Searching and Sorting

e Linear Search

« Binary Search
-Reading p.671-679

© 2006 Pearson Addison-Wesley. All rights reserved

Linear Search

Searching is the process of determining whether or not a
given value exists in a data structure or a storage media.

We discuss two searching methods on one-dimensional
arrays: linear search and binary search.
« The linear (or sequential) search algorithm on an array is:

— Sequentially scan the array, comparing each array item with the searched value.
— If a match is found; return the index of the matched element; otherwise return —1.

« Note: linear search can be applied to both sorted and unsorted
arrays.

© 2006 Pearson Addison-Wesley. All rights reserved

Linear Search

» The algorithm translates to the following Java method:

public static int linearSearch(Object[] array,
Object key)

{
for(int k = O; k < array.length; k++)
if(array[k].equals(key))
return k;
return -1;

© 2006 Pearson Addison-Wesley. All rights reserved 3

Binary Search

 Binary search uses a recursive method to search
an array to find a specified value

* The array must be a sorted array:
a[0]fa[l]fa[2]f. . . £ a[finalIndex]

« |f the value iIs found, Its index Is returned
« |f the value 1s not found, -1 Is returned

 Note: Each execution of the recursive method
reduces the search space by about a half

© 2006 Pearson Addison-Wesley. All rights reserved

Binary Search

 An algorithm to solve this task looks at the
middle of the array or array segment first

« If the value looked for Is smaller than the value
In the middle of the array

— Then the second half of the array or array segment
can be ignored

— This strategy Is then applied to the first half of the
array or array segment

© 2006 Pearson Addison-Wesley. All rights reserved

Binary Search

» |f the value looked for is larger than the value in the
middle of the array or array segment
— Then the first half of the array or array segment can be ignored

— This strategy is then applied to the second half of the array or
array segment

« |f the value looked for is at the middle of the array or
array segment, then it has been found

« |If the entire array (or array segment) has been searched
In this way without finding the value, then it is not in the
array

© 2006 Pearson Addison-Wesley. All rights reserved

Pseudocode for Binary Search

Display 11.5 Pseudocode for Binary Search ==

ALGORITHM TO SEARCH a[first] THrROUGH a[last]

S

Precondition:

al[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
% .-".:

TO LOCATE THE VALUE KEY:

if (first > last) //A stopping case
return -1;
else
{
mid = approximate midpoint between first and last;
if (key == a[mid]) //A stopping case
return mid;
else if key < a[mid] //A case with recursion
return the result of searching a[first] througha[mid - 1];
else if key > a[mid] //A case with recursion
return the result of searching a[mid + 1] through a[last];

© 2006 Pearson Addison-Wesley. All rights reserved

Recursive Method for Binary Search

Display 11.6 Recursive Method for Binary Search <

1 public class BinarySearch

2 {

3 ik

4 Searches the array a for key. If key is not in the array segment, then -1 1is
5 returned. Otherwise returns an index in the segment such that key == al[index].
6 Precondition: a[first] <= a[first + 1]<= ... <= a[last]

7 oy

8 public static int search(int[] a, int first, int last, int key)
9 {
16 int result = 0; //to keep the compiler happy.
11 if (first > last)
12 result = -1;
13 else
14 {
15 int mid = (first + last)/2;
16 if (key == a[mid])
17 result = mid;
18 else if (key < al[mid]l)
19 result = search(a, first, mid - 1, key);
20 else if (key > almid])
21 result = search(a, mid + 1, last, key);
22 }
23 return result;
24 }
25 }

© 2006 Pearson Addison-Wesley. All rights reserved

Execution of the Method search
(Part 1 of 2)

Display 11.7 Execution of the Method search ==

alo]
al1]
al2]
a[3]
al4]
al5]
al6]
al7]
a[8]
al9]

15

20

35

41

57

63

75

80

85

90

key 1s 63

s First == 0

-—— mid = (0@ + 9)/2

next

-a—— last ==

© 2006 Pearson Addison-Wesley. All rights reserved

ale]
al1]
a[2]
a[3]
al[4]
al5]
a[6]
al7]
a[8]

al[9]

15

20

35

41

57

63

75

80

85

90

Not in
this half

- first ==

-~ mid = (5 + 9)/2

-—— last ==

Execution of the Method search
(Part 1 of 2)

Display 11.7 Execution of the Method search ==

(continued)

ale]
al1]
al2]
a[3]
al4]
al5]
al6]
al7]
a[8]
al9]

15

20

35

41

57

63

75

80

85

90

-— Tirst ==

-—— last ==

Not here

mid = (5 + 6)/2 whichis 5
a[mid] is a[5] == 63

key was found.

return 5.

