Understanding Built-in
Modules in Python

Explore the key features of Python’s built-in modules and import
statements to enhance your programming skills effectively.

PYTHON MODULES

Understanding Modules in Python

Key Concepts and Definitions

Definition of a Module
A module is a Python file with a .py extension that can be imported into other scripts, encapsulating reusable code.

Purpose of Modules

Modules facilitate the separation of functionality within a program, making it easier to manage larger applications and promote code reusability.

Types of Modules

There are three primary types of modules: built-in modules, user-defined modules created by programmers, and third-party modules from external
libraries.

Importance of Leveraging Modules

Utilizing modules is essential for effective programming in Python, as they help maintain a clean workspace and enhance code organization.

BUILT-IN MODULES

What are Built-in Modules?

Definition and Examples of Python's Essential Functionalities

Q Definition of Built-in Modules Q System-Specific Parameters
Built-in modules are pre-installed components of Python that provide The 'sys’ module provides access to system-specific parameters and
essential functionalities, allowing developers to utilize them without functions, including command-line arguments and Python interpreter
any additional installation. information.

QO Mathematical Functions QO Date and Time Manipulation
The ‘'math’ module offers a variety of mathematical functions, including The "datetime’ module is essential for working with dates and times,
trigonometric and logarithmic calculations, enhancing computational providing classes for manipulating dates, times, and intervals.
capabilities.

Q Enhancing Productivity
QO Operating System Interfaces

The "os” module allows interaction with the operating system, enabling optimized and thoroughly tested functions, allowing developers to

Utilizing built-in modules significantly boosts productivity by providing

file and directory manipulation, process management, and environment focus on core application logic.
variable access.

IMPORT STATEMENTS

Understanding Import Statements in Python

Key Concepts and Syntax

Definition of Import Statement

An import statement is a syntax used in Python to include modules,
enabling access to their functions and classes.

Purpose of Import Statements

Import statements facilitate code reuse and organization by allowing
programmers to utilize pre-defined functions and classes from other
modules.

Syntax

The typical syntax of an import statement is ‘import module__name’,
where ‘'module_name' is the name of the module you wish to include.

Significance in Python Programming
Import statements are essential for leveraging the power of modules,
leading to cleaner, more efficient, and maintainable code in Python
applications.

MODULE IMPORTS

Different Ways to Import Modules in Python

An Overview of Import Methods

Basic Import Import with Alias Import Specific Functions Import All Functions

Use this method to import an entire This allows you to rename a module This method imports only selected Use this approach to import
module, granting access to all its for easier reference. A common functions from a module, minimizing everything from a module, but be
functions and classes. Example: practice is to shorten module names. = memory usage and improving code cautious as it can lead to conflicts.
‘import math’. Example: ‘import numpy as np". clarity. Example: from math import Example: from math import *',

sqrt, pi'.

Used for mathematical operations, including
calculating square roots. Example: ‘import math;

print(math.sqrt(16)) # Output: 4.0'

BUILT-IN MODULES

Provides functions to interact with the operating Exam ples Of USi ng B Ui It' i n

0S Module system, such as retrieving the current working

directory. Example: 'import os; print(os.getcwd()). M Od U I eS l n PYth On
Practical Applications of Python's Built-in Modules

Allows access to system-specific parameters and
functions, including the Python version. Example:

‘import sys; print(sys.version).

MODULE BENEFITS

Advantages of Utilizing Modules in Python

Key Benefits

Reusability
Write code once and reuse it across multiple projects, enhancing efficiency and 01
main(1rgs reducing redundancy.
.printini
Organized Code

Break down large programs into smaller, manageable pieces, making the code
easier to read and maintain.

Namespace Management

Encapsulate code within modules to avoid name clashes, especially in larger
projects with many components.

Efficiency

Utilize built-in modules optimized for performance, leading to faster execution '
and reduced resource consumption.

www.iitkirba.xyz

BUILT-IN MODULES

Overview of Commonly Used Built-in Modules

Essential Python Libraries for Efficient Development

Description

Provides mathematical functions for complex calculations.

