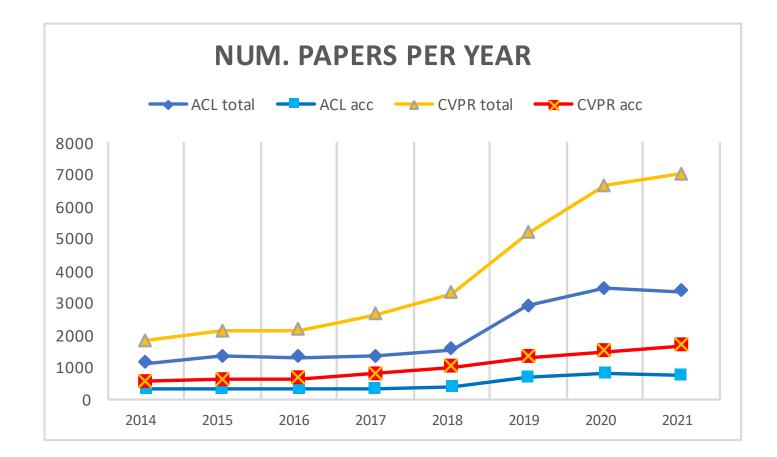
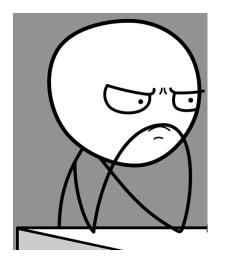
What do writing features tell us about Al papers?

Zining Zhu, Bai Li, Yang Xu, Frank Rudzicz

Recent submissions increase in numbers



Problems from two sides



Poorly organized

Methodology is problematic Result is unclear Question - analysis mismatch Limited novelty Limited impact Ethical concerns

Gets random submissions

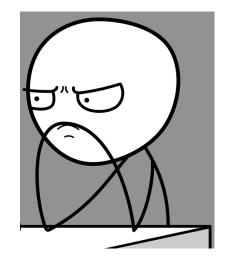
Didn't read carefully

Doesn't understand our method

Doesn't think hard

Doesn't understand the field

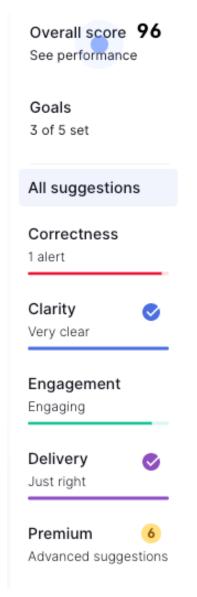
Reviewers are paranoid



Gets random peer reviews

Possibilities of improvements?

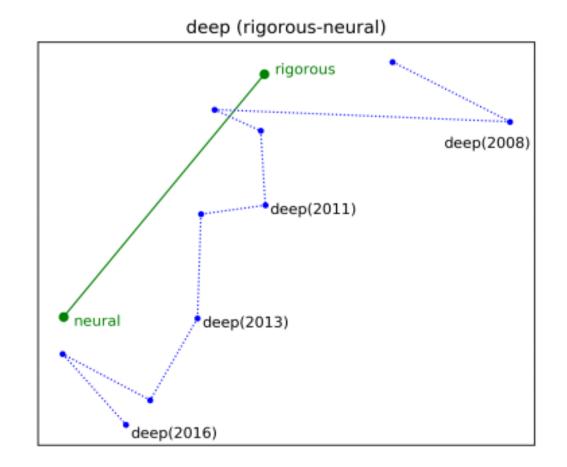
- Improved peer review procedure
 - OpenReview
 - ACL Rolling Review
- Use DNN to predict paper outcomes
 - Text classification problem
- Intuition: text markers can lead to scalable solutions
 - "Best of both worlds"
 - Similar: Automatic Essay Scoring, e.g., Grammarly \rightarrow



There are some interesting text markers

An example: locations on the *semantic coordinates*.

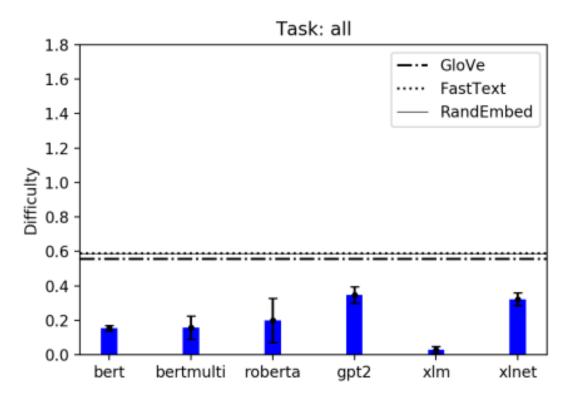
- Hypothesis: word semantics shift along certain coordinates.
- Semantically stable words form coordinates.
- Target words shift along the coordinates.



