15-5 Trees

Trees are used extensively in computer science to
represent algebraic formulas; as an efficient method
for searching large, dynamic lists; and for such
diverse applications as artificial intelligence systems
and encoding algorithms.

Topics discussed in this section:

Basic Tree Concepts
Terminology

Binary Trees

Binary Search Trees
Binary Tree Example
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Note

A tree consists of a finite set of elements, called nodes, and a
finite set of directed lines, called branches, that
connect the nodes.
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FIGURE 15-30 Tree
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FIGURE 15-31 Tree Nomenclature
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Note

The level of a node is its distance from the root. The height
of a tree is the level of the leaf in the longest path
from the root plus 1.
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FIGURE 15-32 Subtrees

Computer Science: A Structured Programming Approach Using C 6



Note

A tree is a set of nodes that either:

1. Is empty, or

2. Has a designated node, called the root, from which
hierarchically descend zero or more subtrees, which are
also trees
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FIGURE 15-33 Collection of Binary Trees
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typedef struct
{
int count;
NODE* root;
} BIN_TREE;

typedef struct node
{
int data;
struct node* left;
struct node* right;
} NODE;

FIGURE 15-34 Binary Tree Data Structure
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FIGURE 15-35 Binary Tree Traversals
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FIGURE 15-36 Binary Tree for Traversals
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Note

In the preorder traversal, the root is processed first,
before its subtrees.
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PROGRAM 15-19 Preorder Traversal of a Binary Tree

1| /* Traverse a binary tree and print its data (integers)
2 Pre 1root is entry node of a tree or subtree
3 Post each node has been printed

4 | */

5 | void preOrder (NODE* root)

6| {

7| // Statements

8 if (root)

9 {
10 printf("%4d", root->data);
11 preOrder (root->left);
12 preOrder (root->right);
13 Yy // if
14 return;
15| } // preOrder

Computer Science: A Structured Programming Approach Using C

13



(a) Processing Order (b) “Walking” Order

FIGURE 15-37 Preorder Traversal—ABCDEF
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FIGURE 15-38 Algorithmic Traversal of Binary Tree
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PROGRAM 15-20 Inorder Traversal of a Binary Tree

1| /* Traverse a binary tree and print its data (integers)
2 Pre root is entry node of a tree or subtree
3 Post each node has been printed

4 | */

5 | void inOrder (NODE* root)

6| {

7| // Statements

8 if (root)

9 {
10 inOrder (root->left);
11 printf("%4d", root->data);
12 inOrder (root->right);
13 Yy // if
14 return;
15| ¥ // inOrder

Computer Science: A Structured Programming Approach Using C

16



(a) Processing Order (b) “Walking” Order

FIGURE 15-39 Inorder Traversa—C B DAEF
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Note

In the inorder traversal, the root is processed
between its subtrees.
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Note

In a binary search tree, the left subtree contains key values
less than the root, and the right subtree contains
key values greater than or equal to the root.

Computer Science: A Structured Programming Approach Using C

19



All <K

All =z K

FIGURE 15-40 Binary Search Tree
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FIGURE 15-41 Valid Binary Search Trees

Computer Science: A Structured Programming Approach Using C

21



Sl g A

(a) (b)

FIGURE 15-42 Invalid Binary Search Trees
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Note

All BST insertions take place at a leaf or a leaflike node.
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FIGURE 15-43 BST Insertion
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PROGRAM 15-21 Binary Tree Insert Function
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[* ==================== BST Insert ====================
This function uses recursion to insert the new data
into a leaf node in the BST tree.

Pre Application has called BST Insert, which
passes root and data pointer

Post Data have been inserted

Return pointer to [potentially] new root

*/
NODE* BST Insert (BST TREE* tree,

NODE* root, int datalIn)
{

// Local Declarations
NODE* newPtr;

// Statements

if (!root)
{
// NULL tree -- create new node
newPtr = malloc(sizeof (NODE));
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PROGRAM 15-21 Binary Tree Insert Function
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if (!newPtr)

printf("Overflow in Insert\n"), exit (100);

newPtr->data = dataln;

newPtr->left = newPtr->right = NULL;
return newPtr;

y // if

// Locate null subtree for insertion
if (dataIn < root->data)
root->left = BST Insert(tree, root->left,
dataln);
else
// new data >= root data
root->right = BST Insert(tree, root->right,
dataln);
return root;
// BST Insert
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FIGURE 15-44 Binary Tree Example
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PROGRAM 15-22 Binary Tree Example
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/* Demonstrate the binary search tree insert and
traversals.
Written by:
Date:
*/
#include <stdio.h>
#include <stdlib.h>

// Global Declarations
typedef struct node
{
int data;
struct node* left;
struct node* right;
} NODE;

typedef struct
{

int count;
NODE* root:;

Computer Science: A Structured Programming Approach Using C

28



PROGRAM 15-22 Binary Tree Example

21 } BST TREE;
22

23 | // Function Declarations

24 | void preOrder (NODE* root);

25 | void 1inOrder (NODE* root);

26 | NODE* BST Insert (BST TREE* tree,

27 NODE* root, int data);

28

29 | int main (void)

30 | {

31 | // Local Declarations

32 int numIn;

33 BST TREE tree;

34

35 | // Statements

36 printf("Please enter a series of integers."”

37 "\nEnter a negative number to stop\n");
38

39 tree.count = 0;

40 tree.root = NULL;
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PROGRAM 15-22 Binary Tree Example

41 do

42 {

43 printf("Enter a number: ");
44 scanf("%d", &numIn);

45 if (numIn > Q)

46 {

47 tree.root = BST Insert

48 (&tree, tree.root, numIn);
49 tree.count++;

50 y // 1if

51 } while (numIn > 0);

52

53 printf("\nData in preOrder: ");
54 preOrder (tree.root);

55

56 printf("\n\nData in inOrder: ");
57 inOrder (tree.root);

58

59 printf("\n\nEnd of BST Demonstration\n");
60 return 0;

61 | ¥ // main
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PROGRAM 15-22 Binary Tree Example

Results

Please enter a series of integers.
Enter negative number to stop
Enter number: 45
Enter number: 54
Enter number: 32
number: 3

number: -1

Enter
Enter

a
a
a
Enter a number: 23
a
a
a
Data in preOrder: 45 23 3 32
Data in inOrder: 3 23 32 45

End of BST Demonstration
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