
Programming in Python

www.iitkirba.xyz

Module-1

• Introduction to Python , features and applications.

• Datatypes , Keywords , Identifiers , Literals , Constants, Variables.

• Python indentation , Concept of indentation.

• Operators and Expressions , Naming conventions, Managing input & output.

• Conditional Statements , Looping statements , Nesting of loops.

• break , continue , pass & return statements.

www.iitkirba.xyz

Introduction to Python

• High-level, interpreted & general-purpose programming language.

• Created by Guido van Rossum in 1991 and further developed by

the Python Software Foundation.

• It was designed with an emphasis on code readability.

• Helps the programmers to write the code in fewer lines.

• A programming language that lets you work quickly and integrate
systems more efficiently.

www.iitkirba.xyz

Features of Python

• Easy to use and Read

• Dynamically Typed

• High-level

• Compiled and Interpreted Garbage Collected

• Purely Object-Oriented

• Cross-platform Compatibility

• Rich Standard Library

www.iitkirba.xyz

Applications of Python

• Data Science

• Desktop Applications

• Console-based Applications

• Mobile Applications ,Web Applications & Software Development

• Machine Learning

• Computer Vision or Image Processing Applications & Speech Recognition

• Testing

• Gaming

www.iitkirba.xyz

Variables

Variables are used to store data that can be referenced and

manipulated during program execution. A variable is essentially a

name that is assigned to a value. Unlike many other programming

languages, Python variables do not require explicit declaration of
type. The type of the variable is inferred based on the value assigned.

www.iitkirba.xyz

Rules for naming variables

• Variable names can only contain letters, digits and

underscores (_).

• A variable name cannot start with a digit.

• Variable names are case-sensitive (myVar and myvar are

different).

• Avoid using Python keywords (e.g., if, else, for) as variable

names.

www.iitkirba.xyz

https://www.geeksforgeeks.org/python-keywords/

Module-1

www.iitkirba.xyz

Data types

Data types in Python define the type of data a variable can hold.

Common types include integers, floats, strings, sequence,
mapping, set types,binary types ,tuple,List and Boolean . Each

type has unique properties and behaviors, influencing how data

is manipulated and stored in your prog rams.

www.iitkirba.xyz

Keywords & Identifiers

• In Python, keywords are

reserved words that have specific

m eaning s ,such as if,else,and def.
Identifiers, on the other hand, are

names you choose forvariables

and functions .

• U nderstanding the

distinction is vital for writing

syntactically correct code.

www.iitkirba.xyz

Literals & Constants

•Literals are raw data values directly assigned to variables.

•Theycan be numeric (int, float, complex), string, Boolean (True, False),or special

(None).

•Constants in Pythonare variables whosevalues remain unchanged

throughout the program

•Example:PI = 3.14159

www.iitkirba.xyz

Python Indentation

www.iitkirba.xyz

Concept of Indentation

• Python Indentation is the whitespace (space or tab) before a block of

code. It is the cornerstone of any Python syntax and is not just a

convention but a requirement. In other words, indentation signifies that

every statement with the same space to the right is a part of the same

code block.

• Indentation is significant in Python as it ensures code readability.

Unlike C, C++, and other languages, where curly braces represent a

block of code, Python uses indentation level (number of leading

whitespaces) to show a black with the same group of statements.

www.iitkirba.xyz

https://www.wscubetech.com/resources/python/syntax
https://www.wscubetech.com/resources/c-programming

Module-1

www.iitkirba.xyz

Operators
Definition:Operators are symbols or keywords used to perform operations on values and variables in Python.

Types of Operators:

1. Arithmetic Operators: Perform mathematical operations.

+, -, *, /, %, **, //

2. Relational (Comparison) Operators: Compare two values

==, !=, >, <, >=, <=

3. Logical Operators: Combine conditional statements.

and, or, not

4. Assignment Operators: Assign values to variables.

=, +=, -=, *=, /=, %=

5. Bitwise Operators: Perform operations on binary numbers.

&, |, ^, ~, <<, >>

6. Membership Operators: Test if a value is in a sequence.

in, not in

7. Identity Operators: Compare objects by memory location.

is, is not

www.iitkirba.xyz

Naming Conventions

Best Practices:

1. Use meaningful names (age, total_price).

2. Use snake_case for variables and functions (my_variable).

3. Use PascalCase for classes (MyClass).

4. Constants in UPPERCASE (MAX_LIMIT).

Code Example: # Variable student_name = "Ray"

Function def calculate_area(radius):

return 3.14 * radius ** 2

Class class MyClass:

pass

www.iitkirba.xyz

Input & Output

Input in Python

• With the print() function, you can display output in various formats, while the input() function enables
interaction with users by gathering input during program execution.

Print Output in Python

• At its core, printing output in Python is straightforward, thanks to the print() function. This function
allows us to display text, variables, and expressions on the console. Let’s begin with the basic usage of
the print() function:

• In this example, “Hello, World!” is a string literal enclosed within double quotes. When executed, this
statement will output the text to the console.

Ex-print("Hello, World!")

Output

Hello, World!

www.iitkirba.xyz

https://www.geeksforgeeks.org/python-output-using-print-function/

Conditional Statements

Conditional Statements are statements in Python that provide a choice for the control flow based on a
condition.

1. If Conditional Statement in Python

If the simple code of block is to be performed if the condition holds then the if statement is used. Here the
condition mentioned holds then the code of the block runs otherwise not.

Syntax

if condition:

statement

Example

if 10 > 5:

print("10 greater than 5")

www.iitkirba.xyz

If Else Statement

2. If else Conditional
Statements in Python

In a conditional if Statement the
additional block of code is
merged as an else statement
which is performed when if
condition is false.