Interacts with the operating system to perform file operations.

sys Accesses system-specific parameters and functions.

datetime Manipulates dates and times for accurate time management.

random Generates random numbers for simulations and testing.

json Works with JSON data for web applications and APIs.

01

Import at the Top

Always place all import
statements at the beginning of
your file to enhance readability
and maintain a clear structure.

IMPORT BEST PRACTICES

Best Practices for Import Statements

Key Recommendations for Code Clarity

02

Use Aliases for Clarity

When dealing with long module
names, utilize aliases to improve
code readability and make it
easier to understand at a
glance.

03

Import Only What You Need

Avoid wildcard imports to keep
your code clear. Import only the
necessary components to
minimize confusion and
enhance performance.

04

Organize Imports

Group your imports into
categories: standard library,
third-party, and local imports,
to make your code organized
and easier to navigate.

IMPORT ERRORS

Import Errors in Python

Understanding and Handling Common Errors

ModuleNotFoundError

This error indicates that a module you are trying to import does not exist in the
Python environment. Ensure that the module is installed and the name is spelled

correctly.

ImportErmror
An ImportError occurs when the import statement in your code fails. This could

be due to a misspecified function or class name. Double-check your imports to
make sure they are correct.

Circular Imports

Circular imports happen when two or more modules depend on each other,
leading to an import loop. To resolve this, consider reorganizing your code
structure to eliminate circular dependencies.

01

02

03

Step 1: Create a Python File

[O start, save your reusable

functions in a dedicated .py file,
such as 'my_module.py’. This file

will serve as your module

USER-DEFINED MODULES

Creating Your Own Modules

How to Create User-defined Modules for Code Reuse

Step 2: Define Functions or

Step 3: Import Your Module
Classes

Once your module is created, you

Inside your module, write the

functions or classes you wish to

Use the following syntax:
reuse. For example, a simple ~python import my_module
oreeting function can be defined print(my_module.greet('Alice’)) #

as {l‘)“l]\\ S ‘”I)i\ [h”” L]("l. (‘)“Ip“[: ll(‘”(l, \ll&(']‘}l(;:i

oreet(name): return f'Hello, demonstrates how to call a
[name}’ function from your module

Benefits of User-defined
Modules

Creating your own modules
promotes better code
organization and enhances code

reuse, making your programming

tasks more efficient and

manageable.

Relative Imports
@ Allows importing modules based on the current module's location, enhancing

modularity.
IMPORT TECHNIQUES
Advanced Techniques for Dynamic Imports
I m po rti n g M o d u I es @ Enables importing modules at runtime using the __import___ () function for greater
flexibility.

Exploring Complex Import Scenarios in Python
Conditional Imports

@ Facilitates importing modules based on specific runtime conditions, optimizing
resource usage.

PYTHON MODULES

Key Takeaways on Python Modules

Essential Insights for Effective Code

Modules Built-in Modules Import Statements Best Practices

Modules are essential for organizing Python includes several built-in Import statements are crucial for Adhere to best practices by
and reusing code in Python, which modules that provide ready-to-use accessing module functionalities; importing modules wisely, handling
enhances maintainability and functionalities, saving development understanding different import errors gracefully, and considering
collaboration. time and effort. methods is vital for effective coding. user-defined modules for custom

functionalities.

01

Significance of
Built-in Modules

Built-in modules in Python
provide essential
functionalities that simplify
coding tasks and enhance

program efficiency.

Conclusion on Python Modules and Imports

02

Effective Use of
Import Statements

Understanding how to

properly use import

statements can significantly
improve code organization

and reusability.

PYTHON MODULES

Key Takeaways

03

Enhancing Coding
Skills

Mastering module
management is crucial for
developers looking to
enhance their coding skills
and streamline their
workflow.

04

Encouragement to
Experiment

Experimenting with
different modules and
import techniques fosters
creativity and helps you
discover new solutions to
coding challenges.

05

Final Message

As you apply these
concepts, always remember
to enjoy the coding journey.

