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Abstract

Understanding the meaning of natural languages has been a fundamental problem in

NLP research. A theory to understand language meanings widely accepted in linguistics

is compositionality, stating that the meaning of any expression is determined by its

structure and the meanings of its constituents. When an expression is analyzed in NLP,

its structures can be captured by neural networks, while the meanings of its constituents

can be represented by embedding vectors. Linguistic compositionality motivates our

NLU framework.

Coming up with good neural network structures require tenuous hyper-parameter

tuning, and figuring out novel embedding methods need significant insights. We would

like to utilize existing embedding methods in a compositional framework to capture

natural language meanings. In this work, we use consensus networks (Zhu et al., 2019)

to find compositional alignments of existing word embeddings. Consensus networks

project different views into a shared, indistinguishable, low-dimensional representation

space, and regulate the procedure with an artificial noise view. In 7 out of 8 scenarios

on two datasets, IMDB sentiment classification and SNLI textual entailment datasets

respectively, our models outperform baseline models.

i



Acknowledgements

This thesis would not have been possible without the guidance and support of many

people.

First, I want to give special thanks to my supervisor, Professor Frank Rudzicz, for

supporting the works since I did not know much about NLP, discussing about research

ideas, monitoring the qualities of research procedures, and proofreading my manuscripts

even when he is super busy.

I am grateful to friends in SPOC lab that talked about relevant ideas. These dis-

cussions helped the formulation of many research ideas. A more comprehensive version

of this thesis work will be submitted to a conference.

Part of formulation of this project should attribute to the APS281 course – Dr.

Penny Kinnear, Ted, and Patrick led us to study and discuss about frameworks letting

languages acquire meanings from applied linguistic viewpoints

This work is an extension of the consensus network project done in Winterlight

Labs. Consensus network contains two papers: CN (Zhu et al., 2019) in NAACL and

TCN (Zhu et al., 2018) in NeurIPS IRASL workshop. I want to say thank you to

the Winterlight research director, Dr. Jekaterina Novikova, and science advisor, Prof.

Rudzicz, for supervising this series of projects. Part of these works should be attributed

to Winterlight colleagues – Liam, Maria, Jordan, Sasha, Aparna, Josh, Allen, Bill,

Fariya, etc., who supported my work both during PEY year and afterwards.

The compositional embedding alignment project involved significant computational

efforts. This could not have been possible without the cloud administrators, Dr. Relu

Patrascu, who helped me set up and run experiments on both SPOC and Vector clusters.

I would like to thank all friends in Engineering Science. I enjoyed the four (plus one)

years of undergraduate lives with you and will be proud to be an EngSci alumnus.

Finally I wish to express sincere gratitude to my family, for their love and support

throughout the journey of learning and exploration.

ii



Contents

Abstract i

Acknowledgements ii

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Thesis statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related works 4
2.1 Language meaning in linguistic frameworks . . . . . . . . . . . . . . . . . 4

2.1.1 Holism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Linguistic compositionality . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Syntactic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Part-of-speech tagging . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Dependency parsing . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Semantic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.1 Words as features . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Language modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.1 N-gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Network-based LMs . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Multi-view learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Canonical correlation analysis . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Invariant representation . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Relation to domain adaptation and transfer learning . . . . . . . 13
2.5.4 Consensus networks . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



CONTENTS iv

3 Language understanding models 16
3.1 Attentional LSTM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 AlignEmbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 AlignAttention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Evaluating the understanding 22
4.1 Sentiment classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Textual entailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Experiments and discussions 26
5.1 Movie review sentiment analysis . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Effect of lemmatization . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Textual entailment classification . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 Compositional alignments outperform baseline . . . . . . . . . . . 28
5.3.2 More embeddings do not guarantee better performances . . . . . 28
5.3.3 Artificial Gaussian noise is recommended . . . . . . . . . . . . . . 29
5.3.4 Variables are controlled in experiments . . . . . . . . . . . . . . . 29

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusion 32

Bibliography 33

A Appendix 40
A.1 Model hyper-parameters for IMDB experiments . . . . . . . . . . . . . . 40
A.2 Model hyper-parameters for SNLI experiments . . . . . . . . . . . . . . . 40



List of Tables

4.1 SNLI examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Classification accuracies on IMDB dataset. . . . . . . . . . . . . . . . . . 27
5.2 Classification accuracies on IMDB dataset (lemmatized). . . . . . . . . . 27
5.3 Classification accuracies on SNLI dataset. . . . . . . . . . . . . . . . . . 28

A.1 Hyper-parameters for our best models in IMDB experiments. . . . . . . . 41
A.2 Hyper-parameters for our best models in SNLI experiments. . . . . . . . 42

v



List of Figures

2.1 Consensus Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Basic LSTM Classifier model with one embedding (left) and three em-
beddings concatenated (right) . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 AlignEmbed model. Left: shared encoder parameters; right: independent
encoders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 AlignAttention model. The left variant uses one attentional LSTM per
embedding, while the right variant uses a shared attentional LSTM for
different embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Histogram of review lengths for IMDB. . . . . . . . . . . . . . . . . . . . 23
4.2 Histograms of SNLI sentence lengths. . . . . . . . . . . . . . . . . . . . . 25

vi



Introduction

Understanding the meaning of natural languages has been a fundamental problem in

natural languages processing research and linguistics. People have long realized that,

in addition to describing experiences for people, languages are also able to shape the

experiences for the speakers (Hoijer, 1954). This is referred to as linguistic relativ-

ity. Some people took a more radical step, hypothesizing that languages limit and

determine cognitive categories. This is linguistic determinism. Linguistic relativity and

determinism are treated as a weak and strong formulations of the Sapir-Whorf hypothe-

ses, respectively (Pinker, 1994). Understanding the meanings of languages, therefore, is

a significant step in knowing about the essence of intelligence, However, this has never

been an easy task, because of the expressiveness and versatility of languages. ”Their

essence is hidden from us.” (Wittgenstein, 1953).

