
Robbing the Bank with a Model Checker

David Basin
ETH Zurich

Nordic Fintech Week

Sept 2024

Tamarin Team 
 

EMV

9

Simon Meier Benedikt Schmidt Cas Cremers David Basin

Robert Kunneman Steve Kremer Ralf Sasse Jannik Dreier Cedric Staub

Sasa Radomirovic Lara Schmid Charles Dumenil Kevin Milner

and more soon!

9

Simon Meier Benedikt Schmidt Cas Cremers David Basin

Robert Kunneman Steve Kremer Ralf Sasse Jannik Dreier Cedric Staub

Sasa Radomirovic Lara Schmid Charles Dumenil Kevin Milner

and more soon!

Research on Tamarin & EMV — Collaborators

2

. . .

9

Simon Meier Benedikt Schmidt Cas Cremers David Basin

Robert Kunneman Steve Kremer Ralf Sasse Jannik Dreier Cedric Staub

Sasa Radomirovic Lara Schmid Charles Dumenil Kevin Milner

and more soon!

Jorge Toro Pozo Xenia Hofmeier

What is a Model Checker (Tamarin)?

3

Tamarin prover

Dedicated
constraint

solver
System S constraints

from S

Property P constraint
from (not P)

Run out of
time or
memoryProvide hints for

the prover
(e.g. invariants)

Interactive mode
Inspect partial proof

Solution exists:
ATTACK

No solution
exists: PROOF

Does Protocol Satisfy Property?
Or can the adversary attack it?

Prover combines backward search and constraint solving  
with user interaction, tactics, and lemmas

Real world Applications

5

A Formal Analysis of Apple’s iMessage PQ3 Protocol

Felix Linker
Department of Computer Science, ETH Zurich

Ralf Sasse
Department of Computer Science, ETH Zurich

David Basin
Department of Computer Science, ETH Zurich

Abstract
We present the formal verification of Apple’s iMessage PQ3,
a highly performant, device-to-device messaging protocol
offering strong security guarantees even against an adversary
with quantum computing capabilities. PQ3 leverages Apple’s
identity services together with a custom, post-quantum secure
initialization phase and afterwards it employs a double ratchet
construction in the style of Signal, extended to provide post-
quantum, post-compromise security.

We present a detailed formal model of PQ3, a precise spec-
ification of its fine-grained security properties, and machine-
checked security proofs using the TAMARIN prover. Particu-
larly novel is the integration of post-quantum secure key en-
capsulation into the relevant protocol phases and the detailed
security claims along with their complete formal analysis. Our
analysis covers both key ratchets, including unbounded loops,
which was believed by some to be out of scope of symbolic
provers like TAMARIN (it is not!).

1 Introduction

Research on secure instant messaging goes back over two
decades, with early proposals including Off-the-Record Mes-
saging [1], the Silent Circle Instant Messaging Protocol [2],
iMessage, and Signal [3, 4, 5]. Over time, the security commu-
nity’s understanding of the threat models and security claims
for secure messaging evolved. Modern messaging protocols
now offer strong guarantees and can communicate messages
secretly even in the presence of adversaries who corrupt differ-
ent parties in different ways during the protocol’s execution.
This is befitting given that strong adversaries, like nation
states, are capable of compromising both messaging servers
and the end points sending and receiving messages. More
recently, security against adversaries with quantum comput-
ing capabilities has also become an important concern. This
requires protection against adversaries who can “harvest now
and decrypt later,” namely adversaries who leverage the de-
creasing cost of mass storage to store the encrypted data they

intercept and to decrypt it in the future when quantum com-
puters become sufficiently powerful [6].

In this paper, we present our formal analysis of Apple’s ad-
vanced, widely deployed iMessage PQ3 Messaging Protocol,
or PQ3 for short. PQ3 is used across all of Apple’s devices for
device-to-device messaging and underlies many other Apple
services, e.g., iMessage, FaceTime, HomeKit, and HomePod
hand-off. PQ3 is designed to be performant and to offer strong
guarantees against powerful adversaries, including those who
later possess quantum computers.

PQ3 employs a double-ratchet construction similar to Sig-
nal [3]. The protocol takes a hybrid approach to security
and combines classical cryptographic primitives, like elliptic
curve Diffie-Hellman, and post-quantum primitives, namely
ML-KEM [7], a module-lattice-based key-encapsulation
mechanism. The hybrid construction means that PQ3’s secu-
rity does not solely depend on the security of post-quantum
primitives, which are less well understood than their classic
counterparts. Moreover, PQ3’s integration of hybrid cryptog-
raphy into the double ratchet provides stronger guarantees
than Signal, where a post-quantum Key Encapsulation Mecha-
nism (KEM) is just integrated into the protocol’s setup phase,
but not into its ratcheting (see Section 2).

We analyzed PQ3’s security in detail using the TAMARIN
prover [8, 9], a state-of-the-art security protocol model
checker. Our formal models and proofs are accessible on
GitHub [10]. We report on our model of PQ3, the adversary
assumptions, and the protocol’s desired properties. We use
TAMARIN’s specification language to specify the messaging
protocol and its use of classical and post-quantum cryptog-
raphy. We also specify all forms of adversary compromise,
including the event in which the attacker obtains a sufficiently
powerful quantum computer, allowing them to break all non-
post-quantum-secure cryptographic primitives. Essentially,
the adversary can compromise any key at any time, either
through dedicated key-reveal rules or because they obtained a
quantum computer. Using TAMARIN’s property language, we
formalize and prove both secrecy and authenticity theorems.
These theorems precisely express the protocol’s security guar-

A Comprehensive Symbolic Analysis of TLS 1.3
Cas Cremers

University of Oxford, UK
Marko Horvat

MPI-SWS, Germany
Jonathan Hoyland

Royal Holloway, University of
London, UK

Sam Scott
Royal Holloway, University of

London, UK

Thyla van der Merwe
Royal Holloway, University of

London, UK

ABSTRACT
The TLS protocol is intended to enable secure end-to-end commu-
nication over insecure networks, including the Internet. Unfortu-
nately, this goal has been thwarted a number of times throughout
the protocol’s tumultuous lifetime, resulting in the need for a new
version of the protocol, namely TLS 1.3. Over the past three years, in
an unprecedented joint design e�ort with the academic community,
the TLS Working Group has been working tirelessly to enhance
the security of TLS.

We further this e�ort by constructing the most comprehensive,
faithful, and modular symbolic model of the TLS 1.3 draft 21 release
candidate, and use the T������ prover to verify the claimed TLS 1.3
security requirements, as laid out in draft 21 of the speci�cation. In
particular, our model covers all handshake modes of TLS 1.3.

Our analysis reveals an unexpected behaviour, which we expect
will inhibit strong authentication guarantees in some implementa-
tions of the protocol. In contrast to previous models, we provide
a novel way of making the relation between the TLS speci�cation
and our model explicit: we provide a fully annotated version of
the speci�cation that clari�es what protocol elements we modelled,
and precisely how we modelled these elements. We anticipate this
model artifact to be of great bene�t to the academic community
and the TLS Working Group alike.

