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Neural NLP models have high capacities

playground Chat Save View code Share £

The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very
friendly.

Human: Hello, who are you?

AI:I am an Al created by OpenAI. How can I help you today?

Human: Describe a city you live in.

AI: I live in a city of computers, so my city is made of circuits, routers, drives, servers, and a lot more.
AI: It is an ordinary city, nothing special.

AI: Is this satisfactory?
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Assess model’s abilities with classifications

15 DNN LM models

#16: Human baseline

Rank Name Model

1

AliceMind & DIRL

StructBERT + CLEVER

2 ERNIE Team - Baidu ERNIE

3 DeBERTa Team - Microsoft DeBERTa / TuringNLRv4

4 HFLIFLYTEK MacALBERT + DKM
+ 5 PING-AN Omni-Sinitic ALBERT + DAAF + NAS

6 liangzhu ge Deberta + adv (ensemble)

7 T5 Team - Google e

8 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART
+ 9 Huawei Noah's Ark Lab NEZHA-Large
+ 10 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024)
+ 11 ELECTRA Team ELECTRA-Large + Standard Tricks
+ 12 Microsoft D365 Al & UMD FreelLB-RoBERTa (ensemble)

13 Junjie Yang HIRE-RoBERTa

14 Facebook Al RoBERTa
+ 15 Microsoft D365 Al & MSR Al MT-DNN-ensemble

16  GLUE Human Baselines GLUE Human Baselines
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Classification datasets contain shortcuts

Quora example
S1: What can make Physics easy to learn

e Shortcuts allow NLP models to |52: How can you make physics easy to learn

“, .- Label: True (similar question)
be rlght for the wrong Correct reason: They have very similar meanings.

reasons” (McCoy et al.., 2019). Shortcut: They both contain can, to, and “?”.

. MNLI example
e Common shortcuts include S1: You have access to the facts.
punctuation marks, S2: The facts are accessible to

Label: Entailment
Correct reason: S1 entails S2.
Shortcut: They both contain the, to and

overlapped words.

McCoy, T., Pavlick, E., & Linzen, T. (2019). Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference. Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 3428-3448. https://doi.org/10.18653/v1/P19-1334
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Shortcuts vs. the other part

* Input data as a random variable X
* The identified shortcut: X
* The remaining part: X;
* According to our definition of “shortcut”: X L X;

* How much information does X; contribute to
the target Y?
» Task-Specific Information (TSI)
* We define TSI to be I(Y; X;)
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Quantifying the Task-Specific Information

* With the assumptions, we can arrive at the expression for TSI:
I(Y;X:) = H(Y|Xs) — H(Y[X)

 Empirically: use cross entropy to approximate the entropy:

1 4
H(p) = E, loga —E, loga = NLL — KL(p||q)

* Where NLL is the cross-entropy loss, and KL is the Kullback-Leibler divergence.
* And g(-) is the distribution approximating the unknown true distribution p(+)

* This results in the proposed method:
TSI —_ NLLleS — NLLle
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How close is NLL to the conditional entropy?

* In 99.5% configurations, NLL is within 0.04 nats away from H(Y|X).
X ~ Bernoulli(p,), where j € {1,2,..,m}
X = [X1, Xo, ooy Xonl
Y = g(X1, ..., Xon) + €, where € ~ Bernoulli(p, )
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ldentified shortcuts

We identify the following shortcuts:

e Punctuation marks

* Occurrence of (non-negative) stopwords

* Count of overlapped words (for sentence pair tasks)

All shortcut features are normalized by sentence length.
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Estimated TSI values

All TSI values are in nats.

Dataset Accy |y TSIP*S TSIP+5+0
MNLI  0.85 0.68 0.64
IMDB  0.92 0.43 _

Yelp 0.97 0.41 _
QQP 0.89 0.31 0.23




Ablation: using imperfect models

Figure 4: A scatter plot of the accuracy against dev loss
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of models trained on full datasets.
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Ablation: stability to dataset sizes
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Figure 6: The I(Y'; X;) estimation when we subsample different sizes of datasets.

11



% | Com puter Science
EUNIVERSITY OF TORONTO

Future work

The future work can be in these directions:
* [dentifying the shortcut features.

* Leaderboard practices.

* Metrics for cross-task comparison.

* Use information-theoretic methods to understand text corpus.



% | Com puter Science
EUNIVERSITY OF TORONTO

Conclusion

* We identify the task-specific information (TSI) for text-based
classification datasets.

* We propose a method to estimate TSI.

Thank you for listening! Any questions?