Linguistic people have provided various frameworks to analyze mechanisms in which

languages make sense to humans. Among them, linguistic compositionality is a prevalent

framework, and can be related to NLP algorithms.

The linguistic compositionality framework is based on the compositionality principle.

The principle has many formulations, and one of them can be briefly written as: In

language L, the meaning of a complex expression ε is determined by its structure and

the meanings of its constituents. This framework has various advantages. Following are

two examples mentioned in Szabó (2017).

First, compositionality supports productivity. Given a set of syntactical rules and a

finite vocabulary, we will be able to understand the meanings of sentences that we have

not encountered before. This make possible for human to learn languages.

Second, compositionality breaks down meaning into syntactic and semantic aspects,

which enables systemic analysis in natural languages processing. To capture the syn-

tactic structures, people have assigned PoS tags and dependency parses to words (Aho

1



CHAPTER 1. INTRODUCTION 2

and Ullman, 1972). Neural networks (e.g., LSTM) are also used to capture syntac-

tic structures (Kiperwasser and Goldberg, 2016; Kırnap et al., 2018). To capture the

semantic of sentence components, people have used word-based features including tf -

idf , distributed semantic models (Bengio et al., 2003; Mikolov et al., 2013; Bojanowski

et al., 2017), and co-occurrence based models (Pennington et al., 2014; Shin et al., 2018).

A challenging task is language modeling, which involves both syntactic and semantic

aspect, but focuses on the discourse rather than understanding.

We follow the linguistic compositionality framework to build language understanding

models. Although linguistic compositionality allows systematic NLP analysis, it is very

hard to make developments in either syntactic or semantic aspect. Coming up with

models that capture syntactic aspects by designing neural network structures require

significant amount of experiments with trial-and-error. On the other hand, building new

models with good grasp of semantic aspects requires great insights (Peters et al., 2018;

Devlin et al., 2018; Howard and Ruder, 2018; Radford et al., 2019). Moreover, existing

distributed semantic models suffer from least one of (1) explainability, (2) suboptimal

distribution, and (3) lack of ability in handling non-standard tokens.

1.1 Thesis statement

The goal of this thesis is to develop a natural languages understanding (NLU) model

using the linguistic compositionality framework. We utilize existing network structures

to capture syntactic aspects, and use distributed semantic models (word embeddings)

to capture semantics of individual words, and use a multi-view learning framework,

consensus networks (Zhu et al., 2019), to combine the benefits of word embeddings.

We evaluate our compositional alignment models on two challenging NLU tasks, sen-

timent detection and inference classification. On 7 of 8 scenarios, the best compositional

alignment models outperform the baseline.

1.2 Overview of the thesis

Chapter 2 will briefly review background works, including two linguistic frameworks

and various NLP approaches organized according to compositionality framework cate-
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gories: syntactic and semantic methods. Chapter 2 will also review multi-view learning

methods that are relevant to the work in this thesis. These previous works motivate the

development of our compositional alignment models. Chapter 3 proposes our models,

and Chapter 4 describes the tasks we use to evaluate natural languages understanding

(NLU) models. In Chapter 5, experiments and ablation studies are presented and dis-

cussed. Chapter 5 also discusses possible future works. This thesis concludes with a

summary in Chapter 6.



Related works

2.1 Language meaning in linguistic frameworks

Two linguistic frameworks have been popular. Before mentioning the compositional

framework mentioned above, we will first summarize another framework, meaning holism.

2.1.1 Holism

From the holism point of view, the meaning of individual words and sentences should

never be understood in isolation. This framework could be illustrated by two arguments.

First, the predecessor and successor sentences could qualify, even pivot the meaning of

certain words in the present sentence. For example, the sentence ”Meredith is in a

terrible state” is ambiguous, dependent on the meaning of ”state”. If we appended

a sentence ”She would never want to travel to this state again”, then the meaning of

”state” as a mental status would be rendered inapplicable. Second, what the author

wants to say depends on what is said, as well as what is not said. Discourses should

be answered as ”a stylistic whole”. Especially, for any novel involving stories, the

development of the world with time form a unique structure, chronotope (Bakhtin,

1935). As an example, the question ”Why so serious?” immediately reminds people of

Joker in the movie Dark Knight. In short, it is impossible to determine precise the

meaning of words independent of their contexts.

Holism, however, is subject to various counter-arguments. Jackman (2017) men-

tioned several of them. On one hand, holism appears to deny the possibility of under-

standing languages, because the unspoken words could potentially lead to significant

changes in language meanings. This is the argument of instability. On the other hand,

holism seem to treat every sentence to have a positive impact on the holistic semantics,

4
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whereas in fact some sentences are just objectively false. This is the argument of objec-

tivity. More importantly, holism is in general incompatible with the compositionality

assumption about languages: regardless of unspoken contexts, people are able to cap-

ture the meanings fairly well, if they parsed the sentences correctly and they understood

individual word meanings.

2.1.2 Linguistic compositionality

According to Szabó (2017), the principle of compositionality has several slightly different

formulations. One of them, the contextual variant, can be stated as: In language L, the

meaning of a complex expression ε is determined by its structure and the meanings of

its constituents under the context of ε.