And they can be useful

An example: examine the rhetorical capacities of neural LMs.

- Use simple models ("probes") to predict rhetorical features
- Use loss to measure the difficulty → negation of "the goodness of encoding the knowledge"



Let's try some text markers for AI papers

We consider 74 *writing features*

i.e., do **not** explicitly describe the semantics.

- Metadata: outbound citations, article lengths, sentence lengths...
- Readability: Flesch, Flesch-Kincaid, semantic surprisal
- Lexical richness: Moving-average type-token ratio
- Syntactic: Grammar error counts, active / passive voice portions
- Stylistic features: POS signal constituency, RST signal constituency

• They are correlated to Conference (C) vs Workshop (W) appearance.

Venue	Features	Spearman R	ATE	Interpretation
	flesch_kincaid_grade_level_bodytext	-0.05	+0.05	Ambiguous
	grammar_errors_abstract	-0.09^{**}	-0.01	W papers are larger
ACL	surprisal_abstract_std	-0.01	+0.00	Ambiguous
	title_word_length	-0.09^{**}	-0.01	W papers are larger
	voice_bodytext_active	$+0.09^{**}$	+0.15	C papers are larger
	outbound_citations_per_word	-0.17^{**}	+67.6	Ambiguous
	n_author	-0.17^{**}	-0.05	W papers are larger
EMNLP	grammar_errors_abstract	-0.18^{**}	+0.01	W papers are larger
	n_outbound_citations	-0.09	+0.09	Ambiguous
	abstract_word_counts	-0.16^{**}	+0.00	W papers are larger

• They can predict Conference (C) vs Workshop (W) appearance.

Venue Name		Writing Features					TF-IDF		RoBERTa
, ende i tunte	74 features	RST	Surprisal	Grammar	LexRich	Readability	Full text	Abstract	Abstract
AAAI	.755(.028)	+.001	+.024	+.010	002	+.009	$+.206^{**}$	$+.203^{**}$	$+.212^{**}$
ACL	.867(.004)	+.001	+.000	+.001	+.001	+.001	004	008^{*}	015
COLING	.837(.010)	+.005	+.005	+.003	+.003	+.004	$+.049^{**}$	$+.051^{**}$	$+.052^{**}$
CVPR	.900(.005)	007	006	001	006	005	052^{**}	067^{**}	070^{**}
EMNLP	.737(.020)	+.003	+.014	+.012	+.022	+.015	$+.159^{**}$	$+.153^{**}$	+.102
ICML	.659(.023)	277**	042^{*}	102	262^{**}	185	$+.333^{**}$	$+.333^{**}$	$+.300^{**}$
IJCAI	.868(.002)	067**	066^{**}	045^{**}	$+.075^{**}$	067^{**}	029^{**}	061^{**}	076
NAACL	.757(.019)	+.016	+.016	+.011	$+.017^{*}$	$+.016^{*}$	107^{**}	128^{**}	182
NeurIPS	.586(.035)	193^{**}	039	097	212^{**}	157	+.031	077^{*}	110

Table 3: F1 scores of the C vs. W classification results. The second column show using 74 writing features. The remaining columns show the values *relative to* the p < .005 and p < .001 respectively, both on 2-tailed *t*-test with dof = 10, Bon

Sometimes comparable to TF-IDF features, and even RoBERTa.

• They can sort of tell apart between different venues.