KEYWORDS
symbolic veri�cation, authenticated key exchange, TLS 1.3

1 INTRODUCTION
The Transport Layer Security (TLS) protocol is the de facto means
for securing communications on the World Wide Web. Initially
released as Secure Sockets Layer (SSL) by Netscape Communica-
tions in 1995, the protocol has been subject to a number of version
upgrades over the course of its 20-year lifespan. Rebranded as TLS
when it fell under the auspices of the Internet Engineering Task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3134063

Force (IETF) in the mid-nineties, the protocol has been incremen-
tally modi�ed and extended. In the case of TLS 1.2 and below, these
modi�cations have taken place in a largely retroactive fashion;
following the announcement of an attack [6, 7, 18, 20, 32, 43, 49],
the TLS Working Group (WG) would either respond by releasing a
protocol extension (A Request for Comments (RFC) intended to pro-
vide increased functionality and/or security enhancements) or by
applying the appropriate “patch" to the next version of the protocol.
For a more detailed analysis of the development and standardisation
of TLS see [45].

Prior to the announcement of the BEAST [26] and CRIME [27]
attacks of 2011 and 2012, respectively, such a strategy was valid
given the frequency with which versions were updated, and the
limited number of practical attacks against the protocol.

Post-2011, however, the heightened interest in the protocol and
the resulting �ood of increasingly practical attacks against it [1–
3, 5, 9, 13, 15, 16, 26, 27, 29, 31, 41, 42, 44] rendered this design
philosophy inadequate. Coupled with pressure to increase the pro-
tocol’s e�ciency (owing to the release of Google’s QUIC Crypto
[37]), the IETF started drafting the next version of the protocol, TLS
1.3, in the Spring of 2014. Unlike the development of TLS 1.2 and
below, the TLS WG adopted an “analysis-prior-to-deployment” de-
sign philosophy, welcoming contributions from the academic com-
munity before o�cial release. There have been substantial e�orts
from the academic community in the areas of program veri�cation–
analysing implementations of TLS [12, 14], the development of com-
putational models– analysing TLS within Bellare-Rogaway style
frameworks [24, 25, 28, 33, 35, 38], and the use of formal methods
tools such as ProVerif[17] and Tamarin[48] to analyse symbolic
models of TLS [4, 10, 22, 30]. All of these endeavours have helped
to both �nd weaknesses in the protocol and con�rm and guide the
design decisions of the TLS WG.

The TLS 1.3 draft speci�cation however, has been a rapidly mov-
ing target, with large changes being e�ected in a fairly regular
fashion. This has often rendered much of the analysis work ‘out-
dated’ within the space of few months as large changes to the
speci�cation e�ectively result in a new protocol, requiring a new
wave of analysis.

In this work we contribute to what is hopefully the last wave of
analysis of TLS 1.3 prior to its o�cial release. We present a tool-
supported, symbolic veri�cation of a near-�nal draft of TLS 1.3,
adding to the large e�ort by the TLS community to ensure that
TLS 1.3 is free of themanyweaknesses a�ecting earlier versions, and
that it is imbued with security guarantees be�tting such a critical
protocol. We note that most of the cryptographic mechanisms in
the current TLS 1.3 draft are stable, and other than �uctuations

A Formal Analysis of 5G Authentication
David Basin

Department of Computer Science
ETH Zurich
Switzerland

basin@inf.ethz.ch

Jannik Dreier
Universite de Lorraine
CNRS, Inria, LORIA

Nancy, France
jannik.dreier@loria.fr

Lucca Hirschi
Department of Computer Science

ETH Zurich
Switzerland

lucca.hirschi@inf.ethz.ch

Saša Radomirović
School of Science and Engineering

University of Dundee
UK

s.radomirovic@dundee.ac.uk

Ralf Sasse
Department of Computer Science

ETH Zurich
Switzerland

ralf.sasse@inf.ethz.ch

Vincent Stettler
Department of Computer Science

ETH Zurich
Switzerland

svincent@student.ethz.ch

ABSTRACT
Mobile communication networks connect much of the world’s pop-
ulation. The security of users’ calls, SMSs, and mobile data depends
on the guarantees provided by the Authenticated Key Exchange
protocols used. For the next-generation network (5G), the 3GPP
group has standardized the 5G AKA protocol for this purpose.

We provide the �rst comprehensive formal model of a protocol
from the AKA family: 5GAKA.We also extract precise requirements
from the 3GPP standards de�ning 5G and we identify missing
security goals. Using the security protocol veri�cation tool Tamarin,
we conduct a full, systematic, security evaluation of the model with
respect to the 5G security goals. Our automated analysis identi�es
the minimal security assumptions required for each security goal
and we �nd that some critical security goals are not met, except
under additional assumptions missing from the standard. Finally,
we make explicit recommendations with provably secure �xes for
the attacks and weaknesses we found.

KEYWORDS
5G standard, authentication protocols, AKA protocol, symbolic
veri�cation, formal analysis

1 INTRODUCTION
Two thirds of the world’s population, roughly 5 billion people, are
mobile subscribers [24]. They are connected to the mobile network
via their USIM cards and are protected by security mechanisms
standardized by the 3rd Generation Partnership Project (3GPP)
group. Both subscribers and carriers expect security guarantees
from the mechanisms used, such as the con�dentiality of user data
(e.g., voice and SMS) and that subscribers are billed only for the
services they consume. Moreover, these properties should hold in
an adversarial environment with malicious base stations and users.

One of the most important security mechanisms in place aims
at mutually authenticating subscribers and their carriers and es-
tablishing a secure channel to protect subsequent communication.
For network generations (3G and 4G) introduced since the year
2000, this is achieved using variants of the Authentication and Key
Agreement (AKA) protocol, standardized by the 3GPP. These proto-
cols involve the subscribers, the Serving Networks (SNs) that have
base stations in subscribers’ vicinity, and Home Networks (HNs)
that correspond to the subscribers’ carriers. The protocols aim to

enable the subscribers and the HNs to mutually authenticate each
other and to let the subscribers and the SNs establish a session key.

Next-Generation (5G). Since 2016, the 3GPP group has been stan-
dardizing the next generation of mobile communication (5G) with
the aim of increasing network throughput and o�ering an ambi-
tious infrastructure encompassing new use cases. The 5G standard
will be deployed in two phases. The �rst phase (Release 15, June
2018) addresses the most critical requirements needed for commer-
cial deployment and forms the basis for the �rst deployment. The
second phase (Release 16, to be completed by the end of 2019) will
address all remaining requirements.

In June 2018, the 3GPP published the �nal version v15.1.0 of Re-
lease 15 of the Technical Speci�cation (TS) de�ning the 5G security
architecture and procedures [4]. The authentication in 5G Release
15 is based on new versions of the AKA protocols, notably the new
5G AKA protocol, which enhances the AKA protocol currently used
in 4G (EPS AKA) and which supposedly provides improved security
guarantees. This raises the following question:What are the security
guarantees that 5G AKA actually provides and under which threat
model and security assumptions?

Formal Methods. In this paper, we give a precise answer to the
above question. Namely, we apply formal methods and automated
veri�cation in the symbolic model to determine precisely which
security guarantees are met by 5G AKA. Formal methods have al-
ready proved extremely valuable in assessing the security of large-
scale, real-world security protocols such as TLS 1.3 [10, 16, 18],
messaging protocols [26], and entity authentication protocols [6].
Symbolic approaches, in particular, allow one to automate reason-
ing using techniques including model-checking, resolution, and
rewriting. Examples of mature veri�cation tools along these lines
are T������ [30], P��V���� [11], and D���S�� [14].