Fodor and Lepore (1991) advocated the reverse compositionality : The meaning of

a word is determined by any complex expressions in which the word occurs as a con-

stituent. This argument, usually referred to as Frege’s context principle, bridges the gap

from ”understanding sentences” to ”understanding the words”, which people in general

take for granted.

2.2 Syntactic methods

To understand sentences syntactically, people have proposed various machine learning

tasks including part-of-speech tagging, and dependency parsing. Note that many algo-

rithms to solving these problems involve some semantic understanding of the sentences,

but the following summary focus on their syntactic aspects.

2.2.1 Part-of-speech tagging

Part-of-speech (PoS) tagging assigns a part-of-speech tag to each word in the sentence.

Usually the PoS tags follow the Penn TreeBank categories (Marcus et al., 1994), includ-

ing VB (verb base form), JJ (adjective), and NN (singular form noun), etc. Another set

of tags, the universal PoS tags1, are also widely used. These include NOUN (noun), ADJ

(adjective), and PRON (pronoun). SpaCy2 produces universal PoS tags.

1http://universaldependencies.org/u/pos/
2https://spacy.io
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PoS tagging is usually formulated as a sequential classification problem. Tradition-

ally, hidden Markov models (HMMs) and Viterbi algorithm have been applied to address

PoS taggings (Manning and Schütze, 1999). A popular solution towards sequential clas-

sification problem is to run an RNN across the sentence outputting softmax probabilities

at each step. Nowadays, Bidirectional LSTM based models (Bohnet et al., 2018) have

reached up to 97.96% accuracies on Penn TreeBank. However, PoS tagging is only a

subtask in understanding natural languages.

2.2.2 Dependency parsing

Dependency parsing (DP) is another popular sub-task for NLU. In dependency parsing,

people build up a syntactic tree for each sentence, where each word is a tree node.

Note that there might be multiple possible parsing trees for syntactically ambiguous

sentences. Probabilistic parsing therefore computes the conditional probability of each

tree t for a sentence s given some grammar rules G: P (t | s,G).

Dependency parsing could also be formulated as a sequential tagging problem. In

spaCy, for example, each word is given two tags: dep (the dependency tag, like ROOT

or nsubj), and head, the parent node of the word in parsing tree. For each step, several

possible choices could be assigned to the word in the sentence, as well as a conditional

probability for the sentence segment P (t1:i | s1:i, G), where s1:i represents the sentence

segment and t1:i represents the set of tags that constitute the parse tree up till step i. In

each step i, the choice of tag leads to potentially different possibilities of the following

step: P (t1:i+1 | s1:i1 , G) = P (t1:i | s1:i, G)P (ti+1 | t1:i, s1:i+1, G). Iterating through the

sentence eventually results in a joint probability P (t | s,G).

Note that many of the conditional probability factors are shared, so dynamic pro-

gramming could be applied to avoid many repeated computations. On the other hand,

the sequential prediction problem gives a tree-structured search space. Various search

methods (e.g., stack decoding (Jelinek, 1969), uniform-cost search, A*) could be applied

to the search problem.

The current state-of-the-art dependency parsers are based on LSTMs (Clark et al.,

2018). On Penn Treebank dataset, they reached 96.61 UAS (unlabeled attachment

score) and 95.02 LAS (labeled attachment score).
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2.3 Semantic methods

From the semantic aspect, most existing natural language understanding subtasks ap-

proximately belong to three categories: word features, language modeling, and embed-

ding.

2.3.1 Words as features

The most simple approach to encode features is one-hot encoding. If we use a high-

dimensional vector to represent a document d, each word in vocabulary corresponds to

a dimension in vector. If we take the raw occurrences of each word (”term”, ft,d) as its

corresponding feature value, frequent words that are not specifically associated to any

documents like ”the”, ”a” will have overwhelming large weights. An improved feature

is the tf -idf , which is the product of term frequency and inverse document frequency.

Term frequency is computed from the occurrences of words. A popular implementation

for term frequency of term t in document d is:

TF (t, d) = 0.5 +
ft,d

max{t′ ∈ d : ft′,d}

where the additional 0.5 smoothed the distribution and prevents zero values in the

out-of-document terms. Document frequency, on the other hand, can be implemented

as:

IDF (t,D) =
N

1 + |{d ∈ D : t ∈ d}|

where N is the total number of documents in the corpus D: N = |D|, and the term

|{d ∈ D : t ∈ d}| counts the number of documents where the term t occurs. The

additional 1 prevents the denominator to be zero. Those words occurring in more

documents will have lower inverse document frequency, hence their tf -idf feature values

will be inhibited.

Usually this approach generate high-dimensional vectors (several thousands, depend-

ing on the size of vocabulary). SVM have been particularly well-suited for handling them

(Joachims, 1999).

An important drawback for individual word-based features is their negligence of

the effects of word co-occurrences on their semantics. In discourses, surrounding texts



CHAPTER 2. RELATED WORKS 8

produce an immediate context that could modify the meaning of individual words. For

example, in ”Meredith is in a terrible state, one I have never been in”, the word ”state”

probably refers to some mental state. In ”Meredith is in a terrible state, one I have never

been to”, the word ”state” more likely refers to some geographical units. With tf -idf

representation, however, the feature of the word ”state” would remain the same scalar.

Given the same context, the vector representations of these two sentences might even

be the same, because both ”in” and ”to” are stopwords have minimal inverse document

frequencies. The discrepancies in these two sentences reside in the co-occurrences of

words, which simple word-based features fail to capture.

