VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Even Mid Semester Examination for Academic Session 2024-25

COURSE NAME: BTech

SEMESTER:4th

BRANCH NAME: ELECTRICAL (4th Sec A & B) SUBJECT NAME:**POWER ELECTRONICS**

FULL MARKS: 30

TIME: 90 Minutes

Answer All Questions.

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

Q1. Answer all Questions.

 $[2 \times 3]$

- a) Which of the power electronics devices is a *majority carrier* device. Show its circuit CO1 symbol and static I-V characteristics.
- b) Which of the *forced* commutation circuits is also known as Voltage Commutation CO2 circuit and Why?
- c) In single phase half wave-controlled rectifier, delivering R-L load, if triggering angle CO3 is 30° and extinction angle is 210°, then find theangle duration (in degree) for which power drawn by load from source is positive and duration for which it is negative.

Q2.

[3+5]

- Explain the dynamic characteristics of SCR showing different intervals of time CO1 during Switch ON and Switch OFF operation of the device.
- b. A string of SCR connected in series to withstand a dc voltage of $V_s=10 \text{KV}$, the maximum leakage current and recovery charge differences of the thyristors are 10 mA and $100 \,\mu$ C respectively. A derating factor of 20% is applied for steady state and transient voltage sharing of thyristors. If the maximum voltage sharing is 1000 V. Determine(i)R $_s$, (ii)C $_s$

OR

[4+4]

- a. Explain the principle of operation of RC Triggering circuit with clear circuit diagram CO1
 and waveforms. Discuss its limitations.
- b. One SCR has a gate cathode Vg-Ig characteristics of Vg = 1+10 Ig. The gate source voltage is rectangular pulse of 15 V with 20μS duration. If average and maximum gate power Pg_{avg} and Pg_{max} are 0.3 W and 5 W respectively, then determine the *i*) source resistance (Rs) to be connected in series in gate circuit and *ii*) Triggering frequency.

a. With clear circuit diagram and waveforms explain the operation of Single Phasehalf wave controlled rectifier supplying R-L Load, when the load current is discontinuous. Derive the expression of form factor of output voltage (Vo) for the
 b. same.

- CO2

A thyristor used for single phase half sine wave application, has RMS On state current rating $I_{Trms} = 25$ Amp. What will be I_{TAvg} rating of the devicewith 180° conduction angle? If the average power dissipation P_{avg} is 8 times I_{TAvg} , then determine the casing temperature θc , if the junction temperature $\theta jis 125^{\circ} C$. Use $\theta_{jc} = 0.15^{\circ} C/W$.

OR

a. With clear circuit diagram and waveforms explain the operation of Single-Phasehalf - CO2 controlled rectifier delivering R-Load. Determine theaverage and rms value?

b. In Series connected SCRs, discuss the need of static equalization circuit that is necessary and thus derive the expression of resistance R needed for the same.

[4+4]

- CO3

Q4.

- a. With clear circuit diagram and waveforms explain the operating of Single-PhaseFull wave controlled rectifier delivering continuous ripple free current to R-L load. Also determine the RMS and average output voltage (Vo) considering triggering angle α .
 - Also e α.
- b. Design snubber circuit parameters for a thyristor considering supply voltage Vs =440 V, repetitive peak current Ip = 200 A. $(di/dt)_{max}$ = 40 A/ μ S $(dv/dt)_{max}$ = 220 V/ μ S with minimum load resistance of 10 Ω . Take factor of safety of 2.

OR

a. A single phasefull wave controlled bridge rectifier is delivering from 230 V(rms) - one source is supplying a constant continuous load (R-L Type) current and gives a rippled DC output voltage of ripple factor 0.75. Find out the firing angle of

b. operation.

With clear circuits and necessary derivations, explain the two-transistor analogy of a thyristor and show how a gate currenthelps in building the regenerative process to make it ON.