Unfortunately, the AKA protocols, and a fortiori 5G AKA, feature
a combination of properties that are extremely challenging for
state-of-the-art veri�cation techniques and tools and, until very
recently, a detailed formalization was outside of their scope. First,
the �ow and the state-machines of these protocols are large and
complex. This is due in part to the use of sequence numbers (SQN)
and the need for a re-synchronization mechanism should counters
become out-of-sync. This complexity is problematic for tools that
reason about a bounded number of sessions as they scale poorly

ar
X

iv
:1

80
6.

10
36

0v
4

 [c
s.C

R]
 1

0
Ja

n
20

20

Getting Chip Card Payments Right?

David Basin()1[0000�0003�2952�939X], Xenia Hofmeier1[0009�0002�6909�8010],
Ralf Sasse1[0000�0002�5632�6099], and Jorge Toro-Pozo2

1 Department of Computer Science, ETH Zurich, Switzerland
{basin,xenia.hofmeier,ralf.sasse}@inf.ethz.ch

2 SIX Digital Exchange, Switzerland
jorge.toro@sdx.com

Abstract. EMV is the international protocol standard for smart card
payments and is used in billions of payment cards worldwide. Despite
the standard’s advertised security, various issues have been previously
uncovered, deriving from logical flaws that are hard to spot in EMV’s
lengthy and complex specification. We have formalized various models of
EMV in Tamarin, a symbolic model checker for cryptographic protocols.
Tamarin was extremely effective in finding critical flaws, both known
and new, and in many cases exploitable on actual cards. We report on
these past problems as well as followup work where we verified the latest,
improved version of the protocol, the EMV kernel C8. This work puts
C8’s correctness on a firm, formal basis, and clarifies which guarantees
hold for C8 and under which assumptions. Overall our work supports
the thesis that cryptographic protocol model checkers like Tamarin have
an essential role to play in improving the security of real-world payment
protocols and that they are up to this challenge.

Keywords: Formal Methods · Security · Model Checking · EMV.

1 Introduction

EMV is the de facto standard for smart card payments. It is named after Eu-
ropay, Mastercard, and Visa, the three founding companies that initiated this
standard, which is now managed by EMVCo. With 12.9 billion EMV cards in
circulation and over 90 percent of card payments using EMV, the EMV protocol
is by far the most prominent in-person payment protocol used worldwide [11].

EMVCo provides specifications for the different technologies used for card,
mobile, and online payment. The card payment standards include specifications
for contact transactions, where the payment card must be inserted into the pay-
ment terminal, and contactless transactions, where the card and terminal com-
municate wirelessly over NFC. The contactless protocol has numerous variants
called kernels, associated with the different EMVCo members.

? We thank Mastercard for their past support. All opinions and conclusions expressed
in this paper are those of the authors.

Use in Industry

6

EMV Standard
EMV is the global standard for smartcard payments: 13+ billion cards in use!

Founded by Europay, Mastercard, and Visa. Others have joined too

 
 
 
The standard claims to offer the highest security

7

4 / 19

EMV standard

• EMV is the global standard for smartcard payments

• Founded by Europay, Mastercard, and Visa

• Other card schemes have joined the consortium too

• 9+ billions EMV cards in circulation worldwide

• The standard claims to o↵er the highest security

EMV: Security and Convenience

8

5 / 19

EMV security (and convenience)

Low-value purchases do not require a PIN High-value purchases should be protected by PIN

——–
Hand image from https://pngtree.com/so/extend-a-finger

Devil image from https://pngtree.com/so/emoji-icons

But they are not

5 / 19

EMV security (and convenience)

Low-value purchases do not require a PIN High-value purchases should be protected by PIN

——–
Hand image from https://pngtree.com/so/extend-a-finger

Devil image from https://pngtree.com/so/emoji-icons

But they are not

High-value purchases should
be protected by a PIN

5 / 19

EMV security (and convenience)

Low-value purchases do not require a PIN High-value purchases should be protected by PIN

——–
Hand image from https://pngtree.com/so/extend-a-finger

Devil image from https://pngtree.com/so/emoji-icons

But they are not

Low-value purchases
do not need a PIN

But they are not!

Take Home Messages

1. Developed first comprehensive model of EMV 
Paper specification runs over 2,000 pages  
 ⤳ directly formalized in Tamarin

2. Found both known and new security issues 
The PINs for your credit cards are useless!

3. We proposed and machine-checked fixes (disclosed to relevant vendors) 
Multiple iterations of (2) and (3)!

4. Verified new C8 kernel with EMV partner

5. Experience supports general hypothesis: 
Don’t trust, verify!

Details described on the web at emvrace.github.io and FM 2024 paper. 
Attack/disclosure timeline and other papers listed at end 9

http://emvrace.github.io

2,000+ pages

10

7 / 19

EMV protocol

1) Initialization: card and terminal agree on the application
to be used for the transaction and exchange static data

2) O✏ine Data Authentication (ODA): terminal performs a
PKI-based validation of the card. There are three
methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3) Cardholder Verification: terminal determines whether the
person presenting the card is the legitimate cardholder.
There are five Cardholder Verification Methods (CVM):

• Signature / No PIN / No CVM (modeled equivalently)
• Plaintext PIN
• O✏ine Enciphered PIN
• Online PIN
• Consumer Device CVM

4) Transaction Authorization (TA): the transaction is

• Declined o✏ine
• Accepted o✏ine
• Authorized online by the issuer bank

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

SSAD= signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD= signprivC(NC,UN)

[Paintext PIN / O✏ine Enciphered PIN / Consumer Device CVM]

GENERATE AC, CDOL1

X = hPDOL,CDOL1i
AC= MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD= signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

CDOL2= hARC,ARPC, . . .iGENERATE AC,CDOL2

X 0 = hPDOL,CDOL1,CDOL2i
TC= MACs(X 0,AIP,ATC, IAD0)
T 0 = h(X 0,CID0,ATC,TC, IAD0)
SDAD0 = signprivC(NC,CID

0,TC, [T 0,]UN)

CID0,ATC,TC/SDAD0, IAD0
IAD0,TC

1. Initialization: card & terminal agree on application
used for transaction & exchange static data.

Contact or contactless

Country, currency, nonce UN
Authentication methods

Card number, expiry date,  
issuing bank certificate,  
Cardholder Verif. Methods …

mk: symmetric master key
shared between card and bank
ATC: transaction counter 
result s used for MACs

Uses PKI with certificates for
CAs, Banks & Cards  
(but not Terminals)

EMV Protocol

Substantially simplified account!
Also with variants for different

EMV kernels

App. IDs: Visa / Amex / …

Acronym Zoo:
PDOL/CDOL: Data Object Lists
AID: Application Identifiers
PAN: Primary Account Number (Card number)
CVM: Cardholder Verification Methods
…

7 / 19

EMV protocol

1) Initialization: card and terminal agree on the application
to be used for the transaction and exchange static data

2) O✏ine Data Authentication (ODA): terminal performs a
PKI-based validation of the card. There are three
methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3) Cardholder Verification: terminal determines whether the
person presenting the card is the legitimate cardholder.
There are five Cardholder Verification Methods (CVM):

