
1
© 2006 Pearson Addison-Wesley. All rights reserved

Searching and Sorting

• Linear Search

• Binary Search

-Reading p.671-679

2
© 2006 Pearson Addison-Wesley. All rights reserved

Linear Search

• Searching is the process of determining whether or not a

given value exists in a data structure or a storage media.

• We discuss two searching methods on one-dimensional

arrays: linear search and binary search.

• The linear (or sequential) search algorithm on an array is:

– Sequentially scan the array, comparing each array item with the searched value.

– If a match is found; return the index of the matched element; otherwise return –1.

• Note: linear search can be applied to both sorted and unsorted

arrays.

3
© 2006 Pearson Addison-Wesley. All rights reserved

Linear Search

• The algorithm translates to the following Java method:

public static int linearSearch(Object[] array,

Object key)

{

for(int k = 0; k < array.length; k++)

if(array[k].equals(key))

return k;

return -1;

}

4
© 2006 Pearson Addison-Wesley. All rights reserved

Binary Search

• Binary search uses a recursive method to search
an array to find a specified value

• The array must be a sorted array:
a[0]≤a[1]≤a[2]≤. . . ≤ a[finalIndex]

• If the value is found, its index is returned

• If the value is not found, -1 is returned

• Note: Each execution of the recursive method
reduces the search space by about a half

5
© 2006 Pearson Addison-Wesley. All rights reserved

Binary Search

• An algorithm to solve this task looks at the

middle of the array or array segment first

• If the value looked for is smaller than the value

in the middle of the array

– Then the second half of the array or array segment

can be ignored

– This strategy is then applied to the first half of the

array or array segment

6
© 2006 Pearson Addison-Wesley. All rights reserved

Binary Search

• If the value looked for is larger than the value in the
middle of the array or array segment
– Then the first half of the array or array segment can be ignored

– This strategy is then applied to the second half of the array or
array segment

• If the value looked for is at the middle of the array or
array segment, then it has been found

• If the entire array (or array segment) has been searched
in this way without finding the value, then it is not in the
array

7
© 2006 Pearson Addison-Wesley. All rights reserved

Pseudocode for Binary Search

8
© 2006 Pearson Addison-Wesley. All rights reserved

Recursive Method for Binary Search

9
© 2006 Pearson Addison-Wesley. All rights reserved

Execution of the Method search

(Part 1 of 2)

10
© 2006 Pearson Addison-Wesley. All rights reserved

Execution of the Method search

(Part 1 of 2)

11
© 2006 Pearson Addison-Wesley. All rights reserved

Checking the search Method

1. There is no infinite recursion

• On each recursive call, the value of first

is increased, or the value of last is

decreased

• If the chain of recursive calls does not end

in some other way, then eventually the
method will be called with first larger

than last

12
© 2006 Pearson Addison-Wesley. All rights reserved

Checking the search Method

2. Each stopping case performs the correct
action for that case

• If first > last, there are no array
elements between a[first] and
a[last], so key is not in this segment of
the array, and result is correctly set to -
1

• If key == a[mid], result is correctly
set to mid

13
© 2006 Pearson Addison-Wesley. All rights reserved

Checking the search Method

3. For each of the cases that involve recursion, if
all recursive calls perform their actions
correctly, then the entire case performs
correctly

• If key < a[mid], then key must be one of the
elements a[first] through a[mid-1], or it is
not in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the entire
action is correct

14
© 2006 Pearson Addison-Wesley. All rights reserved

Checking the search Method

• If key > a[mid], then key must be one of the
elements a[mid+1] through a[last], or it is
not in the array

• The method should then search only those
elements, which it does

• The recursive call is correct, therefore the entire
action is correct

The method search passes all three tests:

Therefore, it is a good recursive method definition

15
© 2006 Pearson Addison-Wesley. All rights reserved

Efficiency of Binary Search

• The binary search algorithm is extremely

fast compared to an algorithm that tries all

array elements in order

– About half the array is eliminated from

consideration right at the start

– Then a quarter of the array, then an eighth of

the array, and so forth

16
© 2006 Pearson Addison-Wesley. All rights reserved

Efficiency of Binary Search

• Given an array with 1,000 elements, the binary search
will only need to compare about 10 array elements to the
key value, as compared to an average of 500 for a serial
search algorithm

• The binary search algorithm has a worst-case running
time that is logarithmic: O(log n)
– A serial search algorithm is linear: O(n)

• If desired, the recursive version of the method search
can be converted to an iterative version that will run
more efficiently

17
© 2006 Pearson Addison-Wesley. All rights reserved

Iterative Version of Binary Search

(Part 1 of 2)

18
© 2006 Pearson Addison-Wesley. All rights reserved

Iterative Version of Binary Search

(Part 2 of 2)

