


The striking features of OOP include the following:

« The programs are data-centred.

» Programs are divided in terms of objects and not procedures.

« Functions that operate on data arc tied together with the data.

« Data is hidden and not accessible by exteral functions.

« New data and functions can be easily added as and when required.

» Follows a bottom-up approach (discussed in Section 1.16.1) for problem solving.

Figure 2.6 Object

www.iitkirba.xyz



A class is used to describe something in the
world, Such as Océut'retiees, things, external
orablueprmthatdescn'besﬂwstrucnneand
behaviour of a set of similar objects. Once we
have the definition for a class, a specific instance
of the class can be easily created. For example,
consider a class student. A student has attributes
such as roll number, name, course, and aggregate.
The operations that can be performed on its data
may include ‘getdata’, ‘setdata’, ‘editdata’, and
so on. Figure 2.7 shows the class Student with

Figure 2.7 A sample student class

a function showData() and attributes namely, roll_no, name, and course. Therefore, we can say that a class

describes one or more similar objects.

tmustbenotedthatﬂnsdataandthcsetofoperabonsthatwchavegwenhaecanbeapphedwallsmdents
in the class. When we create an instance of a student, we are actually creating an object of class student.
Therefore, once a class is declared, a programmer can create any number of objects of that class.

Therefore, a class is a collection of objects. It is a user-defined data type that behaves same as the built-in
data types. This can be realized by ensuring that the syntax of creating an object is same as that of creating
an int variable. For example, to create an object (stud) of class student, we write

www.iitkirba.xyz



9.2 CLASSES AND OBJECTS

Classes and objects are the two main aspects of object oriented programming. In fact, a class is the basic
building block in Python. A class creates a new type and object is an instance (or variable) of the class.
Classes provides a blueprint or a template using which objects are created. In fact, in Python, everything is
an object or an instance of some class. For example, all integer variables that we define in our program are
actually instances of class int. Similarly, all string variables are objects of class string. Recall that we had used
string methods using the variable name followed by the dot operator and the method name. We have already
studied that we can find out the type of any object using the type() function.

The Python Standard Library is based on the concept of classes and objects. I

9.2.1 Defining Classes

Python has a very simple syntax of defining a class. This syntax can be given as,

class class_name:
<statement-1>
<statement-2>

Programming Tip: A
class can be defined in a
function or with an if
statement.

<statement-N>

From the syntax, we sce that class definition is quite similar to function definition. It starts with a keyword class
followe'd by the class_name and a colon (:). The statement in the definition can be any of these—sequential
instmcttgns, decision control statements, loop statements, and can even include function definitions. Variables
deﬁned in a class are called class variables and functions defined inside a class are called class methods C]ai‘;
variables and class methods are together known as class menibers. The class members can be accessed lﬁrouéh
class objects. Class methods have access to all the data contained in the instance of the object.

Class definitions can appear anywhere in a program, but they are usually written near the beginning of
the program, after the import statements. Note that when a class definition is entered, a new namespace is
created, and used as the local scope. Therefore, all assignments to local variables go into this new namespace.

- A class creates a new local namespace where all its attributes (data and functions) are defined,

www.iitkirba.xyz



24.2 Objects

In the previous section, we have taken an example of student class and
have mentioned that a class is used to create instances, known as objects.
Therefore, if student is a class, then all the 60 students in a course (assuming
there are maximum 60 students in a particular course) are the objects of the
student class. Therefore, all students such as Aditya, Chaitanya, Deepti, and
Esha are objects of the class.

Hence, a class can have multiple instances.

Every object contains some data and functions (also called methods) as shown
in Figure 2.8. These methods store data in variables and respond to the messages
that they receive from other objects by executing their methods (procedures).

=T

i }r ) _. i =
- é 7 assils a logical structure,an object is a physical acmaltty

,'_——‘ .h-

Attrgibute 1
Attribute 2

X ‘L_luﬁnton i-‘d”;, '

Attribute N y

nBt’étf n 1
ﬁﬁﬂ*z

)phﬁni(lbk 1 J
Functiqn

p _)“ il

Figure 2.8 Representation
of an object

www.iitkirba.xyz



9.2.2 Creating Objects

Once a class is defined, the next job is to create an object (or instance) of that class. The object can then access
class variables and class methods using the dot operator (. ). The syntax to create an object is given as,

object_name = class_name()

~ Creating an object or instance of a class is known as class instantiation,

From the syntax, we can see that class instantiation uses function notation.
Using the syntax, an empty object of a class is created. Thus, we see that
in Python, to create a new object, call a class as if it were a function. The
syntax for accessing a class member through the class object is

object _name.class_member_name

[li\:smplv 9.1
R —

" Program to access class variable using class object

Programming Tip: selfin
Python works in the same way as
the "this" pointer in C++.