• Signature / No PIN / No CVM (modeled equivalently)
• Plaintext PIN
• O✏ine Enciphered PIN
• Online PIN
• Consumer Device CVM

4) Transaction Authorization (TA): the transaction is

• Declined o✏ine
• Accepted o✏ine
• Authorized online by the issuer bank

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

SSAD= signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD= signprivC(NC,UN)

[Paintext PIN / O✏ine Enciphered PIN / Consumer Device CVM]

GENERATE AC, CDOL1

X = hPDOL,CDOL1i
AC= MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD= signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

CDOL2= hARC,ARPC, . . .iGENERATE AC,CDOL2

X 0 = hPDOL,CDOL1,CDOL2i
TC= MACs(X 0,AIP,ATC, IAD0)
T 0 = h(X 0,CID0,ATC,TC, IAD0)
SDAD0 = signprivC(NC,CID

0,TC, [T 0,]UN)

CID0,ATC,TC/SDAD0, IAD0
IAD0,TC

EMV Protocol

11

1. Initialization: card and terminal agree on app
used for transaction & exchange static data. 

2. Offline Data Authentication (ODA): terminal
performs PKI-based card validation using one
of three methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

Static data like card number and exp.
date signed earlier by bank and
stored on card. Legacy status.

Standard now is CDA:
includes nonces and
other transaction details
like purchase amount

Acronym Zoo:
SSAD: Signed Static Authentication Data
SDAD: Signed Dynamic Authentication Data
AC: Authentication Cryptogram

7 / 19

EMV protocol

1) Initialization: card and terminal agree on the application
to be used for the transaction and exchange static data

2) O✏ine Data Authentication (ODA): terminal performs a
PKI-based validation of the card. There are three
methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3) Cardholder Verification: terminal determines whether the
person presenting the card is the legitimate cardholder.
There are five Cardholder Verification Methods (CVM):

• Signature / No PIN / No CVM (modeled equivalently)
• Plaintext PIN
• O✏ine Enciphered PIN
• Online PIN
• Consumer Device CVM

4) Transaction Authorization (TA): the transaction is

• Declined o✏ine
• Accepted o✏ine
• Authorized online by the issuer bank

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

SSAD= signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD= signprivC(NC,UN)

[Paintext PIN / O✏ine Enciphered PIN / Consumer Device CVM]

GENERATE AC, CDOL1

X = hPDOL,CDOL1i
AC= MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD= signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

CDOL2= hARC,ARPC, . . .iGENERATE AC,CDOL2

X 0 = hPDOL,CDOL1,CDOL2i
TC= MACs(X 0,AIP,ATC, IAD0)
T 0 = h(X 0,CID0,ATC,TC, IAD0)
SDAD0 = signprivC(NC,CID

0,TC, [T 0,]UN)

CID0,ATC,TC/SDAD0, IAD0
IAD0,TC

EMV Protocol

12

1. Initialization: card and terminal agree on app
used for transaction & exchange static data. 

2. Offline Data Authentication(ODA): terminal
performs PKI-based card validation using one of
three methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3. Cardholder Verification: terminal determines if
person presenting card is legitimate cardholder
using a Cardholder Verification Methods (CVM):
• Signature / No PIN / No CVM
• Plaintext PIN (terminal sends PIN to card)
• Offline Enciphered PIN (terminal encrypts PIN 

 and sends to card)
• Online PIN (PIN sent encrypted to  

 issuing bank)
• Customer Device CVM (mobile phone auth.)

Different procedures to
check PIN by terminal
or issuing bank..
(description omitted)

EMV Protocol

13

7 / 19

EMV protocol

1) Initialization: card and terminal agree on the application
to be used for the transaction and exchange static data

2) O✏ine Data Authentication (ODA): terminal performs a
PKI-based validation of the card. There are three
methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3) Cardholder Verification: terminal determines whether the
person presenting the card is the legitimate cardholder.
There are five Cardholder Verification Methods (CVM):

• Signature / No PIN / No CVM (modeled equivalently)
• Plaintext PIN
• O✏ine Enciphered PIN
• Online PIN
• Consumer Device CVM

4) Transaction Authorization (TA): the transaction is

• Declined o✏ine
• Accepted o✏ine
• Authorized online by the issuer bank

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

SSAD= signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD= signprivC(NC,UN)

[Paintext PIN / O✏ine Enciphered PIN / Consumer Device CVM]

GENERATE AC, CDOL1

X = hPDOL,CDOL1i
AC= MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD= signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

CDOL2= hARC,ARPC, . . .iGENERATE AC,CDOL2

X 0 = hPDOL,CDOL1,CDOL2i
TC= MACs(X 0,AIP,ATC, IAD0)
T 0 = h(X 0,CID0,ATC,TC, IAD0)
SDAD0 = signprivC(NC,CID

0,TC, [T 0,]UN)

CID0,ATC,TC/SDAD0, IAD0
IAD0,TC

1. Initialization: card and terminal agree on app
used for transaction & exchange static data. 

2. Offline Data Authentication(ODA): terminal
performs PKI-based card validation using one of
three methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3. Cardholder Verification: terminal determines if
person presenting card is legitimate cardholder
using a Cardholder Verification Methods (CVM):
• Signature / No PIN / No CVM
• Plaintext PIN
• Offline Enciphered PIN
• Online PIN
• Customer Device CVM 

4. Transaction Authorization (TA): result is:
• Declined offline
• Accepted offline (typically low value)
• Authorized online by issuer bank

Cryptogram for Bank
Signed data for Terminal

Online verification case 
(optionally with PIN)

Offline verification

This 2nd phase is for contact, where card
authenticates bank and updates its state

Additional checks

From Protocols to Models

14

7 / 19

EMV protocol

1) Initialization: card and terminal agree on the application
to be used for the transaction and exchange static data

2) O✏ine Data Authentication (ODA): terminal performs a
PKI-based validation of the card. There are three
methods:

• Static Data Authentication (SDA)
• Dynamic Data Authentication (DDA)
• Combined Dynamic Data Authentication (CDA)

3) Cardholder Verification: terminal determines whether the
person presenting the card is the legitimate cardholder.
There are five Cardholder Verification Methods (CVM):

• Signature / No PIN / No CVM (modeled equivalently)
• Plaintext PIN
• O✏ine Enciphered PIN
• Online PIN
• Consumer Device CVM

4) Transaction Authorization (TA): the transaction is

• Declined o✏ine
• Accepted o✏ine
• Authorized online by the issuer bank

Card

C

Terminal

T

Bank

B

s = f (mk,ATC), random NC random UN s = f (mk,ATC)

SELECT, 1PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,AIDx

PDOL tags & lengths

GET PROCESSING OPTIONS,PDOL

AIP,AFL

READ RECORD

PAN,expDate,...,certprivCA(B,pubB),
[certprivB(C,pubC,CVM list,AIP),]
CDOLs tags & lengths,CVM list

SSAD= signprivB(PAN,expDate,AIP)

INTERNAL AUTHENTICATE,UN

SDAD= signprivC(NC,UN)

[Paintext PIN / O✏ine Enciphered PIN / Consumer Device CVM]

GENERATE AC, CDOL1

X = hPDOL,CDOL1i
AC= MACs(X ,AIP,ATC, IAD)
T = h(X ,CID,ATC,AC, IAD)
SDAD= signprivC(NC,CID,AC, [T,]UN)