2.4 Language modeling

Language modeling contains a wide variety of approaches. In general, they model the

conditional probability of a word w within its context cw: P (w | cw). Note that language

modeling involves both syntactic and semantic aspects of languages.

If the context of a token (e.g., word) refers to all previous tokens in a sentence w0..i−1,

then the language model predicts the conditional likelihood of the token P (wi | w0..i−1).

Char-RNN (Karpathy et al., 2015) and GPT (Radford et al., 2019) belong to this

category. If otherwise, the context of a token refers to both previous and successor

tokens in a sentence of length n tokens, then the language model predicts the cloze task

conditional probability P (wi | w0..i−1, wi+1,..n). BERT (Devlin et al., 2018) fall in this

type.

2.4.1 N-gram

N-gram is a particular type of language models. N-gram models predict the probability

of a word based on a window of N − 1 previous words:

P (wi | cwi
) ≈ P (wi | wi−1.., wi−N+1)

A benefit of N-gram models is their capture of word co-occurrence information. There-

fore, frequencies of N-grams could represent their probabilities:

P (wi, ..., wi+N−1) ≈ f(wi, ..., wi+N−1)
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Here, no tf -idf weighting is required. Note that N-gram could involve a much larger

vocabulary space than individual words as features, and that most frequency entries

would be zero due to the lack of coverage in text corpus. Smoothing methods like

Kneser-Ney algorithm (Kneser and Ney, 1995) are usually applied when computing

probabilities from frequencies.

2.4.2 Network-based LMs

Typical examples include OpenAI’s Generative Pre-Training (GPT) (Radford et al.,

2019), where a multi-layer model based on Transformer (Vaswani et al., 2017) with

residual connections (He et al., 2016) learns the conditional probabilities and each to-

ken is a pair of bytes. Another outstanding example is the Bidirectional Encoders

Representations from Transformers (BERT) model, which randomly masked 15% of

words when passing into a deep bidirectional Transformer.

2.4.3 Embedding

A common problem in language modeling approaches mentioned above is the curse of

dimensionality. The dimension of vectors is determined by the size of vocabulary, which

could result in prohibitive computational efforts in various tasks.

Probabilistic neural representations as embedding Bengio et al. (2003) put for-

ward a walkaround method. They used low-dimensional neural network representations

for individual words, and optimize the network parameters towards maximizing the

likelihood of occurring words. This is possible because neural networks are hierarchical

feature extractors that can learn representative embedding spaces in their intermedi-

ate layers. In their paper, the loss function was a sum of the log probability and a

regularization term R(θ):

min
θ
{−logPθ(w1, ..., wn) +R(θ)}

where θ is the parameters in neural networks, and the regularization term is a weight

decay penalty. When training with back propagation with parallel computation, the

optimization could be completed within realistic time.
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Word2vec embedding Word2vec was made popular by Mikolov et al. (2013). They

use a two-layer neural network in either skip-gram (SG) or continuous-bag-of-words

(CBOW) manner, and take the intermediate representation as embedding of each word.

For SG, the network predicts the context of a word. For CBOW, the network predicts

the current word based on its contexts. They used hierarchical softmax and negative

sampling in implementation. An impressive property of word2vec models is their ability

to map semantic similarity into Euclidean space, so that simple arithmetic addition /

subtraction could correspond to the semantic analogy task, for example:

MostSimilar(vking + vman − vwoman) = vqueen

FastText (Bojanowski et al., 2017) incorporated some subword tokens, so many fre-

quent typos would not result in out-of-vocabulary error wen querying word embeddings.

Word co-occurrence embedding Another category of methods to compute low-

dimensional, semantic-preserving embedding vectors for words result from the co-occurrence

statistics.

GloVe (Pennington et al., 2014) embeddings are based on the observations that sim-

ilar words more likely to occur within the context of each other, and that the relative in-

stead of absolute frequencies indicate the likelihoods. With some simplifications, GloVe

proposed a global log-bilinear regression target, which leads to a set of low-dimensional

word representations.

Other approaches utilize co-occurrence statistics. For exmaple, Shin et al. (2018)

applied an SVD to the positive point-wise mutual information (PPMI) marix, and trun-

cated a small number of columns as embeddings. An eigenvector analysis provided some

hints towards the properties of the word distributions (e.g., a high eigenvalue of a word

might indicate close relationship to corresponding semantic group), hence increasing the

explainability.

Problems of embeddings Although word embedding methods have demonstrated

impressive performances on various tasks, they are subject to numerous criticisms.

First, the latent features in embedding spaces are not explainable. This has been a

problem with most latent, especially neural network derived features (Lipton, 2018).



CHAPTER 2. RELATED WORKS 11

Second, the distributions of embedded word vectors are far from optimal. For ex-

ample, Gong et al. (2018) showed that many embeddings tend to place high frequency

words and low frequency words in distant sub-regions. Caliskan et al. (2017) showed

that word embeddings implicitly learn gender, race, and other bias that correspond to

human results in the Implicit Association Test (Greenwald et al., 1998).

Third, word embeddings in general lack the ability to handle non-standard language

tokens, including typos, short-hand notations, domain-specific vocabulary, and other

language tokens that are either rare or absent from training corpus.

Each embedding could handle one or two of the above-mentioned drawbacks, but

none of the existing word embeddings are simultaneously (1) inclusive of possible tokens,

(2) agnostic of undesired information, (3) expressive enough for downstream tasks, (4)

explainable, and (5) convenient for off-the-shelf usage. In this thesis, we use multi-view

learning to mitigate the drawbacks of various word embeddings.