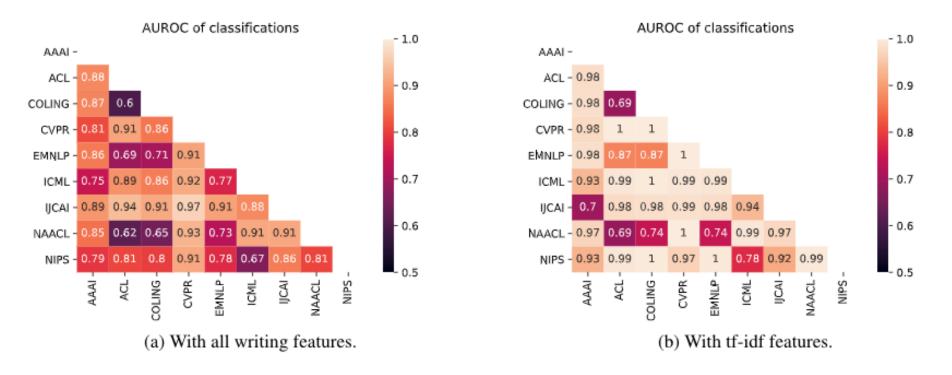


Figure 1: The AUROC of inter-venue classifications. The venues in the same categories (e.g., COLING and ACL) are harder to tell apart than other venues, using either the writing features or tf-idf features.

• They can not predict the inbound citation counts.

Venue Name			Writing	Baselina	TF-IDF					
	74 features	RST	Surprisal	Grammar	LexRich	Readability	Baseline	Full text	Abstract	
AAAI	+8.61	+0.09	+0.69	+0.27	+1.16	+0.61	20.77(27)	0.07(.02)	0.07(.01)	
ACL	+6.27	+0.48	+0.11	+0.10	+0.34	+2.89	389.76(636)	0.15(.01)	0.17(.01)	
COLING	+248.87	+3.51	+0.05	+0.32	+0.62	+368.18	437.76(1006)	0.15(.02)	0.16(.01)	
CVPR	-6.11	+239.82	+9.62	+6.90	+22.24	+12.35	15273.45(24710)	0.17(.01)	0.19(.01)	
EMNLP	+55211.48	+8.12	+4.66	+42.06	+12.11	+458.65	1194.59(2788)	0.15(.02)	0.17(.03)	
ICML	+45.13	+6.93	+37.59	+9.77	+988.27	+86.97	1279.15(1200)	0.02(.01)	0.02(.02)	
IJCAI	+8.84	+1.37	+0.81	+1.20	+3.77	+1.97	23.77(25)	0.16(.01)	0.22(.04)	
NAACL	+18.04	+2.22	+0.83	+0.99	+0.08	+195.92	420.34(855)	0.22(.01)	0.22(.01)	
NeurIPS	+78.25	+4.64	+6.37	+39.81	-2.87	+76.99	3305.99(5216)	0.20(.01)	0.23(.01)	
								But TF-IDF features can predict!		

More about the data

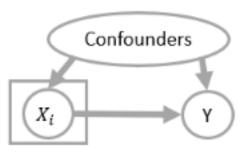
- Computed features on 945,674 CompSci articles from S2ORC.
 - 97.68% have \leq 10 annual income citations.
 - Each article is cited 1.59 (std=13.5) times per year.
- Gave C & W labels for AI venues.
 - NLP: ACL, COLING, EMNLP, NAACL
 - AI: AAAI, IJCAI
 - ML: ICML, NeurIPS
 - CV: CVPR
 - ICRA and ICASSP not used

Venue Name	N. articles	N. articles by labe		
venue Manie	N. al ticles	С	W	
AAAI	624	395	229	
ACL	2,836	2,175	661	
COLING	1,860	1,353	507	
CVPR	3,495	2,824	671	
EMNLP	714	437	277	
ICML	930	396	534	
ICRA	703	662	41	
IJCAI	632	423	209	
NAACL	2,142	1,354	788	
NeurIPS	930	396	534	

Table 7: Number of C and W articles of each venue. The arXiv papers of the corresponding sections are included as W papers. For example, cs.Learning and cs.ML are included in the W portions of ICML and NeurIPS.

More about the writing features...

- They are mutually dependent
 - Causal model assumed independence ->
 Observe multicollinearity effect.
 - Partial features can often predict well.
- They describe more than "just the writing".
 - E.g., RST: stylistic choices -> author -> content
 - E.g., title length -> scope of content -> num. readers -> citation counts
- BTW: Good papers are more than well-"written".
 - Should consider their impact.



Summary

- Computed 74 *writing features*
- Compiled a test suite to assess their usefulness:
 - Conference vs. Workshop appearance prediction
 - Venue appearance prediction
 - Citation counts prediction
- Text markers can lead to scalable, high-quality, and trustworthy solutions for assessing academic article writing.
 - More text markers, and group them together.
 - Additional subjects, more than just CompSci / AI

Connections beyond academic writing

