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In the world, 1.2 billion children suffer from child poverty (1). Child poverty, defined as the
lack of realization of rights constitutive of poverty, has negative long-lasting effects on children.
The dimensions included in the internationally comparable multidimensional index analyzed in
this work are sanitation, water, housing, health, nutrition, and education. All dimensions are
equally weighted since all rights are equally important (2; 3).

National statistics summarize important information but they cannot capture the intricate
distribution of where poor children are located. In this study, we aim to provide finely-grained
maps of prevalence, depth, and the other deprivations. We build our predictions on a hexagonal
grid, developed by Uber (4), where each hexagon has an average area of 5.16 km2. The hexagonal
shape is chosen due to the uniformity of neighbors and to reduce sampling bias from edge effects,
which is attributed to a high perimeter-area ratio. From DHS surveys, we derive the ground truth

Data Source

Conflict Zones Uppsala Conflict
Road Density Open Street Map
Critical Infractures Open Street Map
Connectivity Speed Ookla
Cell towers OpenCellID
GDP Aalto University
Wealth Meta for Good
Commuting Zones Meta for Good
Elevation Google Earth Engine
Vegetation, Water Google Earth Engine
Precipitation Google Earth Engine
Human Settlement Google Earth Engine
Travel time to hospital Google Earth Engine
Night light intensity Google Earth Engine
Pollution Google Earth Engine
Population World Pop

Table 1: Input Data and respective source

data, mapping each child to a hexagon
and taking the average of children in the
same hexagon. We select a threshold of
at least 30 children per hexagon. Of
the 48 countries in sub-Saharan Africa, 25
have recent DHS surveys. To train the
model, we consider alternative georeferenced
data sources: Google Earth Engine, Upp-
sala Conflict Data Program, Open Street
Map, Ookla Open Data, OpenCellID, Meta’s
Data for Good repository, WorldPop. The
variables extracted from these sources have
been aggregated at the hexagonal level, and
can be observed in Table 1. To deal
with the dislocation of GPS coordinates of
DHS surveys, we copy the output to 1-
ring neighboring cells in urban areas and
2-ring in rural areas. This “neighboring”
approach has been implemented as a way
to introduce smoothness, augment the data
and account for DHS location displacement
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(5).

The model used is XGBoost, a gradient boosting decision tree method. The metrics considered
are mean square error during training and R2 to evaluate. Moreover, since we are dealing with
geographical data, to have a more generalizable model and avoid overfitting, we employ spatial
cross validation.

Hence, two experiments have been conducted.

1. In the first, we predict multidimensionally child poverty only in the 25 countries that have
a recent DHS survey. The data have been processed with robust scaling and KNN imputer.

2. In the second, we build a model to be able to generalize on the countries that do not have
DHS information. We randomly split the countries for which we have ground truth data in
training and test, and we start modeling using XGBoost. Here we do not use the neighboring
approach to have a more generalizable model, and we process the data with robust scaling
and median imputer.

Figure 1: Difference between predicted val-
ues (weighted on child population) and
weighted DHS / MICS measurements.

The performance in the first experiment is
higher than the second one, but models spe-
cific to one country cannot generalize well,
while the models of the second experiment
can generalize even on countries without DHS
data.

To facilitate responsible downstream use of the
predictions, we include prediction intervals to as-
sess uncertainty. A prediction interval is an es-
timate of an interval in which a future observa-
tion will fall, with a certain probability, given
what has already been observed. Prediction in-
tervals are not the same as confidence intervals,
and they are wider. In this work, we con-
sider the 95% prediction intervals for each data
point. We use a Model Agnostic Prediction
Interval Estimator (MAPIE) to compute them
(6).

To have a more transparent model, we interpret the results in terms of overall importance of
each feature through SHAP (SHaply Additive exPlanations) values (7), the feature importance
is measured averaging the marginal contributions of the predictions across all permutations. The
most predictive feature for prevalence has been found to be nighttime light intensity, that is in
concordance with other results found in literature (8).

Lastly, we compare the aggregated predictions aggregated with the DHS and MICS subna-
tional and national values, and their difference can be observed in Figure 1. In conclusion, this
methodology can provide finely grained prediction of multidimensional child poverty at a 5.16 km2

resolution, estimating prevalence, depth and other dimensions.
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Figure 2: Distribution of prevalence in sub-Saharan Africa.

References

[1] UNICEF and Save the Children, “Impact of covid-19 on children living in poverty: A technical
note,” tech. rep., 2020.

[2] UN Committee on the Rights of the Child, “General guidelines regarding the form and content
of periodic reports to be submitted by states parties under article 44, paragraph 1 (b), of the
convention,” UN Doc. CRC/C/58/Rev.1, 2005.

[3] M. R. Hagerty and K. C. Land, “Constructing summary indices of quality of life: A model
for the effect of heterogeneous importance weights,” Sociological Methods & Research, vol. 35,
no. 4, pp. 455–496, 2007.

[4] Uber Technologies Inc., “H3: Uber’s hexagonal hierarchical spatial index.”

3



[5] G. Chi, H. Fang, S. Chatterjee, and J. E. Blumenstock, “Microestimates of wealth for all
low- and middle-income countries,” Proceedings of the National Academy of Sciences, vol. 119,
no. 3, p. e2113658119, 2022.

[6] V. Taquet, V. Blot, T. Morzadec, L. Lacombe, and N. Brunel, “MAPIE: an open-source library
for distribution-free uncertainty quantification,” CoRR, vol. abs/2207.12274, 2022.

[7] S. M. Lundberg and S. Lee, “A unified approach to interpreting model predictions,” pp. 4765–
4774, 2017.

[8] N. Jean, M. Burke, M. Xie, W. M. Davis, D. B. Lobell, and S. Ermon, “Combining satellite
imagery and machine learning to predict poverty,” Science, vol. 353, no. 6301, pp. 790–794,
2016.

4