CID,ATC,AC/SDAD, IAD PAN,AIP,X ,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

CDOL2= hARC,ARPC, . . .iGENERATE AC,CDOL2

X 0 = hPDOL,CDOL1,CDOL2i
TC= MACs(X 0,AIP,ATC, IAD0)
T 0 = h(X 0,CID0,ATC,TC, IAD0)
SDAD0 = signprivC(NC,CID

0,TC, [T 0,]UN)

CID0,ATC,TC/SDAD0, IAD0
IAD0,TC

 Protocol Modeled as 60
multiset rewriting rules

Main Properties Considered

15

1. The bank accepts transactions t accepted by the terminal 
 
 
 
 
 
 
 
 
In Tamarin, protocol modeled as a labelled transition system giving rise to an
infinite set of traces. Following trace would violate this property 
 …. BankDeclines(23581) … TerminalAccepts(23581) … 
 
TerminalAccepts(t) iff Terminal satisfied with transaction. 
BankDeclines(t) iff Bank receives authorization request with wrong cryptogram

8 / 19

Main security properties considered

1) The bank accepts, i.e. does not decline, transactions accepted by the terminal:

lemma bank_accepts:

"All t #i.

TerminalAccepts(t)@i

==>

not (Ex #j. BankDeclines(t)@j) |

Ex A #k. Honest(A)@i & Compromise(A)@k"

2) Transactions are authenticated to the terminal by the card and the bank:

lemma auth_to_terminal: // injective agreement , r will be ’Card’ or ’Bank’

"All T P r t #i.

Commit(T, P, <r, ’Terminal ’, t>)@i

==>

((Ex #j. Running(P, T, <r, ’Terminal ’, t>)@j & j < i) &

not (Ex T2 P2 #i2. Commit(T2, P2, <r, ’Terminal ’, t>)@i2 & not(#i2 = #i))

) |

Ex A #k. Honest(A)@i & Compromise(A)@k"

3) Transactions are authenticated to the bank by the card and the terminal:

lemma is the same as 2 but ’Terminal ’ is now ’Bank’

Main Properties Considered

16

2. Transactions are authenticated to the terminal by the card and the bank 
 
 
 
 
 
 
 
 
Whenever terminal T Commits to a transaction t with communication parter P, then
either P in the role r ∈ {‘card’, ‘Bank’} was previously Running the protocol with T
and they agree on t, or an agent presumed honest was compromised. (Also there
is a unique Commit for each pair of accepting transaction and accepting agent, so
replay attacks are prevented.)

3. Transactions are authenticated to the bank by the card and the terminal. 
Property same as (2), but ‘Terminal’ is now ‘Bank’.

8 / 19

Main security properties considered

1) The bank accepts, i.e. does not decline, transactions accepted by the terminal:

lemma bank_accepts:

"All t #i.

TerminalAccepts(t)@i

==>

not (Ex #j. BankDeclines(t)@j) |

Ex A #k. Honest(A)@i & Compromise(A)@k"

2) Transactions are authenticated to the terminal by the card and the bank:

lemma auth_to_terminal: // injective agreement , r will be ’Card’ or ’Bank’

"All T P r t #i.

Commit(T, P, <r, ’Terminal ’, t>)@i

==>

((Ex #j. Running(P, T, <r, ’Terminal ’, t>)@j & j < i) &

not (Ex T2 P2 #i2. Commit(T2 , P2 , <r, ’Terminal ’, t>)@i2 & not(#i2 = #i))

) |

Ex A #k. Honest(A)@i & Compromise(A)@k"

3) Transactions are authenticated to the bank by the card and the terminal:

lemma is the same as 2 but ’Terminal ’ is now ’Bank’

Results for EMV Contact Protocol

17

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

Decomposed analysis: contact(less), and methods
for data authentication and cardholder verification

Results for EMV Contact Protocol

18

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

Results for EMV Contact Protocol

19

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

Attack: fake the Card’s response,
which is not authenticated

Results for EMV Contact Protocol

20

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

Attack: transaction cryptogram modified, which goes
undetected by terminal and is only later detected by bank

Results for EMV Contact Protocol

21

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

Attack: downgrade to
plain PIN verification,
and read PIN via MITM

Results for EMV Contact Protocol

22

10 / 19

Analysis results

Target Model executable
bank auth. to auth. to

accepts terminal bank

Contact SDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA OnlinePIN O✏ine – – – –

Contact SDA NoPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA NoPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact SDA EncPIN Online – – – –
Contact SDA EncPIN O✏ine – – – –

Contact DDA PlainPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA PlainPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA OnlinePIN Online X ⇥(2) ⇥(2) X
Contact DDA OnlinePIN O✏ine – – – –

Contact DDA NoPIN Online X ⇥(2) ⇥(2) X
Contact DDA NoPIN O✏ine X ⇥(2) ⇥(2) X
Contact DDA EncPIN Online X ⇥(2) ⇥(1,2) ⇥(1)

Contact DDA EncPIN O✏ine X ⇥(2) ⇥(1,2) ⇥(1)

Contact CDA PlainPIN Online X X ⇥(1) ⇥(1)

Contact CDA PlainPIN O✏ine X X ⇥(1) ⇥(1)

Contact CDA OnlinePIN Online X X X X
Contact CDA OnlinePIN O✏ine – – – –
Contact CDA NoPIN Online X X X X
Contact CDA NoPIN O✏ine X X X X
Contact CDA EncPIN Online X X ⇥(1) ⇥(1)

Contact CDA EncPIN O✏ine X X ⇥(1) ⇥(1)

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on last AC
bold: satisfies all 4 properties

• Only transactions using the CDA
authentication method and Online PIN or
No PIN as CVM are secure

• Transactions using Plaintext PIN or
O✏ine Enciphered PIN as CVM admit the
PIN bypass of [Murdoch et al., S&P 2010]

• Transactions using the SDA or DDA
authentication methods admit an attack
where the terminal accepts them but the
bank declines them

• We also found other issues related to
secrecy

• In general, weaponizing these issues in
practice is challenging as one would need
control of the contact chip channel

���� ����

����	
�
 	����
������
� ��
�	������������������
����

������
��
�

Figure 4. Components of the attack.

run on a similar device. Miniaturization is mostly a me-
chanical challenge, and well within the expertise of criminal
gangs: such expertise has already been demonstrated in the
miniaturised transaction interceptors that have been used to
sabotage point of sale terminals and skim magnetic strip
data. Miniaturization is not critical, though, as criminals
can target businesses where a card can be used with wires
running up the cashout operative’s sleeve, while a laptop and
FPGA board can be hidden easily in his backpack. There
are firms such as supermarkets and money changers whose
terminals are located on the other side of a barrier from
the checkout staff, who therefore do not scrutinise the cards
their customers use.

V. CAUSES

The failure we identify here might be patched in various
ways which we will discuss later. But at heart there is a pro-
tocol design error in EMV: it compartmentalises the issuer-
specific MAC protocol too distinctly from the negotiation of
the cardholder verification method. Both of the parties who
rely on transaction authentication – the merchant and the
issuing bank – need to have a full and trustworthy view of
the method used to verify the cardholder; and because the
relevant data cannot be collected neatly by either party, the
framework itself is flawed.