© 2006 Pearson Addison-Wesley. All rights reserved

10

Checking the search Method

1. There 1s no Infinite recursion

e On eachrecursive call, the value of £irst
IS Increased, or the value of 1ast Is
decreased

« |If the chain of recursive calls does not end

In some other way, then eventually the
method will be called with £1irst larger
than 1last

© 2006 Pearson Addison-Wesley. All rights reserved H

Checking the search Method

2. [Each stopping case performs the correct
action for that case

 Iffirst > last, there are no array
elements between a[first] and
a[last], so key Is not in this segment of

the array, and result Is correctly setto -
1

 |fkey == a[mid], result s correctly
settomid

© 2006 Pearson Addison-Wesley. All rights reserved 12

Checking the search Method

3. For each of the cases that involve recursion, if
all recursive calls perform their actions
correctly, then the entire case performs
correctly

* Ifkey < a[mid], then key must be one of the
elements a[£irst] through a [mid-1], oritis
not in the array

The method should then search only those
elements, which It does

The recursive call is correct, therefore the entire
action is correct

© 2006 Pearson Addison-Wesley. All rights reserved 13

Checking the search Method

« Ifkey > a[mid], then key must be one of the
elements a [mid+1] through a[last],oritis
not in the array

« The method should then search only those
elements, which it does

« The recursive call is correct, therefore the entire
action Is correct

The method search passes all three tests:
Therefore, It Is a good recursive method definition

© 2006 Pearson Addison-Wesley. All rights reserved 14

Efficiency of Binary Search

» The binary search algorithm Is extremely
fast compared to an algorithm that tries all
array elements in order

— About half the array Is eliminated from
consideration right at the start

— Then a quarter of the array, then an eighth of
the array, and so forth

© 2006 Pearson Addison-Wesley. All rights reserved 15

Efficiency of Binary Search

« Given an array with 1,000 elements, the binary search
will only need to compare about 10 array elements to the
key value, as compared to an average of 500 for a serial
search algorithm

» The binary search algorithm has a worst-case running
time that is logarithmic: O(log n)
— Aserial search algorithm is linear: O(n)

 |f desired, the recursive version of the method search
can be converted to an iterative version that will run
more efficiently

© 2006 Pearson Addison-Wesley. All rights reserved 16

Iterative Version of Binary Search
(Part 1 of 2)

Display 11.9 Iterative Version of Binary Search ==

WD 00 =~ O W B

=
=

11
12

13
14
15

© 2006 Pearson Addison-Wesley. All rights reserved

_,-" il
Searches the array a for key. If key is not in the array segment, then -1 is
returned. Otherwise returns an index in the segment such that key == a[index].
Precondition: a[lowEnd] <= a[lowEnd + 1]<= ... <= al[highEnd]
* |
public static int search(int[] a, int lowEnd, int highEnd, int key)
{
int first = lowEnd;
int last = highEnd;
int mid;

boolean found = false: //so far
int result = 0; //to keep compiler happy

while ((first <= last) && !(found))

{
mid = (first + last)/2;

17

Iterative Version of Binary Search
(Part 2 of 2)

Display 11.9 Iterative Version of Binary Search %= (continued)

16 if (key == a[mid])

17 {

18 found = true;

19 result = mid;

20 }

21 else if (key < a[mid])
22 {

23 last = mid - 1;

24 }

25 else if (key > a[mid])
26 {

27 first = mid + 1;
28 }

29 }

30 if (first > last)

31 result = -1;

32 return result;

33 }

© 2006 Pearson Addison-Wesley. All rights reserved