Happy coding

Packages and Date/Time In
Python

www.iitkirba.xyz

Introduction to Python Packages

Code Reusability Organized Structure Extensive Functionality
Packages are collections of modules They help to organize and structure Packages offer a vast range of
that provide reusable code. your Python projects. functions and classes.

www.iitkirba.xyz

Darton Jops

rr‘ﬂctoen Jooo.
rrIZordeniIc

Dalr, Jate
Demer,Feost

J-

Yeur Late

(

Prghte
Recante
loge
Rundem

Repure

Lallt

~3or waucs
O Thie Hatte

"LLJ ciiiik pavier
-* Gcaless

Mapl Pigs

| I l Jatal durys

(9 Anca Redeer

Ymivie <l viuHcl
|
GBlhen —
Maton
-1, Pytin D c a alc
Datohe ma{.leck
Q Maules " Cotlgnerl
m Pyton fd Subtle
Corcoler

mJ Pythn

Standard Library Packages

0SS

Operating system interactions (file management, paths).

random

Generating random numbers and sequences.

math

Mathematical functions (trigonometry, logarithms).

json

"-dtuyt:
(J Vvtylle
Wata

Caspene

.. Allk

Working with JISON data (encoding, decoding).

www.iitkirba.xyz

sellsetsonno o Installing Third-Party

Istralle70100-p0

litrell 06106:1C 0:

Satall sirn0pl-pniusaTsORIol Packages
littalfl .1050rep6:31022915.01

fowa)

1stralel047790029.21:07 _—
):014:3.15:

fitemeroagel:] Ap15, prp Package Index

listrales(ifurt:lites:011s
istralsinantirpg:0le.tcls:o0l) Python's package installer. Repository of available packages

(PyP1).

www.iitkirba.xyz

Working with the datetime
Module

1 Current Time

Getthe current date and time.

5 Date Components

Extract year, month, day, etc.

3 Time Components

Extract hour, minute, second, etc.

4 Date and Time Formatting

Customize output string format.

www.iitkirba.xyz

Date and Time Objects

datetime.date datetime.time datetime.datetime
Represents a date (year, month, day). Represents a time (hour, minute, Combines date and time information.
second).

www.iitkirba.xyz

Time Delta Calculations

Duration

1 Calculate the difference between two dates or times.
Adding Time

2 Add atime delta to a date or time object.

Subtracting Time

3 Subtract atime delta from a date or time object.

www.iitkirba.xyz

Formatting Dates and Times

strftime()
1 Convert datetime objects to strings.
5 strptime()
Parse date/time strings into datetime objects.
3 Custom Formats

Use format codes to create specific output.

www.iitkirba.xyz

Time Zones and Localization

Timezone

Representtime zones and conversions.

Localization

Adjust date and time formats for different regions.

UTC (Coordinated Universal Time)

A standard time reference.

www.iitkirba.xyz

Sample Code: Working
with Dates and Times e s st e

"datefonnt = F_3010

timer finte

import datetime Itler = dalet statk,
liscate- frt
P-time: = lste(,

Get current date and time now = datetime.datetime.now() Ple datecior is perclats) (uteciferctal
2 cClrerctal,

sonters the systlle

|Sp
CEswvell = fre ;

; clista Ficoel
Format the date and time oot fises(
F Imate-tters and deal, salest

formatted_date = now.strftime("o/oY-o/om-o/od &, caril, is: g
o/oH:0/oM:0/0S") Dl etarian

*s! felce lantles

fustefly tier

Print the formatted date and time print("Current Date and

o !lc][@ is

Time:", formatted_date)

" awl fln .
!r*'GCheyr. =&

“JLly_

Create a datetime object for a specific date birthday =
datetime.datetime(2024, 12, 25)

Calculate the time difference between now and the birthday
time_until_birthday = birthday - now

Print the time difference
print("Time until Birthday:", time_until_birthday)

CONTENTS

* ARRAYS AND ITS OPERATIONS
* HANDLING STRINGS AND CHARACTERS
¢ LISTOPERATIONS

www.iitkirba.xyz

- WEIATS N A RIRG Y2

An array is a collection of items stored at contiguous
locations. In other words an array 1s a special variable
which can hold more than one value at a time.