A key misconception of the designers was to think of the
TVR and card verification results primarily as separate lists

of possible failures represented by a bit mask, rather than
as a report of the authentication protocol run.

This is not to say that issuing banks cannot in future
implement secure proprietary schemes within the EMV
framework: because the internal protocols are proprietary
anything is possible, and some potential options will be
discussed in Section VI. But such schemes must make
ever more complex and intricate analysis of the transaction
data returned, driving up the complexity and fragility of
the existing EMV card authorization systems. Essentially,
they will have to ignore the framework, and without a
change in the framework itself, the authorization calculations
will remain so complex and dependent on external factors
that further mistakes are very likely. Also, as the protocol
becomes more customized by the issuer, the introduction
of new system-wide features sought for other purposes will
become progressively more difficult and expensive.

The failure of EMV has many other aspects which will
be familiar to security engineers. There was a closed design
process, with no open external review of the architecture
and its supporting protocols. The protocol documentation
appeared eventually in the public domain – nothing imple-
mented by 20,000 banks could have been kept secret – but
too late for the research community to give useful feedback
before a lot of money was spent on implementation.

The economics of security work out not just in the
interaction between banks, customers and merchants – with

438

Results for EMV Contactless Protocol

23

12 / 19

Analysis results

Target Model exec.
bank auth. to auth. to

accepts terminal bank

Visa EMV Low X X ⇥(1) ⇥(1)

Visa EMV High X X ⇥(1) ⇥(1)

Visa DDA Low X ⇥(2) ⇥(2) X
Visa DDA High X X X X
Mastercard SDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard SDA OnlinePIN High X X X X
Mastercard SDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard SDA NoPIN High –(3) – – –

Mastercard DDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard DDA OnlinePIN High X X X X
Mastercard DDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard DDA NoPIN High –(3) – – –
Mastercard CDA OnlinePIN Low X X X X
Mastercard CDA OnlinePIN High X X X X
Mastercard CDA NoPIN Low X X X X
Mastercard CDA NoPIN High –(3) – – –

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on AC
(3): high-value transactions without CVM are not completed contactless
bold: satisfies all 4 properties

• Most common Mastercard
transactions are secure

• Most common Visa
transactions are not secure

Results for EMV Contactless Protocol

24

12 / 19

Analysis results

Target Model exec.
bank auth. to auth. to

accepts terminal bank

Visa EMV Low X X ⇥(1) ⇥(1)

Visa EMV High X X ⇥(1) ⇥(1)

Visa DDA Low X ⇥(2) ⇥(2) X
Visa DDA High X X X X
Mastercard SDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard SDA OnlinePIN High X X X X
Mastercard SDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard SDA NoPIN High –(3) – – –

Mastercard DDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard DDA OnlinePIN High X X X X
Mastercard DDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard DDA NoPIN High –(3) – – –
Mastercard CDA OnlinePIN Low X X X X
Mastercard CDA OnlinePIN High X X X X
Mastercard CDA NoPIN Low X X X X
Mastercard CDA NoPIN High –(3) – – –

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on AC
(3): high-value transactions without CVM are not completed contactless
bold: satisfies all 4 properties

• Most common Mastercard
transactions are secure

• Most common Visa
transactions are not secure

Recall: CDA is what is commonly used in practice
(We return to this result for Mastercard later!)

Results for EMV Contactless Protocol

25

12 / 19

Analysis results

Target Model exec.
bank auth. to auth. to

accepts terminal bank

Visa EMV Low X X ⇥(1) ⇥(1)

Visa EMV High X X ⇥(1) ⇥(1)

Visa DDA Low X ⇥(2) ⇥(2) X
Visa DDA High X X X X
Mastercard SDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard SDA OnlinePIN High X X X X
Mastercard SDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard SDA NoPIN High –(3) – – –

Mastercard DDA OnlinePIN Low X ⇥(2) ⇥(2) X
Mastercard DDA OnlinePIN High X X X X
Mastercard DDA NoPIN Low X ⇥(2) ⇥(2) X
Mastercard DDA NoPIN High –(3) – – –
Mastercard CDA OnlinePIN Low X X X X
Mastercard CDA OnlinePIN High X X X X
Mastercard CDA NoPIN Low X X X X
Mastercard CDA NoPIN High –(3) – – –

Legend:
X: property verified ⇥: property falsified –: not applicable
(1): disagrees with card on CVM (2): disagrees with card on AC
(3): high-value transactions without CVM are not completed contactless
bold: satisfies all 4 properties

• Most common Mastercard
transactions are secure

• Most common Visa
transactions are not secure

13 / 19

Visa contactless protocol: A look at the problem

• Card’s choice for Cardholder
Verification Method (CVM) is
encoded in the Card Transaction
Qualifiers (CTQ)

• The CTQ is authenticated via the
Signed Dynamic Authentication
Data (SDAD)

• But most Visa transactions do not
use the SDAD

• Thus the CTQ, and by extension
the CVM, can be modified!

Card

C

Terminal

T

Bank

B

s = f (mk,ATC)
random NC

random UN s = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,0xA000000003....

PDOL tags & lengths

PDOL=hTTQ,amount,country,TVR,
currency,date,type,UNi

GET PROCESSING OPTIONS,PDOL

AC= MACs(PDOL,AIP,ATC, IAD)
d = hATC,UN,amount,currency,NC,CTQ,AIPi
SDAD= signprivC(d)

AIP,AFL, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,...[,certprivCA(B,pubB),
certprivB(C,pubC),SDAD,NC,CTQ]

PAN,AIP,PDOL,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

ARC,ARPC

Problem with Visa Contactless

26

• Card’s choice for Cardholder Verification
Method (CVM) encoded in Card Transaction
Qualifiers (CTQ)

If you can change the CTQ,
you change how cardholder

is (apparently) verified

13 / 19

Visa contactless protocol: A look at the problem

• Card’s choice for Cardholder
Verification Method (CVM) is
encoded in the Card Transaction
Qualifiers (CTQ)

• The CTQ is authenticated via the
Signed Dynamic Authentication
Data (SDAD)

• But most Visa transactions do not
use the SDAD

• Thus the CTQ, and by extension
the CVM, can be modified!

Card

C

Terminal

T

Bank

B

s = f (mk,ATC)
random NC

random UN s = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,0xA000000003....

PDOL tags & lengths

PDOL=hTTQ,amount,country,TVR,
currency,date,type,UNi

GET PROCESSING OPTIONS,PDOL

AC= MACs(PDOL,AIP,ATC, IAD)
d = hATC,UN,amount,currency,NC,CTQ,AIPi
SDAD= signprivC(d)

AIP,AFL, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,...[,certprivCA(B,pubB),
certprivB(C,pubC),SDAD,NC,CTQ]

PAN,AIP,PDOL,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

ARC,ARPC

Problem with Visa Contactless

27

• Card’s choice for Cardholder Verification
Method (CVM) encoded in Card Transaction
Qualifiers (CTQ) 

• CTQ authenticated via the Signed Dynamic
Authentication Data (SDAD)

If you can change the CTQ,
you change how cardholder

is (apparently) verified

13 / 19

Visa contactless protocol: A look at the problem

• Card’s choice for Cardholder
Verification Method (CVM) is
encoded in the Card Transaction
Qualifiers (CTQ)

• The CTQ is authenticated via the
Signed Dynamic Authentication
Data (SDAD)

• But most Visa transactions do not
use the SDAD

• Thus the CTQ, and by extension
the CVM, can be modified!