- Tn the above program, we have defined a class ABC which has a variable var having a value of 10, The
1 il?ject of the class is created and used to access the class variable using the dot operator. Thus, we can think
ofa class as a factory for making objects.

www.iitkirba.xyz



24.3 Method and Message Passing
A method is a function associated with a class. It defines the operations that the object can execute when
it receives a message. In object oriented language, only methods of the class can access and manipulate

the data stored in an instance of the class (or object). Figure
2.9 shows how a class is declared using its data members and
member functions.

Every object of the class has its own set of values. Therefore,
two distinguishable objects can have the same set of values.
Generally, the set of values that the object takes at a particular
time is known as the state of the object. The state of the
object can be changed by applying a particular method. Table
2.4 shows some real world objects along with their data and
operations.

Table 2.4 Objects with data and functions

www.iitkirba.xyz



Data encapsulation, also called data hiding, organizes the data and methods into a structure that prevents
data access by any function (or method) that is not specified in the class. This ensures the integrity of the data

contained in the object.
Encapsulation defines different access levels for data variables and member functions of the class. These

access levels specifies the access rights, for example,

* Any data or function with access level public can be accessed by any function belonging to any class. This is

the lowest level of data protection.
» Any data or function with access level private can be accessed only by the class in which it is declared. This

is the highest level of data protection. In Python, private variables are prefixed with a double underscore
(_). For example, __var is a private variable of the class.

9.3 CLASS METHOD AND SELF ARGUMENT

Class methods (or functions defined in the class) are exactly same as ordinary functions that we have been
defining so far with just one small difference. Class methods must have the first argument named as self. This
is the first argument that is added to the beginning of the parameter list. Moreover, you do not pass a value for
this parameter when you call the method. Python provides its value automatically. The self argument refers
to the object itself. That is, the object that has called the method. This means that even if a method that takes
no arguments, it should be defined to accept the self. Similarly, a function defined to accept one parameter
will actually take two —self and the parameter, so on and so forth.

Since, the class methods uses self, they require an object or instance of the class to be used. For this
reason, they are often referred to as instance methods.

www.iitkirba.xyz



Consider the program given below which has one class variable and one class method. Observe that
the class method accepts no values but still has self as an argument. Both the class members are accessed
through the object of the class. y

BTN RN Program to access class members using the class object

Programming Tip: You can give
any name for the sl parameter,
but you should not do so.

Key pointé to remember

» The statements inside the class definition must be properly indented,
. élehss that has no other smt;e;nems should have a pass statement at least.
- 0 ass : % or 48 A & :- ‘- - - . . .
e mdsspegiaj g | .ftmctm‘ ) ns that begins with double underscore (__) are special functions with a predefined

www.iitkirba.xyz



94 THE __init__ () METHOD (THE CLASS CONSTRUCTOR)

The __init_ () method has a special significance in Python classes. The _init__() method is
automatically executed when an object of a class is created. The method is useful to initialize the variables of
the class object. Note the __init () is prefixed as well as suffixed by double underscores. The Esinit ()
method can be declared as, def __init_ (self, [args...]). Look at the program given below that uses
ihé__,i’ﬁjii:_,.___._()f method.

[Example 9.3 | Pi;og‘r‘am i‘llustrating the use of __init_ () method

www.iitkirba.xyz



M SLASS VARIADBLES AND OBJECT VARIABLES

We have seen that a class can have variables defined in it Basi i types—c

We hay ! a . Basically, these variables are of two lass
Variables and object vgnables. As tlfe name suggests, class variables are owned by the class and object variables
are owned by each object. What this specifically means can be understood by using the following points.

L, Ifaclasshas n objects, then there will be n separate copies of the object variable as each object will have its own
Object variable. -

* The object variable is not shared between objects. o

* A change made to the object variable by one object will not be reflected in other objects.

= If a class has one class variable, then there will be one copy only for that variable. All the objects of that

class will share the class variable.
= Since there exists a single copy of the class variable, any change made to the class variable by an object

will be reflected in all other objects.