Syntax

Exa

x = 3

if x == 4:

print("Yes")

else:

print("No")

if (condition):
Executes this block if
condition is true
else:
Executes this block if
condition is false

www.iitkirba.xyz

Nested If Else

• Nested if..else means an if-else
statement inside another if
statement.

• We can use one if or else if
statement inside another if or
else if statements.

if..else chain statement

letter = "A"

if letter == "B":

print("letter is B")

else:

if letter == "C":

print("letter is C")

else:

if letter == "A":

print("letter is A")

else:

print("letter isn't A, B and C")

www.iitkirba.xyz

If-elif-else

The if statements are executed
from the top down. As soon as
one of the conditions controlling
the if is true, the statement
associated with that if is
executed, and the rest of the
ladder is bypassed. If none of the
conditions is true, then the final
“else” statement will be executed.

letter = "A"

if letter == "B":

print("letter is B")

elif letter == "C":

print("letter is C")

elif letter == "A":

print("letter is A")

else:

print("letter isn't A, B or C")

www.iitkirba.xyz

Ternary Expression

The Python ternary Expression determines if a condition is true or false and then returns the
appropriate value in accordance with the result.

Syntax: [on_true] if [expression] else [on_false]

expression: conditional_expression | lambda_expr

a, b = 10, 20

print("Both a and b are equal" if a == b else "a is greater than b"

if a > b else "b is greater than a")

www.iitkirba.xyz

Module-1

www.iitkirba.xyz

Loops

• In programming, the loops are the constructs that repeatedly execute a
piece of code based on the conditions.

• There are two types of loops in Python and these are for and while loops.

• Both of them work by following the below steps:

• 1. Check the condition
2. If True, execute the body of the block under it. And update the

iterator/the value on which the condition is checked.
3. If False, come out of the loop

www.iitkirba.xyz

While Loop

• While loops execute a set of lines of

code iteratively till a condition is

satisfied. Once the condition results in

False, it stops execution, and the part

of the program after the loop starts
executing.

• The syntax of the while loop is :

While condition:

statement(s)

An example of printing numbers from 1
to 5 is shown below.

Example of Python while loop:

i=1

while (i<=5):

print(i)

i=i+1

www.iitkirba.xyz

For Loop

• For loop in Python works on a
sequence of values. For each value
in the sequence, it executes the loop
till it reaches the end of the
sequence.

• The syntax for the for loop is:

for iterator in sequence:

statement(s)

Example of Python for loop:

for i in range(5):

print(i)

www.iitkirba.xyz

Nested Loop

Nested for loop

for i in range(1, 11):

for j in range(1, 11):

print(i * j, end=' ‘)

print()

While inside for

names = ['Kelly', 'Jessa', 'Emma’]

for name in names:

count = 0

while count < 5:

print(name, end=' ‘)

count = count + 1

print()

• A nested loop is a loop inside the body of the outer loop.

• The inner or outer loop can be any type, such as a while

loop or for loop. For example, the outer for loop can
contain a while loop and vice versa.

• The outer loop can contain more than one inner loop.
There is no limitation on the chaining of loops.

• In the nested loop, the number of iterations will be equal

to the number of iterations in the outer loop multiplied by
the iterations in the inner loop.

www.iitkirba.xyz

https://pynative.com/python-while-loop/
https://pynative.com/python-for-loop/

Break

The break statement will completely

break out of the current loop,meaning it

won’t run any more of the statements
contained

inside of it.

names = ["Rose", "Max", "Nina", "Phillip"]

for name in names:

print(f"Hello, {name}")

if name == "Nina":

break

www.iitkirba.xyz

Continue

• continue works a little differently.

• Instead, it goes back to the start of

the loop, skipping over any other

statements contained within the loop.

for name in names:

if name != "Nina":

continue

print(f"Hello, {name}")

www.iitkirba.xyz

Pass

• Do nothing. Ignore the condition in

which it occurred and proceed to
run the program as usual.

• We use pass statements to write

empty loops. Pass is also used for

empty control statements,
functions, and classes.

An empty loop

for letter in ‘Rose':

pass

print('Last Letter :', letter)

www.iitkirba.xyz

Return

• A return statement is used to end

the execution of the function call

and it “returns” the value of the

expression following the return
keyword to the caller.

• The statements after the return
statements are not executed.

def add(a, b):

returning sum of a and b

return a + b

def is_true(a):

return bool(a)

calling function

res = add(2, 3)

print(res)

www.iitkirba.xyz

1: Print the first 10 natural numbers using for loop.

2: Python program to print all the even numbers within the given range.

3: Python program to calculate the sum of all numbers from 1 to a given number.

4: Python program to calculate the sum of all the odd numbers within the given range.

5: Python program to print a multiplication table of a given number

6: Python program to display numbers from a list using a for loop.

7: Python program to count the total number of digits in a number.

8: Python program to check if the given string is a palindrome.

9: Python program that accepts a word from the user and reverses it.

10: Python program to check if a given number is an Armstrong number

11: Python program to count the number of even and odd numbers from a series of numbers.

12: Python program to display all numbers within a range except the prime numbers.

13: Python program to get the Fibonacci series between 0 to 50.

14: Python program to find the factorial of a given number.

15: Python program that accepts a string and calculates the number of digits and letters.

16: Write a Python program that iterates the integers from 1 to 25.

17: Python program to check the validity of password input by users.

18: Python program to convert the month name to a number of days.

Assignment 1

www.iitkirba.xyz