Card

C

Terminal

T

Bank

B

s = f (mk,ATC)
random NC

random UN s = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,0xA000000003....

PDOL tags & lengths

PDOL=hTTQ,amount,country,TVR,
currency,date,type,UNi

GET PROCESSING OPTIONS,PDOL

AC= MACs(PDOL,AIP,ATC, IAD)
d = hATC,UN,amount,currency,NC,CTQ,AIPi
SDAD= signprivC(d)

AIP,AFL, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,...[,certprivCA(B,pubB),
certprivB(C,pubC),SDAD,NC,CTQ]

PAN,AIP,PDOL,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

ARC,ARPC

Problem with Visa Contactless

28

• Card’s choice for Cardholder Verification
Method (CVM) encoded in Card Transaction
Qualifiers (CTQ) 

• CTQ authenticated via the Signed Dynamic
Authentication Data (SDAD) 

• Most Visa transactions don’t use the SDAD 
⇒ CTQ and therefore CVM can be modified

CTQ can be changed to suggest
cardholder verification was

performed on the Consumer Device

“Terminal does
online PIN
verification”

“Consumer
device did
verification”

Weaponizing PIN bypass Attack

Man-in-the-middle attack on top of a relay attack architecture

29

14 / 19

Weaponizing: PIN bypass attack

Man-in-the-middle attack built on top of a relay attack architecture:

(a) Terminal sends command indicating Cardholder Verification required

(b) Card sends response indicating Online PIN required

(c) Attacker changes CTQ to 0x0280 which indicates that
Online PIN is not required and Consumer Device CVM was performed

Card emulator POS emulator

WiFi

WiFi

NFC NFC

(a) (a) (a)

(b)(c)(c)

Demo at https://youtu.be/JyUsMLxCCt8

Man-in-the-middle attack on top of a relay attack architecture

(a) Terminal sends command indicating Cardholder Verification required

(b) Card sends response indicating Online PIN required

(c) Attacker changes Card Transaction Qualifier (CTQ) to 0x028 indicating that 
Online PIN not required and Consumer Device CVM was performed

14 / 19

Weaponizing: PIN bypass attack

Man-in-the-middle attack built on top of a relay attack architecture:

(a) Terminal sends command indicating Cardholder Verification required

(b) Card sends response indicating Online PIN required

(c) Attacker changes CTQ to 0x0280 which indicates that
Online PIN is not required and Consumer Device CVM was performed

Card emulator POS emulator

WiFi

WiFi

NFC NFC

(a) (a) (a)

(b)(c)(c)

Demo at https://youtu.be/JyUsMLxCCt8

Weaponizing PIN Bypass Attack

30

Media Coverage

32
15 / 19

Our PIN bypass on the media

Countermeasure to PIN Bypass

33

13 / 19

Visa contactless protocol: A look at the problem

• Card’s choice for Cardholder
Verification Method (CVM) is
encoded in the Card Transaction
Qualifiers (CTQ)

• The CTQ is authenticated via the
Signed Dynamic Authentication
Data (SDAD)

• But most Visa transactions do not
use the SDAD

• Thus the CTQ, and by extension
the CVM, can be modified!

Card

C

Terminal

T

Bank

B

s = f (mk,ATC)
random NC

random UN s = f (mk,ATC)

SELECT, 2PAY.SYS.DDF01

AID1,AID2, . . . ,AIDn

SELECT,0xA000000003....

PDOL tags & lengths

PDOL=hTTQ,amount,country,TVR,
currency,date,type,UNi

GET PROCESSING OPTIONS,PDOL

AC= MACs(PDOL,AIP,ATC, IAD)
d = hATC,UN,amount,currency,NC,CTQ,AIPi
SDAD= signprivC(d)

AIP,AFL, IAD,AC,CID,ATC,CTQ

READ RECORD

PAN,expDate,...[,certprivCA(B,pubB),
certprivB(C,pubC),SDAD,NC,CTQ]

PAN,AIP,PDOL,ATC,IAD,AC [,aencpubB(PIN)]

Y = AC� p8(ARC)
ARPC= MAC0

s(Y)

ARC,ARPC

• Recall the problem: Most VISA transactions
do not use the Signed Dynamic
Authentication Data (SDAD), which is the
only protection to the Card Transaction
Qualifiers (CTQ)

• Easy Fix: always have the card supply the
SDAD and the terminal verify it 

• Having the card supply it is as easy as
setting bit 1 of byte 1 of the Terminal
Transaction Qualifiers (TTQ)

• Fixes can be deployed on terminals without
reissuing cards!

TTQ

Mastercard Can Be Attacked Too!

34

After previous work, we enriched our model to account for the fact that there are
different payment networks.

Attack idea: replace card’s Application Identifiers (AIDs) with the Visa AID
A0000000031010 to deceive the terminal into activating the Visa kernel.  
 — Simultaneously perform a Visa transaction with the terminal and a  
 Mastercard transaction with the card.  
 — For Visa transaction, apply previously  
 described attack on Visa!

Card Brand Mixup Attack: Bypassing the PIN in
non-Visa Cards by Using Them for Visa Transactions

David Basin, Ralf Sasse, and Jorge Toro-Pozo
Department of Computer Science

ETH Zurich

Abstract
Most EMV transactions require online authorization by the

card issuer. Namely, the merchant’s payment terminal sends
an authorization request to the card issuer over a payment
network, typically operated by the company that brands the
card such as Visa or Mastercard. In this paper we show that
it is possible to induce a mismatch between the card brand
and the payment network, from the terminal’s perspective.
The resulting card brand mixup attack has serious security
consequences. In particular, it enables criminals to use a vic-
tim’s Mastercard contactless card to pay for expensive goods
without knowing the card’s PIN. Concretely, the attacker fools
the terminal into believing that the card being used is a Visa
card and then applies the recent PIN bypass attack that we
reported on Visa. We have built an Android application and
successfully used it to carry out this attack for transactions
with both Mastercard debit and credit cards, including a trans-
action for over 400 USD with a Maestro debit card. Finally,
we extend our formal model of the EMV contactless protocol
to machine-check fixes to the issues found.

1 Introduction

There are more than 3.3 billion Visa credit and debit cards
in circulation worldwide [23]. Under the Mastercard brand
(excluding Maestro and Cirrus products) there are over 2 bil-
lion cards [22]. These two companies, together with Europay,
are the founders of EMV, the de facto protocol standard for
in-store smartcard payments. Other companies like American
Express, JCB, Discover, and UnionPay have also joined the
EMV consortium.

EMV transactions for high amounts require online autho-
rization from the card issuer. For this, the payment terminal
sends an authorization request to the card issuer, carrying
transaction details and a cryptographic Message Authentica-
tion Code (MAC) computed by the card over these details.
Upon reception, the card issuer performs various checks, in-
cluding that the associated account has sufficient funds and

Terminal Acquirer Payment Network Card Issuer

Figure 1: Communication flow for online transaction autho-
rization. Upper and lower arrows represent the authorization
request and response, respectively.

that the MAC is correct. While these checks offer cryptograph-
ically verifiable guarantees to cardholders and merchants, one
must understand the properties of the payment system as a
whole, including the process by which terminals and issuers
exchange requests and responses.