ARRAY AND

OPERATIONS

Array Elements =] 1 4 3 8 4 9 2 5 6

Array index (O - 8)

DIFFERENT OPERATIONS IN ARRAYS :

append()-Adds an element at the end of the list

clear()-Removes all the elements from the list.

copy()-Returns a copy of the list.

count()-Returns the number of elements with the specified value.

extend()-Adds the element to the end of the current list.

insert()-Adds an element at the specified position.

pop()-Removes the element at the specified position.

e A o 8 L e 8 s e L

remove()-Removes the first item with the specified value.
10. reverse()-Reverses the order of the list.

11, sort()-Sorts the lists.

index()-Returns the index of the first element with the specified value.

www.iitkirba.xyz

HANDLING STRINGS AND CHARACTERS

W AETS AL S TREN G2

A string is a sequence of characters enclosed in either single quotes “” or double quotes “.”. It 1s used
for representing textual data.

CREATING A STRING:

Strings can be created using either single quotes or double quotes.

For Example- s1=‘geeks for geeks’

s2=“geeks for geeks”
—>Multi-line Strings: If we need to span multiple lines then we can use triple quotes.
For Examples: s= “ “ “ 1 am learning

IRV INIP.

coding from youtube

. — | www.iitkirba.xyz

OPERATIONS IN STRING:

Let us consider a string s=“HELLO”

—> Access Characters: s[0] gives ‘H’.
—> String Slicing: s[1:4] gives ‘ell’.

Concatenation: “Hi1” + “there” gives “Hi there”.

- METHODS: We have a string s,

- s.upper()- Converts to uppercase.

= s.lower()- Converts to lowercase
—> s.spilt(*)~ Spilts by spaces into a list.

=2 “”join([‘Hi’, ‘there’])- Joins list into a string,

www.iitkirba.xyz

/ Python Lists

a=[1,17,5, 12, 34]

\enh 0

LIST
OPERATIONS

g

oo

e WHAT IS A LIST ? |

A list 1s a built-in dynamic sized array that is
used to store an ordered collection of items.
We can store all types of items(including
another list) in a list. A list may contain mixed
type of items , this is possible because a list
mainly stores references at contiguous
locations and actual items maybe stored at
different location.

WWW.II ERI rBa.xyz

OPERATIONS IN LIST:

1. LIST SLICING: Extract a portion of the list.

For example- Ist[1:4] returns elements from index 1 to 3.

2. BOUNDS: Refers to the valid indices of a list . Accessing an index outside the bounds raises an

errof.
- For example- Ist[10] if the list has only 5 elements.

3. CLONING: Creating a copy of a list.

cloned_list = Ist[:] creates a shallow copy of the list.
4. NESTED LIST: A list inside another list
nested=[[1,2],[3,4]]- Access with nested[0][1](gtves 2)

www.iitkirba.xyz

LIST METHODS :

Qe R S e

—_—

append()-Adds an element to the end of the list.

copy()-Returns a shallow copy of the list.

clear()-Removes all elements from the list.

count()-Returns the number of times a specified element appears in the list.

extend()-Adds elements from another list to the end of the current list.

index()-Returns the index of the first occurrence of a specified element.

insert()-Inserts an element at a specified position.

pop()-Removes and returns the elements at the specified position(or the last element if no index is
specified).

remove()-Removes the first occurrence of a specified element.

reverse()-Reverses the order of the element in the list.

sort()-Sorts the list in ascending order(by default).

www.iitkirba.xyz

ADDING ELEMENT
&

MUTABILITY IN
PYTHON

www.iitkirba.xyz

MAP()

The map() function applies a given function to everyitem in alist (orany iterable)
andreturns amap object (aniterator).

SYNTAX:
map(function, iterable)

EXAMPLE :
numbers 12 3,4]
squared =map(lambda xx *2,numbers) print(list(squared))

Output 14,9,16]

www.iitkirba.xyz

FILTER()

The filter() function is used to filter items from an iterable based on a
condition (function that returns True or False) .