2.5 Multi-view learning

One formulation of multi-view learning can be usually formulated as: Given N data

samples x(i)|i=1..N , where each data point contains M views: x(i) = [x1
(i), ..,xM

(i)].

Each view could have different number of features, but all data points are constrained

to these dimensions. The data labels are also given as y(i). We would like to learn a

probability distribution P (y|x).

2.5.1 Canonical correlation analysis

Traditionally, multi-view learning is addressed by canonical correlation analysis (CCA).

CCA The goal of CCA is to find a factor z that maximally correlates to two sets of

variables x1 and x2. To use CCA in multi-view learning, two projection matrices w1

and w2 are set up (Hotelling, 1992):

w∗1, w
∗
2 = max

w1,w2

corr{w1x1, w2x2}
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The learned factors can be either of w∗1x1 and w∗2x2, where the w∗i represent the optimal

value for the weight parameter wi. Note that although we described the case for two

factors, the CCA method could be easily extended to multiple factors by for example

maximizing the sum of correlations between all pairs of factors. Finally, the learned

factors could be conveniently used for downstream classification tasks.

Kernel CCA Kernel canonical correlation analysis (KCCA) (Hardoon et al., 2004)

projects the two input factors into latent spaces using functions f1 and f2. These

spaces, written as H1 and H2, are the reproductive kernel Hilbert spaces (RKHS) of the

functions f1 and f2 respectively. KCCA maximizes the correlations between the images

of the two projection functions:

f ∗1 , f
∗
2 = max

f1∈H1,f2∈H2

corr(f1(x1), f2(x2))

= max
f1∈H1,f2∈H2

cov(f1(x1), f2(x2))√
var(f1(x1)var(f2(x2)))

Note that the ”kernel trick” is used here. Specifically, if φ(x1) and φ(x2) represent

two sets of features in a metric space H, then their inner product could be represented

using a continuous valued kernel function K(x1,x2):

K(x1,x2) = 〈φ(x1), φ(x2)〉H

Deep CCA Using deep neural networks as encoders E1..M to project vectors x into

latent representations z, we can optimize the encoders to make the z maximally correlate

to all views of features:

E1, .., Em = max
E1..M

corr{z1..M}

This is Deep CCA (Andrew et al., 2013). CCA-based approaches have been the default

multi-view learning methods prior to generative adversarial networks (Goodfellow et al.,

2014) became popular.
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2.5.2 Invariant representation

In recent years, Generative Adversarial Network (GAN) (Goodfellow et al., 2014) mo-

tivates a category of multi-view learning approach: invariant representations. In GAN,

a generator network tries to generate fake images that are indistinguishable from real

images, while the discriminator network tries to tell real and fake images apart. Sim-

ilarly, to produce invariant representations, several deep encoders try to project the

features from different views onto an indistinguishable low-dimensional representational

space, while a discriminator network tries to distinguish the originating view of the

latent representations. The encoders E1,..M and the discriminator D are optimized with

adversarial goals:

max
E1..M

min
D
LD

where LD can be the cross entropy loss of originating view classification. In practice,

these goals can be realized with a gradient reversal layer, which can be easily imple-

mented by various automatic differentiation toolboxes including TensorFlow (Abadi

et al., 2016) and PyTorch (Paszke et al., 2017).

2.5.3 Relation to domain adaptation and transfer learning

Note that multi-view learning are closely related to domain adaptation and transfer

learning, because of the similarity in tasks. Multi-view learning learns a shared repre-

sentation from input data of different origin. Domain adaptation and transfer learning

often require models to learn transferable representations of features between domains,

which require the models to have capacity to extract information to a shared represen-

tational space. It is therefore no wonder that prevalent multi-view learning approaches

are also widely used in domain adaptation and transfer learning (Long et al., 2015;

Ganin et al., 2016; Hsu et al., 2018). In this thesis, we do not delve into the tasks of

domain adaptation and transfer learning. We consider natural languages understanding

a uni-domain problem, and do not transfer prior knowledge from pre-train corpus.
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2.5.4 Consensus networks

A problem exists in learning adversarial view-invariant representations for multi-view

learning. Although the latent representations are indistinguishable from the viewpoint of

the discriminator network, there is no way we can control how the features are projected

onto the representational spaces. This motivates our development of consensus networks

(Zhu et al., 2018, 2019).

Figure 2.1: Consensus Network

In consensus networks, we divide linguistic features from different modalities (i.e.,

acoustic, syntactic, and semantic) x1..M into non-overlapping views, and project them

into indistinguishable, low-dimensional subspaces with a set of interpreter networks

I1..M . A discriminator D tries to tell apart their originating modalities (by minimizing

LD), and a classifier C tries to classify based on the latent representations (by minizing

LC). Both LD and LC are cross-entropy losses. Overall, the optimization goals are:

min
I1..M

max
D
LD and min

C,I1..M
LC (2.1)

Three components in consensus networks are essential for their performance.

1. An artificial noise ”view” is generated to pass in the discriminator but not the

classifier network. This encourages the discriminator to carefully inspect the de-

tails of latent representations, and in turn encourages the interpreters to encode
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rich representations. On DementiaBank, this improves classification accuracies by

almost 5%. The most suitable type of noise depends on the problem scenarios. In

Zhu et al. (2018), the mean and variance of the Gaussian noise is just the average

of mean and variance of the true views. In our compositional alignment models,

as will be shown in later chapters, a Gaussian noise with zero mean and a fixed

variance turn out to be the most beneficial.