Figure 1 displays the communication flow of the online
authorization process, involving four parties: (1) the payment
terminal; (2) the merchant’s acquirer, which is a bank or fi-
nancial institution that processes card payments on behalf of
the merchant; (3) the payment network, which connects the
acquirer and the card issuer; and (4) the issuer itself. There are
several payment networks, such as the Visa or Mastercard net-
works, and the mechanism by which the acquirer chooses the
one which the authorization request is sent to is called routing.
Typically, routing is based on the payment card’s brand. For
example, if the card is Visa branded, then the authorization
request is routed to the Visa payment network.

The payment terminal can determine the card brand from
different data objects supplied by the card during the trans-
action. These objects include the Primary Account Number
(PAN) and the Application Identifiers (AID). From the PAN,
more commonly known as the card number, the card brand
can be inferred from the leading digits. For example, if the
PAN starts with 4 then it is a Visa card. From the AIDs, which
indicate the EMV applications that the card supports (e.g.,
Visa Electron or V Pay), the card brand can be inferred from
the shared prefix, called the Registered Application Provider
Identifier, which is usually a 10-digit value (5 bytes).

In this paper we show that it is possible to deceive a termi-

Can Also Exploit Failure Modes

35

Recall Offline Data Authentication (ODA) uses banking PKI. 
 — Certificate lookup initiated by Card who provides a CA Public Key Index 
 
EMV documentation has curious pseudo-code fragment (p. 255): 
 IF [CA Public Key Index not present in CA Public Key Database] 
 THEN SET `CDA failed’ in Terminal Verification Results (TVR) 

Documentation also states (p. 435):  
 IF `CDA failed’ in TVR ⋀ … THEN Do not request CDA

So, if one can induce a failure of the public key lookup, then Combined Dynamic
Data Authentication is not used. 
 — One can modify all data not included in the MAC used for online authorization.  
 — Supported CVMs sent from card to terminal are no longer integrity protected.

Exploiting Errors to Bypass Cardholder Verification

36

Attacker uses same MITM setup to modify CA data, causing failure. 
List of Card Verification Methods can then be modified, without detection.

Bypassing Cardholder VerificaBon

!
Terminal

Pay 200 $

"
ICC

Modified CVM List, CA PK Index

!

"
! !

(Ac7ve Man-In-The-Middle)

…

Android App Android AppGenerate MAC for Online AuthorizaLon

MAC (transacLon data)

!
Issuer

Online-AuthorizaLon

AWack Concept

" Inexistent CA PKA Index turns off offline-authenLcaLon

Arbitrary modificaLon of CVM List possible

"

!"

C8 Redesign

37

Objective: eliminate problems with past kernels
• Not clean slate, but substantial redesign

Features
• New methods to authenticate transactions
• Modern cryptographic algorithms
• Privacy based on blinded Diffie-Hellmann
• Relay resistance protection
• Simplifications, e.g., magstripe mode compatibility eliminated

Results: substantially enhanced security
• Verification of (almost) all configurations.  

Problematic configurations should not be enabled in practice.
• Privacy (only) against passive adversaries. Validate adversary model in practice!
• Verification of relay resistance, but only in some “safe” configurations.
• Analysis highlights constraints for secure implementation.

Cards with C8 to be released soon

Getting Chip Card Payments Right?

David Basin()1[0000�0003�2952�939X], Xenia Hofmeier1[0009�0002�6909�8010],
Ralf Sasse1[0000�0002�5632�6099], and Jorge Toro-Pozo2

1 Department of Computer Science, ETH Zurich, Switzerland
{basin,xenia.hofmeier,ralf.sasse}@inf.ethz.ch

2 SIX Digital Exchange, Switzerland
jorge.toro@sdx.com

Abstract. EMV is the international protocol standard for smart card
payments and is used in billions of payment cards worldwide. Despite
the standard’s advertised security, various issues have been previously
uncovered, deriving from logical flaws that are hard to spot in EMV’s
lengthy and complex specification. We have formalized various models of
EMV in Tamarin, a symbolic model checker for cryptographic protocols.
Tamarin was extremely effective in finding critical flaws, both known
and new, and in many cases exploitable on actual cards. We report on
these past problems as well as followup work where we verified the latest,
improved version of the protocol, the EMV kernel C8. This work puts
C8’s correctness on a firm, formal basis, and clarifies which guarantees
hold for C8 and under which assumptions. Overall our work supports
the thesis that cryptographic protocol model checkers like Tamarin have
an essential role to play in improving the security of real-world payment
protocols and that they are up to this challenge.

Keywords: Formal Methods · Security · Model Checking · EMV.

1 Introduction

EMV is the de facto standard for smart card payments. It is named after Eu-
ropay, Mastercard, and Visa, the three founding companies that initiated this
standard, which is now managed by EMVCo. With 12.9 billion EMV cards in
circulation and over 90 percent of card payments using EMV, the EMV protocol
is by far the most prominent in-person payment protocol used worldwide [11].

EMVCo provides specifications for the different technologies used for card,
mobile, and online payment. The card payment standards include specifications
for contact transactions, where the payment card must be inserted into the pay-
ment terminal, and contactless transactions, where the card and terminal com-
municate wirelessly over NFC. The contactless protocol has numerous variants
called kernels, associated with the different EMVCo members.

? We thank Mastercard for their past support. All opinions and conclusions expressed
in this paper are those of the authors.

Conclusions

Formal Methods matter!
• You can rob the bank with a theorem prover.

Tools sufficiently advanced that they can and should be used
• Good hygiene: be explicit about protocol, adversary, and properties
• Find errors or produce proofs
• Follow standardization efforts: check modifications for upcoming releases 

EMV not a standard but Tamarin is being used now as part of its development

Research challenges
• COMPLEXITY, Complexity, complexity
• Improving scope and accuracy
• Education: getting the message out and training engineers

38

Bibliography (see https://emvrace.github.io/)

• Pin Bypass on VISA Cards discovered with Tamarin 
D.B., Ralf Sasse, Jorge Toro Pozo, The EMV Standard: Break, Fix, Verify, Oakland Security
& Privacy, 2021. (Best practical paper award)  

• Attacks on Mastercard found via payment network “confusion” 
D.B., Ralf Sasse, Jorge Toro Pozo, Card Brand Mixup Attack: Bypassing the PIN in non-
VISA Cards by Using Them for Visa Transactions, Usenix Security, 2021. 

• Attacks on Different EMV cards found by inducing PKI errors+downgrading 
D.B., Patrick Schaller, Jorge Torzo Pozo, Inducing Authentication Failures to Bypass Credit
Card PINs, Usenix Security, 2023. 

• Fixes proposed using UWB replay protection (PURE) 
Daniele Coppola, Giovanni Camurati, Claudio Anliker, Xenia Hofmeier, Patrick Schaller, D.B.,
Srdjan Capkun. PURE: Payments with UWB Relay-protection, Usenix Security 2024. 

• Collaboration with Mastercard to verify redesign of EMV (C-8 Kernel),  
D.B., Xenia Hofmeier, Ralf Sasse, Getting Electronic Payments Right, FM 2024.

39

https://emvrace.github.io/