Programming Tip: Class
variable must be prefixed by the
class name and dot operator.

| www.iitkirba.xyz



We have already seen that one use of class variables or class attributes is to f&“omlt ﬂ'le numb_e.r ot; obg:
created. Another important use of such variables is to deﬁnq constants assocu}ted wl.th alpgttlguthar e
or provide default attribute values. For example, the code given in t?le_. foll'ow.,\nng example usc.;: the 9
variable to specify a default value for the objects. Now, each individual object may either change g

retain the default value. ,

Example 9.5 Progmm illustratiug the modification of an instance variable

Programming Tip: Class
attributes are defined at the
same indentation level as that of
class methods,

Name Clashes: Note that in the above program, we had a class variable even with value 0. We had set an
attribute of the object which has the same name as the class attribute. So here, we are actually overriding the
class attribute with an instance attribute. The instance (or the object) attribute will take precedence over the
class attribute. If we create two objects of Number, then both the objects will have their own copy of even.
Changes made in one object will not be reflected in the other. But this is not true for a mutable type attribute.
Remember that, if you modify a mutable object in one place, the change will be reflected in all other places
‘as well. This difference is reflected in the program given below.

S not available an ymore.

www.iitkirba.xyz



9.6 THE _ _del_ () METHOD

In the previous section, we saw the __init__ () method which
initializes an object when it is created. Similar to the _init_ ()
method, we have the __del_ () method which does just the
opposite work. The __del__ () method is automatically called
when an object is going out of scope. This is the time when an object will no longer be used and its occupied
resources are rceturned back to the system so that they can be reused as and when required. You can also
explicitly do the same using the del keyword. .

| Example 9.7

Thus, we sce that the __del ) is invoked wh j i . - » litki
be used to clean up any resources used by it.e WHESe ghicctis about o be destroyed: This methadmight WWW.1 Itkl rba.xyz



9.10 CALLING A CLASS METHOD FROM ANOTHER CLASS METHOD
You can call a class method from another class method by using the self. This is shown in the program given
below.

Program to call a class method from another method of the same class

Key points to remember ,
« Like functions and modules, class also has a documentatlon string, whlch can be accessed using

className. doc . The lines of code given below'specifies the docstring.

» Class methods can reference global names in the same way as ordinary functions, gy
www.iitkirba.xyz



24.9 Data Abstraction and Encapsulation

Data abstraction refers to the process by which data and functions are defined in such a way that only
essential details are revealed and the implementation details are hidden. The main focus of data abstraction
is to separate the interface and the implementation of a program. For example, as users of television sets, we
can switch it on or off, change the channel, set the volume, and add external devices such as speakers and CD
or DVD players without knowing the details about how its functionality has been implemented. Therefore,
the internal implementation is completely hidden from the external world.

Similarly, in OOP languages, classes provide public methods to the outside world to provide the
functionality of the object or to manipulate the object’s data. Any entity outside the world does not know
about the implementation details of the class or that method.

Data encapsulation, also called data hiding, is the technique of packing data and functions into a single
component (class) to hide implementation details of a class from the users. Users are allowed to exccute
only a restricted set of operations (class methods) on the data members of the class. Therefore, encapsulation
organizes the data and methods into a structure that prevents data access by any function (or method) that is
not specified in the class. This ensures the integrity of the data contained in the object.

Encapsulation defines three access levels for data variables and member functions of the class. These
access levels specify the access rights, explained as follows.

* Any data or function with access level as public can be accessed by any function belonging to any class.
This is the lowest level of data protection.

* Any data or function with access level protected can be accessed only by that class or by any class that is
inherited from it.

* Any data or function with access level private can be accessed only by the class in which it is declared.
This is the highest level of data protection.

.
1

'ém"‘"'(wga"'m‘ | ftems that is well suited for an ajlaplfado, n is

A+

.

www.iitkirba.xyz



12.1.3 Exceptions

Even if a statement is syntactically correct, it may still cause an error when executed. Such errors that occur
at run-time (or during execution) are known as exceptions. An exception is an event, which occurs during
the execution of a program and disrupts the normal flow of the program's instructions. When a program
encounters a situation which it cannot deal with, it raises an exception. Therefore, we can say that an exception
is a Python object that represents an error.

When a program raises an exception, it must handle the exception or the program will be immediately
terminated. You can handle exceptions in your programs to end it gracefully, otherwise, if exceptions are not
handled by programs, then error messages are generated. Let us see some examples in which exceptions occurs.

Programming Tip:
Standard exception names
are built-in identifiers and
not reserved keywords.

In all the three cases discussed above, we have seen three types of exceptions had occurred. Since they were
not handled in the code, an appropriate error message was displayed to indicate what had happened.

The string printed as the exception type (like TypeError) is the name of the built-in exception that
occurred. However, this is not true for user-defined exceptions.

www.iitkirba.xyz



122 HANDLING EXCEPTIONS

We can handle exceptions in our program by using try block and except block. A critical operation which
can raise exception is placed inside the try block and the code that handles exception is written in except
block. The syntax for try-except block can be given as,

2

- RS Ko Ss

The try statement works as follows.

Step 1: First, the #ry block (statement(s) between
the try and except keywords) is executed.