2. Cooperative optimization. We let gradients to back-propagate to the interpreter

networks while optimizing LC . This guides the interpreters to encode information

that are beneficial to multi-view learning.

3. Disentangled, iterative training procedure. Instead of using a gradient reversal

layer, we let the two optimization mechanisms in 2.1, namely the consensus mech-

anism and classification mechanism, run iteratively. Therefore, only the classifi-

cation needs training data labels, while the consensus mechanism can operate on

abundant, less expensive, unlabeled training data. This results in Transductive

Consensus Networks (Zhu et al., 2018).

2.6 Proposed methodology

The above related works naturally lead to the proposal of our framework. We propose an

NLU framework derived from the linguistic compositionality framework. We use LSTMs

(Hochreiter and Schmidhuber, 1997) to capture syntactical structures, use existing word

embeddings to capture semantic of their components, words, and use consensus networks

to gather the benefits of off-the-shelf the embeddings.



Language understanding models

There are two options when determining the order between the alignment with con-

sensus networks and the recurrence with LSTM. We refer to them as AlignEmbed and

AlignAttention, respectively. If we first align the embeddings and then pass into LSTM,

the resulting model is AlignEmbed. If we first pass individual embeddings into LSTM,

and then align with consensus networks, the model is AlignAttention. Both models, as

well as the baseline (attentional LSTM classifier), use AttentionalLSTM as a building

block. In this section, we briefly describe all three models.

3.1 Attentional LSTM Classifier

Figure 3.1: Basic LSTM Classifier model with one embedding (left) and three embed-
dings concatenated (right)

We use attentional LSTM (similar to (Yang et al., 2016)) to build a baseline classifier.

Given a document w1..T , we first acquire their vector representations v
(1)
i ..v

(E)
i through

16
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E embeddings in off-the-shelf manner. For the ith word, directly concatenating all

embedding vectors results in the input vector vi. For a document containing N tokens

(words), the queried vectors form a matrix with shape (N, 300 × E) (assuming each

word embedding dimension 300). This the input matrix for the attentional LSTM.

The attentional LSTM model contains a long-short term memory (LSTM) network

with attention mechanisms. The LSTM equations are summarized in Equation 3.1.

it = σ(Wi[xt,ht−1] + bi)

ot = σ(Wo[xt,ht−1] + bo)

ft = σ(Wf [xt,ht−1] + bf )

gt = tanh(Wg[xt,ht−1] + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(3.1)

Here σ is the Sigmoid function. Wi, Wo, Wf , Wg are trainable parameter matrices

of shape (din, drnn), mapping the input dimension din to hidden dimension drnn. Note

that we use the bidirectional version, and the state outputs from both directions are

concatenated to form a new state output: ht = [
−→
ht,
←−
ht]. In case multiple LSTM layers

are placed, the state output ht of lower layer is passed as the state input xt into the

upper layer LSTM. The state outputs of the final level LSTM are used to compute the

attentions.

In this thesis, we use a simple attention mechanism, formulated in Equation 3.2.

w = HW

A = wTH
(3.2)

where H is a matrix of shape (N, dh), where dh is the dimension of ht. Each row of H

consists of the vector ht. The self-attention weight w is of shape (N, dw), where dw is

a model hyperparameter. When multiplied with the matrix H, the resulting attention

A has shape (dw, dh).

Above mentioned is the structure of an AttentionalLSTM block, which will also be

used in our following models.

The final step is to place a dense projection layer on top of attentional LSTM block.
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This layer, referred to as FC in Figure 3.1 and the C network in following equations,

predicts the probability of a document label from both the attentions and the final steps

of LSTM:

P = σ(C[A,hN, cN])

In training, we optimize all model parameters to minimize the cross-entropy loss:

minLc, where Lc = E -logP (ŷ = y)

3.2 AlignEmbed

This section describes the first of our two models, AlignEmbed.

Figure 3.2: AlignEmbed model. Left: shared encoder parameters; right: independent
encoders.

We use consensus networks (Zhu et al., 2019) to project vectors of word from multiple

embedding domains, v
(e)
i into a shared low-dimensional space xi before passing into the

AttentionalLSTM classifier, in following three steps.

1. For a word vector v
(e)
i from different embeddings (e = 1, 2, ...Ne), an encoder Ee

projects it to x
(e)
i :

x
(e)
i = Ee(v

(e)
i )

Dependent on whether these encoders share parameters, AlignEmbed has two

versions, as denoted in Figure 3.2. Then concatenate all these Ne representations:
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xi = [x1, ..,xNe ].

2. A discriminator network D is set up to classify which originating embedding does

a word come from.

Pdisc(ê) = σ(D(x
(e)
i ))

The corresponding loss is LD = Ev-log Pdisc(ê = e).

3. According to the set up in consensus networks, an artificially generated noise

embedding is also passed into the discriminator (but not the AttentionalLSTM),

to regularize how the embeddings are projected. For example, if the generated

noise embedding is Gaussian with large variance, then the projected embeddings

are encouraged to be compact in variance.

An AttentionalLSTM module takes in the projected (and concatenated) embeddings,

and outputs the attention for a fully connected classifier C to compute the probabilities.

The equations defining the output and loss are abbreviated as:

a = AttentionalLSTM(x1..N)

P = σ(C(a))

Lc = Ev -logP (ŷ = y)

We set up competing objectives to optimize these two losses:

min
E

max
D
LD and min

C,E
LC

3.3 AlignAttention

AlignAttention first compute a fixed-length attention vector a(e) using the AttentionalLSTM

block for each word embedding (indexed by e):

a(e) = AttentionalLSTM(vi)

Then align the attentions using consensus network structure in the following three

steps.
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1. Let a discriminator network D guess the originating embedding index ê of each

attention. The equation and associated discrimination loss can be written as:

P (êe) = D(a(e))

LD = E -logP (ê = e)

Dependent on whether we share the attentional LSTM, there are two variants, as

shown in Figure 3.3.

