COL	JRS	Even Mid Semester Examination for session 2023-24 E NAME: BTech SEMES	TER: Fou
		BRANCH NAME: IT	JEK. FOU
		SUBJECT NAME: Discreate Mathematics	
FUL	L M	IADVO 20	0 Minute:
		Answer All Questions.	O Minute:
		The figures in the right-hand margin indicate Marks. Symbols carry usual meaning.	
Q1.		Answer all Questions.	[2 × 3]
	a)	Write the converse, and contrapositive of "If $ x = x$, then $x \ge 0$ ".	- CO1
	b)	State principle of strong induction.	- CO1
	c)	Define complete bipartite graph with one example.	- CO2
Q2.			[4+4]
	a)	State and proof De Morgan laws for propositions p and q .	[]
	b)	Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology by developing a series of logical equivalences. (Don't use Truth table.)	- CO1
-		OR	
	E)	Show that $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences. (Don't use Truth table.)	- CO1
	d)	Use truth tables to verify the associative laws	- CO1
		(i) $(p \ Vq) \ Vr \equiv p \ V(q \ Vr)$, (ii) $(p \ Aq) \ Ar \equiv p \ A(q \ Ar)$	
Q3.			[4+4]
	a)	Prove that if $n=ab$, where a and b are positive integers, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$ by contraposition method.	- CO2
	b)	Show that if n is an integer greater than l , then n can be written as the product of primes.	- CO2
		OR	
	c)_	Prove that 6 divides $(n^3 - n)$ whenever n is a nonnegative integer.	- CO2
	<u>(</u> d)	How many solutions does $x + y + z = 11$ have, where x , y , z are non-negative integers with $x \le 3$, $y \le 4$ and $z \le 6$.	- CO2
Q4.		i i	[4+4]
	ą)	Find the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with initial conditions $a_0 = 1$, $a_1 = -2$, and $a_2 = 1$.	- CO2
	b)	Find the generating function for the sequence $a_n = n^2 + 1$.	- CO2
		OR	
	c)	Prove that an undirected graph has an even number of vertices of odd degree.	- CO2
	d)	Find the solution to the recurrence relation $a_n = a_{n-1} + \sin(n\pi/2)$ for $n > 1$ and $a_1 = -1$.	- CO2

7PN 7GPNa) = 7PN(PV7a) = (TPNP)V(7PN7a)