Step 2a: If no exception occurs, the except block is
skipped.

Step 2b: If an exception occurs, during execution of
any statement in the try block, then,

i. Restof the statements in the try block are skipped.

ii. If the exception type matches the exeeption named
after the except keyword, the except block is
executed and then execution continues afier
the try statement.

= Soses £4

iii. I an exception occurs which does not match the = '
exception named in the except block, then it is Figure 12.2 Flowchart for Case iii under
passed on to outer try block (in case of nested try Step 2b for try statements
blocks). If no exception handler is found in the program, then it is an unhandled exception and the program is
terminated with an error message (Refer Figure 12.2).
In the aforementioned program, note that a number was divided by zero, an exception occurred so the control
passed to the except block.

www.iitkirba.xyz



www.iitkirba.xyz



12.3 MULTIPLE EXCEPT BLOCKS

try-except block is
same as try-catch block.
Exceptions are generated
using raise keyword
rather than throw.

We will read about the else block which is optional a little later. But for now, we have scen that a single try
statement can have multiple except statements to catch different types of exceptions. For example, look at the
code given below. The program prompts user to enter a number. It then squares the number and prints its result.
However, if we do not specify any number or enter a non-number, then an exception will be generated. We have
two except blocks. The one matching the case will finally execute. This is very much evident from the output.

Program with multiple except blocks

B N e Wl e 2N R e e

www.iitkirba.xyz



12.4 MULTIPLE EXCEPTIONS IN A SINGLE BLOCK

An except clause may name multiple exceptions as a parenthesized tuple, as shown in the program given below.
So whatever exception is raised, out of the three exceptions specified, the same except block will be executed.

RENTUIEPARY Program having an except clause handling multiple exceptions simultaneously

Programming Tip: No code
should be present between a
list of except blocks.

Thus, we see that if we want to give a specific excephon handler for any exception raised, we can better
have multiple except blocks. Otherwise, if we want the same code to be executed for all three exceptions
then we can use the except(list_of_exceptions) format.

www.iitkirba.xyz



12.5 EXCEPT BLOCKWITHOUT EXCEPTION

You can even specify anexceptblock without mentlomng any exception (i.e., except:). This type of except
block if present should be the last one that can serve as a wildcard (when muluple except blocks are present).
But use it with extreme caution, since it may mask a real programming error.

In large software programs, may a times, it is difficult to anticipate all types of possible exceptional
conditions. Therefore, the programmer may not be able to write a different handler (except block) for every
individual type of exception. In such situations, a better idea is to write a handler that would catch all types of
exceptions. The syntax to define a handler that would catch every possible exception from the try block is,

The except block can be used along with other exception handlers which handle some specific types of
exceptions but those exceptions that are not handled by these specific handlers can be handled by the except:

block. However, the default handler must be placed afier all other except blocks because otherwise it would
prevent any specific handler to be executed.

Program to demonstrate the use of except: block
Programming Tip: When an
exception occurs, it may have an

associated value, also known as
the exception's argument.

www.iitkirba.xyz




12.11 THE finally BLOCK

The try block has anoﬂzeropﬁorlalblockcauedﬁnauywhichisusedmdeﬁneclmup actions that must be
executed under all circumstances. The finally block is always executed before leaving the try block. This means
that the statements written in finally block are executed irrespective of whether an exception has occurred or not.
The syntax of finally block can be given as,

Let us see with the help of a program how finally block will behave when an exception is raised in the try
block and is not handled by except block.

Program with finally block that leaves the exception unhandled

Example 12.14

From the above code, we can conclude that when an exception occurs in the try block and is not handled by

an except block or if the exception occurs in the except or else block, then it is re-raised after executing WWW.i itkirba_xyz
the finally block. The finally block is also executed when any block of the try block is exited via a break,

continue or return statement. -



RO UCRPREY Program to illustrate the use of try, except and finally block all together

From the output, you can see that the finally block is executed when exception occursandralso when an
exception does not occur,

In real world applications, the finally clause is useful forreleasmg external resources like file handles,
network connections, memory resources, etc. regardless of whether the use of the resource was successful.

www.iitkirba.xyz



B

If you place the finally block immediately after the try block and followed by the exef:ute. block (maya'
be in case of a nested try block), then if an exception is raised in the try block, the code in finally will be

executed first. The finally block will perform the operations written in it and then re-
exception will be handled by the except block if
This is shown in the program given below,

raise the exception. This
present in the next higher layer of the try-except block.

Example 12.16 Pifglgrmn.having finally block to re-raise the exc

eption that will be handled by an
outer try-except block

Programming Tip:
finally block can never
be followed by an except
block.

www.iitkirba.xyz



	Slide 1: Module-IV
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