2. For each document with label y, all projected attentions are concatenated and

passed into the fully-connected classifier C, which predicts the estimated output

ŷ. The equation and associated classification loss are:

P (ŷ) = σ(C([a1, a2, ..]))

LC = E -logP (ŷ = y)

3. An artificial ”noise attention” is also passed into the discriminator (but not the

classifier), to regularize how the attentions are projected to the common represen-

tational space.

Similar to AlignEmbed, the overall optimization goals is also a min-max game and

a classification mechanism.

min
D

max
θ
LD and min

θ,C
LC

where θ represent the parameters of the AttentionalLSTM blocks.
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Figure 3.3: AlignAttention model. The left variant uses one attentional LSTM per
embedding, while the right variant uses a shared attentional LSTM for different embed-
dings.



Evaluating the understanding

In this thesis, we evaluate the ability of natural languages understanding (NLU) with

two widely used tasks: sentiment classification and textual entailment. Note that each of

these tasks only measure an aspect of natural languages understanding abilities, which

we will briefly describe in this section.

4.1 Sentiment classification

A popular sentiment classification dataset is IMDB movie review dataset (Maas et al.,

2011). It contains 50,000 movie reviews from IMDB, with exactly half of them labeled

as ”positive” and half ”negative”. Following are two examples:

Positive (excerpt from train/pos/14 10.txt) This film has a special place in

my heart ... <br /><br /> Excellent performances by Jane Fonda and Robert

DeNiro that rank with their best work, a great turn by a young Martha

Plimpton, an inspiring story line, and a haunting musical score makes for

a most enjoyable and rewarding experience.

Negative (excerpt from train/neg/13 2.txt) Weak plot, predictable violence,

only semi interesting characters. Like the writer (also one of the stars?)

was fictionalizing his own screw ups and added an incredulous fantasies of

drugs and murder to make it "hot". From the predictable rap and house

soundtrack, to the family conflicts, it’s poorly acted, stereotypical, and

ultimately terribly boring. ...

Figure 4.1 contains a histogram of movie review document lengths (number of words

in raw documents). 49,977 (99.95%) out of 50,000 movie reviews have lengths shorter

22
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than 1200 tokens.

The current state-of-the-art performance is 95.3% accuracy, achieved by Howard and

Ruder (2018).

Figure 4.1: Histogram of review lengths for IMDB.

4.2 Textual entailment

A widely used textual entailment dataset is Stanford Natural Languages Inference

(SNLI) dataset (Bowman et al., 2015b). The dataset contains 570,152 pairs of sentences,

with label depicting their relations: ”neutral” (189,218), ”contradiction” (190,113), and

”entailment” (189.702). For each data point, they acquired five human labels and took

the majority. Note that there are 1,119 sentence pairs with ambiguous labels. These la-

beles are determined ”ambiguous” because the five human labels fail to give a majority

agreement. In our experiments, we exclude these sentence pairs.

Table 4.1 contains several SNLI examples. Note that the sentences might not be

syntactically correct or complete, but the sentences carry certain amount of meaning.

Figure 4.2 shows histograms of lengths (number of words) in two sentences of SNLI.
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99.76% of sentences have lengths smaller than 50, and 98.66% have lengths smaller than

40.

Baseline LSTM encoders give around 80% accuracies (Bowman et al., 2015a, 2016).

LSTMs with carefully designed self-attentions or hierarchical structures give 83% to

87% accuracies (Liu et al., 2016; Chen et al., 2018; Talman et al., 2018). Currently, the

best results for SNLI are achieved by multi-task learning (Liu et al., 2019).

Sentence 1 Sentence 2 Label
Children smiling and
waving at the camera. There are children present. entailment
Children smiling and
waving at the camera. They are smiling at their parents. neutral
Children smiling and
waving at the camera. The kids are frowning. contradiction

A couple walks hand in hand
down a street. A couple is walking together entailment
A couple walks hand in hand
down a street. The couple is married. neutral
A couple walks hand in hand
down a street. The couple is sitting on a bench. contradiction
During calf roping
a cowboy calls off his horse. A first time roper falls off his horse. neutral
During calf roping
a cowboy calls off his horse. Cowboy falling off horse. (ambiguous)
During calf roping
a cowboy calls off his horse. A man ropes a calf successfully. contradiction

An older women
tending to a garden. The lady is cooking dinner. contradiction
An older women
tending to a garden. The lady is weeding her garden. neutral
An older women
tending to a garden. The lady has a garden. entailment

Table 4.1: SNLI examples
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Figure 4.2: Histograms of SNLI sentence lengths.



Experiments and discussions

This section presents our experiment setting and results for the two tasks mentioned

above: word similarity, sentiment classification, and textual entailment.

5.1 Movie review sentiment analysis

5.1.1 Setting

The IMDB dataset (Maas et al., 2011) is divided into training and testing sets, each

with 25,000 samples. For evaluation, we randomly split the testing folder into dev and

test set, respectively. Preprocessing includes removing the new-line html tag (<br />),

punctuations, symbols, and the components with part-of-speech tagged as ”unknown”

by SpaCy 1. All words are converted to lower-case.

