

5 10 15 20 30

5 10 15 20 30

5 10 15 20 30

5 10 15 20 30

Algorithm:

Algorithm: BUBBLE_SORT(A, n) This algorithm sort a given array A[n] using bubble sort technique. Variables I and J are
used to index the array and temp is a temporary variable.

Step1: start

Step2: Input the array A[n]

Step3: [Compute the sorting]

Repeat For I0 to n-1

Step4: [Compare the adjacent elements]

Repeat For J0 to n-1-I

Step5: If (A[J]>A[J+1])

[Interchange A[J] and A[J+1]]

TempA[J]

A[J]A[J+1]

A[J+1]temp

[End If]

[End step3 for loop]

[End step4 for loop]

Step6: [Display output]

Repeat For I0 to n-1

Output A[I]

[End for]

Step9: stop

Analysis of bubble sort:

 Best case: If the given array of elements is in the ascending order, the

outer for loop will be executed n-1 times. The inner for loop and if

statement will be executed n-1 times for the first iteration of the outer

for loop, n-2 times for the second iteration of the outer for loop and so

on . Only one time during the n-1th iteration of the outer for loop. The

interchange part will not be executed even once.

 Worst case: : If the given array of elements is in reverse order, the outer

for loop will be executed n-1 times. The inner for loop, if statement and

interchange part will be executed n-1 times for the first iteration of the

outer for loop, n-2 times for the second iteration of the outer for loop

and so on. Only one time during the n-1th iteration of the outer for loop.

Hence maximum number of comparisons and interchange operations.

 Advantages:

1. Simple to understand and implement.

2. Very straight forward.

3. Better than selection sort.

 Disadvantages:

1. It runs slowly and hence it is not efficient, because more efficient sorting

techniques are available.

2. Even if array is sorted, n-1 comparisons are required.