SYNTAX::

filter(function, iterable)
EXAMPLE :

® numbers =1,2,3,4,5, 6]

® even =filter(lambda xx %2 =0, numbers) print(list(even))
® Output :[2,4,6]

www.iitkirba.xyz

APPEND()

The append() method in Python is used to add a single item to the end of list. This method modifies the original list
and does not return a new list.

Syntax of append() method :

list.append(element)

Parameter:

Element: The item to be appended to the list. This can be of any data type(integer, string, list, etc.) ,the parameter is
mandatory and omitting it can cause an error.

Return Type :

The append() method does not return any value, it just modifies the original list in place.

www.iitkirba.xyz

EXTEND()

The Python List extend() method adds items of an iterable (list, tuple, dictionary, etc) at the end of a list.
Syntax of extend() method :

list_name.extend(iterable)

Parameter :
lterable: Any iterable (list, set, tuple, etc.)

Return Type :

Python list sort() returns none.

www.iitkirba.xyz

COUNT()

The count() method is used to find the number of times a specific element occursin a list. It is very useful in scenarios where
we need to perform frequency analysis on the data.

Syntax of count() method :
list_name.count(value)
Parameter :

list_name: The list object where we want to count an element.
value: The element whose occurrences need to be counted.

Return Type :

The count() method returns an integer value, which represents the number of times the specified element appears in the list.

www.iitkirba.xyz

INDEX()

List index() method searches for a given element from the start of the list and returns the
position of the first occurrence.

Syntax of count() method :

list_name.index(element, start, end)

Parameter :

element —The element whose lowest index will be returned.
start (Optional) —The position from where the search begins.

end (Optional) — The position from where the search ends.

Return Type :

Returns the lowest index where the element appears.

www.iitkirba.xyz

INSERT/()

Python List insert() method inserts an item at a specific index in a list.

Syntax of insert() method :
list_name.insert(index, element)

Parameter :

index: the index at which the element has to be inserted.

element: the element to be inserted in the list.

Return Type :

The insert() method returns None. It only updates the current list.

www.iitkirba.xyz

SORT()

The sort() method in Python is a built-in function that allows us to sort the elements of a list in ascending or
descending order and it modifies the list in place which means there is no new list created.

Syntax of insert() method :
list_name.sort(key=None, reverse=False)
Parameter :

Key (Optional): This is an optional parameter that allows we to specify a function to be used for sorting. For
example, we can use the len() function to sort a list of strings based on their length.

Reverse (Optional): This is an optional Boolean parameter. By default, it is set to False to sort in ascending
order. If we set reverse=True, the list will be sorted in descending order.

www.iitkirba.xyz

REVERSE()

The reverse() method is an inbuilt method in Python that reverses the order of elements in a list.

Syntax of reverse() method :

list_name.reverse()

Parameter :

It doesn’t take any parameters.

Return Type :

It doesn‘t return any value.

www.iitkirba.xyz

REMOVE()

Python list remove() function removes the first occurrence of a given item from list.

Syntax of reverse() method :

list_name.remove(obj)

Parameter:

obj: object to be removed from the list.

Return Type :

The method does not return any value but removes the given object from the list.

www.iitkirba.xyz

CLEAR()

This method modifies the list in place and removes all its elements

Syntax of reverse() method :

list_name.clear()

Parameter :

The clear() method doesn't take any parameters.

Return Type :

The clear() method only empties the given list. It doesn't return any value.

www.iitkirba.xyz

POP()

The list pop() method removes the item at the specified index. The method also returns the removed item.

Syntax of reverse() method :
list_name.pop(index)

Parameter :

The pop() method takes a single argument (index).

The argument passed to the method is optional. If not passed, the default index -1 is passed as an argument (index of the last item).

If the index passed to the method is not in range, it throws IndexError: pop index out of range exception.
Return Type :

The pop() method returns the item present at the given index. This item is also removed from the list.

www.iitkirba.xyz

