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Linear Search

Searching is the process of determining whether or not a
given value exists in a data structure or a storage media.

We discuss two searching methods on one-dimensional
arrays: linear search and binary search.
« The linear (or sequential) search algorithm on an array is:

— Sequentially scan the array, comparing each array item with the searched value.
— If a match is found; return the index of the matched element; otherwise return —1.

« Note: linear search can be applied to both sorted and unsorted
arrays.
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Linear Search

» The algorithm translates to the following Java method:

public static int linearSearch(Object[] array,
Object key)

{
for(int k = O; k < array.length; k++)
if(array[k].equals(key))
return k;
return -1;
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Binary Search

 Binary search uses a recursive method to search
an array to find a specified value

* The array must be a sorted array:
a[0]fa[l]fa[2]f. . . £ a[finalIndex]

« |f the value iIs found, Its index Is returned
« |f the value 1s not found, -1 Is returned

 Note: Each execution of the recursive method
reduces the search space by about a half
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Binary Search

 An algorithm to solve this task looks at the
middle of the array or array segment first

« If the value looked for Is smaller than the value
In the middle of the array

— Then the second half of the array or array segment
can be ignored

— This strategy Is then applied to the first half of the
array or array segment
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Binary Search

» |f the value looked for is larger than the value in the
middle of the array or array segment
— Then the first half of the array or array segment can be ignored

— This strategy is then applied to the second half of the array or
array segment

« |f the value looked for is at the middle of the array or
array segment, then it has been found

« |If the entire array (or array segment) has been searched
In this way without finding the value, then it is not in the
array
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Pseudocode for Binary Search

Display 11.5 Pseudocode for Binary Search ==

ALGORITHM TO SEARCH a[first] THrROUGH a[last]

S

Precondition:

al[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
% .-".:

TO LOCATE THE VALUE KEY:

if (first > last) //A stopping case
return -1;
else
{
mid = approximate midpoint between first and last;
if (key == a[mid]) //A stopping case
return mid;
else if key < a[mid] //A case with recursion
return the result of searching a[first] througha[mid - 1];
else if key > a[mid] //A case with recursion
return the result of searching a[mid + 1] through a[last];
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Recursive Method for Binary Search

Display 11.6 Recursive Method for Binary Search <

1 public class BinarySearch

2 {

3 ik

4 Searches the array a for key. If key is not in the array segment, then -1 1is
5 returned. Otherwise returns an index in the segment such that key == al[index].
6 Precondition: a[first] <= a[first + 1]<= ... <= a[last]

7 oy

8 public static int search(int[] a, int first, int last, int key)
9 {
16 int result = 0; //to keep the compiler happy.
11 if (first > last)
12 result = -1;
13 else
14 {
15 int mid = (first + last)/2;
16 if (key == a[mid])
17 result = mid;
18 else if (key < al[mid]l)
19 result = search(a, first, mid - 1, key);
20 else if (key > almid])
21 result = search(a, mid + 1, last, key);
22 }
23 return result;
24 }
25 }
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Execution of the Method search
(Part 1 of 2)

Display 11.7 Execution of the Method search ==
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Execution of the Method search
(Part 1 of 2)

Display 11.7 Execution of the Method search ==

(continued)
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Not here

mid = (5 + 6)/2 whichis 5
a[mid] is a[5] == 63

key was found.

return 5.
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Checking the search Method

1. There 1s no Infinite recursion

e On eachrecursive call, the value of £irst
IS Increased, or the value of 1ast Is
decreased

« |If the chain of recursive calls does not end

In some other way, then eventually the
method will be called with £1irst larger
than 1last
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Checking the search Method

2. [Each stopping case performs the correct
action for that case

 Iffirst > last, there are no array
elements between a[first] and
a[last], so key Is not in this segment of

the array, and result Is correctly setto -
1

 |fkey == a[mid], result s correctly
settomid
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Checking the search Method

3. For each of the cases that involve recursion, if
all recursive calls perform their actions
correctly, then the entire case performs
correctly

* Ifkey < a[mid], then key must be one of the
elements a[£irst] through a [mid-1], oritis
not in the array

The method should then search only those
elements, which It does

The recursive call is correct, therefore the entire
action is correct
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Checking the search Method

« Ifkey > a[mid], then key must be one of the
elements a [mid+1] through a[last],oritis
not in the array

«  The method should then search only those
elements, which it does

« The recursive call is correct, therefore the entire
action Is correct

The method search passes all three tests:
Therefore, It Is a good recursive method definition
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Efficiency of Binary Search

» The binary search algorithm Is extremely
fast compared to an algorithm that tries all
array elements in order

— About half the array Is eliminated from
consideration right at the start

— Then a quarter of the array, then an eighth of
the array, and so forth

© 2006 Pearson Addison-Wesley. All rights reserved 15



Efficiency of Binary Search

« Given an array with 1,000 elements, the binary search
will only need to compare about 10 array elements to the
key value, as compared to an average of 500 for a serial
search algorithm

» The binary search algorithm has a worst-case running
time that is logarithmic: O(log n)
— Aserial search algorithm is linear: O(n)

 |f desired, the recursive version of the method search
can be converted to an iterative version that will run
more efficiently
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Iterative Version of Binary Search
(Part 1 of 2)

Display 11.9 Iterative Version of Binary Search ==
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Searches the array a for key. If key is not in the array segment, then -1 is
returned. Otherwise returns an index in the segment such that key == a[index].
Precondition: a[lowEnd] <= a[lowEnd + 1]<= ... <= al[highEnd]
* |
public static int search(int[] a, int lowEnd, int highEnd, int key)
{
int first = lowEnd;
int last = highEnd;
int mid;

boolean found = false: //so far
int result = 0; //to keep compiler happy

while ( (first <= last) && !(found) )

{
mid = (first + last)/2;
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Iterative Version of Binary Search
(Part 2 of 2)

Display 11.9 Iterative Version of Binary Search %= (continued)

16 if (key == a[mid])

17 {

18 found = true;

19 result = mid;

20 }

21 else if (key < a[mid])
22 {

23 last = mid - 1;

24 }

25 else if (key > a[mid])
26 {

27 first = mid + 1;
28 }

29 }

30 if (first > last)

31 result = -1;

32 return result;

33 }
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