-		Odd Mid S	emester Exa	mination for A	Academic Session	LULT		
OUF	RSE	NAME: B.TECH				SEMESTI	ER: 5th	
	-	THE BITBETT	R	RANCH NAM	E. IT			
					ING SYSTEMS			
IIII	MA	ARKS: 30				TIME: 90 N	Ainutes	
	7 111	mas. 50						
			A	nswer All Ques	tions.			
		The figures in the	right-hand ma	argin indicate M	arks. Symbols carry	y usual meaning.		
			<u> </u>				(2 × 21	
Q1.		Answer all Questi	ons.				[2 × 3]	
	a)	What do you mea	n by CPU Bur	st time and I/O I	Burst time of a proc	ess?	- CO1	
	b)	Justify with reaso	ns whether the	following state	ment is true or false		- CO2	
		"The kernel routing	nes are written	as functions tha	t are called from us	er-level programs		
		whenever some service is required from the operating system." When a process is rolled out of memory, it loses its ability to use the CPU (at least for						
	(c)	When a process is	s rolled out of	memory, it loses	its ability to use the	e CPU (at least 101)	- CO3	
		a while). Describe another situation where a process loses its ability to use the CPU, but where the process does not get rolled cut.						
	-	but where the pro	icess does not	get folied out.				
Q2.	+-				.		[8]	
<u> </u>	-	Clearly explain how the concept of SPOOLING helps in improving CPU utilization						
		in traditional batch processing systems. Your printer connected to your computer uses						
		SPOOLING. Point out what problem will you face if you want to print two documents						
		simultaneously if you disable SPOOLING? Why?						
		OR						
		Consider the following five processes, with their arrival times and execution times given in milliseconds.						
			Process	Arrival Time	CPU Burst Time			
			P1	0	2			
			P2	0	4			
			P3	3 ·	2 '			
			P4	4	6			
			P5	6	0			
		Draw the Gantt charts and estimate the average waiting times for the following						
		Scheduling algorithms:						
		20 N. J. W. Andrewsting Chartest Joh First						
Q		ii) Round-robin with time slice of 3 ms (assume P1 starts executing first in the						
		beginning)						
							[8]	
	3.		1 1	ling classither	favours those proce	esses that have used	-	
		Suppose a short-term scheduling algorithm favours those processes that have used					1	
		little processor time in the recent past. a) Does the process favour I/O-bound processes or CPU-bound processes? Why						
	1	_\ T\aaa 4	e proceed tave	Mr 1/ ()- Dound o	10003303 01 01 0	unite provident	·	

all a		b) Is the following statement True or False? Justify your answer. "This algorithm will continuously deny processor time to CPU-bound processes".				
	OR					
		Consider a time-sharing operating system that uses the round-robin scheduling algorithm. Suppose there are N processes in the ready queue, with time quantum Δ and context-switch overhead of δ . Assume that the average CPU burst time of a process is β . Estimate the average waiting time for a process before it again gets chance to run on the CPU. Clearly state any assumptions you make.	- CO2			
Q4.			[8]			
	S	Consider a single level paging scheme. The page size is 4 KB and page table entry size is 4 bytes. The size of page table is 4 KB. Give the division of virtual address	- CO3			
		space.				
		OR	G00			
		Consider the following code snippet using the fork() system calls. Assume that the code compiles and runs correctly, and that the system calls run successfully without any errors.	- CO3			
		#include <stdio.h></stdio.h>				
		#include <stato.n> #include <unistd.h></unistd.h></stato.n>	•			
		int main()				
		<pre>if (fork() fork()) for!(); printf("1"); return 0;</pre>				
		Find out the total number of times the printf statement is executed?				
1						