Total Pages-6

02/05/25

B. Tech-4th (EE) Electrical Machines-II

Full Marks: 50

Time: $2\frac{1}{2}$ hours

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

1. Answer all questions:

 2×5

- (a) What type of rotor is adopted for high speed alternators? What will be the number of poles of a 50 Hz alternator if it runs at its greatest speed?
- (b) What is meant by hunting of synchronous motor? How will you minimize it?
- (c) State the conditions necessary for paralleling alternators?

(Turn Over)

- (d) What does crawling of induction motor mean?
- (e) What is universal motor? Why is it so called?
- 2. (a) Derive the equation of induced EMF for an alternator.
 - of a star connected three phase, 6-pole alternator which runs at 1200 rpm, having flux per pole of 0.1 Wb sinusoidally distributed. Its stator has 54 slots having double layer winding. Each coil has 8 turns and the coil is short by one slot.

0r

What is meant by "armature reaction" of a synchronous machine? What are the relations of armature reaction and power factor of a synchronous machine? Explain with relevant diagram considering different cases.

(Continued)

3.	(a)	Derive an expression for power developed		
		in a non salient pole alternator.	4	

(b) A non-salient pole synchronous generator having synchronous reactance of 0.8 p.u. is supplying 1 p.u. power to a unity power factor load at a terminal voltage of 1.1 p.u. Determine the power angle. Neglect armature resistance.

Or

- (a) Explain the two reaction theory of salient pole alternator and draw its phasor diagram for lagging power factor load.
- (b) Describe the slip test method-for the measurement of X_d and X_q of synchronous machines.
- Explain the effects of varying excitation on armature current and power factor in a synchronous motor. Draw V and Λ curves.

B. Tech-4th (EE)/Electrical Machines-II

(Turn Over)

Or

- (a) With neat diagram explain the operation of synchronous motor and justify statement
- 'synchronous motor is not self-starting'. 4
- (b) A three phase 150kW, 2300V, 50Hz, 1000-rpm salient pole synchronous $X_d = 32\Omega/\text{phase}$ and motor has $X_q = 20\Omega/\text{Phase.}$ Neglecting losses, calculate the torque developed by the motor if field excitation is so adjusted as to make the back EMF twice the applied voltage and $\alpha = 16^{\circ}$.
- 5. (a) Describe with a neat diagram, the principle of operation of induction 4 generator.
 - (b) Develop the equivalent circuit of a poly phase induction motor. Explain how this equivalent circuit is similar to the transformer equivalent circuit?

(Continued)

4

Or
(a) Explain how a rotating magnetic field is/ produced in a three-phase induction motor.
(b) A three phase induction motor run at a speed of 950 rpm at full load when supplied with power from a 50Hz three phase line. The synchronous speed is 1000 rpm. Determine,
(i) The number of poles of the motor.(ii) What is the percentage slip at full load?
(iii) What is the corresponding frequency of rotor voltages?
(iv) What is the rotor frequency at the slip of 10 percent?
Explain two field revolving theory for single phase induction motor and give its Torque-Slip characteristics.

B. Tech-4th (EE)/Electrical Machines-II

(Turn Over)

Or

` '	Explain	shaded	pole	motor	working	
	principle with neat circuit diagram.					

(b) What is a repulsion motor? Explain with suitable diagram.