Our models require multiple pretrained word embeddings. We use three embeddings:

FastText2 (Bojanowski et al., 2017), GloVe3 (Pennington et al., 2014), and Word2vec4

(Mikolov et al., 2013). All three word embeddings are downloaded from websites in an

off-the-shelf manner. In the remaining sections of this thesis, they are referred to as

”F”, ”G”, and ”W”, respectively.

5.1.2 Results

The accuracy results are shown in Table 5.1. AlignEmbed models outperform remaining

ones in all four combinations of embeddings.

1spacy.io
2FastText use wiki-news-300d-1M-subword from fasttext.cc.
3GloVe use glove.840B.300d from https://nlp.stanford.edu/projects/glove/.
4Word2Vec use Model 6 (gensim-skipgram-wiki2017) from http://vectors.nlpl.eu/repository
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Model
Embedding

F+W F+G W+G W+F+G
LSTMClassify .892 .914 .909 .915

AlignEmbed (shared projector) .910 .916 .916 .914
AlignEmbed (separate projector) .500 .918 .917 .916
AlignAttention (shared LSTM) .905 .910 .900 .868

AlignAttention (separate LSTM) .903 .904 .906 .874

Table 5.1: Classification accuracies on IMDB dataset.

5.1.3 Effect of lemmatization

We experiment on the effect of preprocessing inputs as an ablation study. Here, in

additional to the previously mentioned preprocessing steps (i.e., removing punctuations,

converting to lower cases), all movie reviews are lemmatized. Table 5.2 shows that

accuracies drastically decrease in any choice of word embedding scenarios. Note that all

three embeddings we use were trained on unlemmatized corpus. Therefore, a decrease

in accuracy is expected, because of the mismatch in word forms (i.e., lemmatization or

not) between the embedding corpus and train / test corpus.

Model
Embedding

F+W F+G W+G W+F+G
LSTMClassify .770 .773 .791 .768

AlignEmbed (shared projector) .764 .790 .768 .797
AlignEmbed (separate projector) .784 .633 .791 .800
AlignAttention (shared LSTM) .798 .792 .807 .800

AlignAttention (separate LSTM) .779 .801 .792 .789

Table 5.2: Classification accuracies on IMDB dataset (lemmatized).

5.2 Textual entailment classification

5.2.1 Setting

For each sentence pair in Stanford natural languages inference (SNLI) dataset, we con-

catenate the two sentences while inserting a separator punctuation token (e.g., the

period sign at the end of sentence) in between. Additionally, we fix the length of each
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input sequence to 40 by either padding with dummy words or truncating. In imple-

mentation, the sequence of concatenation was arbitrarily determined to be ”sentence 2

- period - sentence 1”, so that the padding or truncation will mainly affect ”sentence

1”, which is usually the longer one, as illustrated in Figure 4.2.

5.2.2 Results

As shown in Table 5.3, AlignEmbed models outperform AlignAttention and baseline

LSTM classifier in most scenarios.

Model
Embedding

F+W F+G W+G W+F+G
LSTMClassify .778 .731 .774 .782

AlignEmbed (shared projector) .773 .779 .743 .786
AlignEmbed (separate projector) .774 .780 .777 .784
AlignAttention (shared LSTM) .752 .750 .769 .741

AlignAttention (separate LSTM) .770 .762 .771 .758

Table 5.3: Classification accuracies on SNLI dataset.

5.3 Discussions

5.3.1 Compositional alignments outperform baseline

From the above results, the better of our two compositional NLU models, AlignEmbed,

outperforms benchmark LSTM in 7 out of 8 scenarios. Among the AlignEmbed models,

the variant with separate projectors outperform baseline classifiers in 6 out of 8 scenarios.

These experiments show that aligning embeddings with our compositional method could

be superior to the alignments relying on deep LSTMs.

5.3.2 More embeddings do not guarantee better performances

In either of IMDB or SNLI experiments, the performances of models do not always

improve as more embeddings are included. For example, in IMDB experiments (Table

5.1), W+F+G embeddings fail to outperform F+G in 4 of the 5 models. A possible
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explanation to this effect is that proper projections of embeddings onto shared latent

spaces could be hard, if the embeddings encode distributed semantics in very distinct

manners.

Note that baseline LSTMs also do not guarantee better performances with additional

embeddings. For example, on non-lemmatized experiments shown in Table 5.2, the

accuracy of W+F+G fail to outperform either of F+W, F+G, or W+G.

5.3.3 Artificial Gaussian noise is recommended

The artificial noise view in consensus networks regularize how the views are projected

onto the shared latent spaces. On the IMDB and SNLI experiments, we find a Gaussian

noise with zero mean and variance 2.0 performing the best in most situations. Gaussian

noise with variances 0.1 and 0.01 could sometimes lead to the model being trapped in

local minimums, where the n-class training cross entropy loss equals log(n) and accuracy

on balanced n-class dataset equals 1
n
.

As a side note, noise views drawn from Gumbel and Rayleigh distributions (centered

at 0, and scales range from 0.01 to 1.0, for both distributions) often lead to these local

minimum scenarios.

5.3.4 Variables are controlled in experiments

The purpose of our work is not to design network structures that are specifically suitable

for some tasks. Instead, we show the efficacy of our NLU framework by controlling a

series of hyper-parameters throughout our experiments.

Structural prior For all models we implement (LSTMClassify, AlignEmbed and Alig-

nAttention), we use the same attentional LSTM block to capture syntactic structures

within the expressions. In all models relating to consensus networks (CNs), we let most

CN-specific hyper-parameters be their default values.5 In other words, we do no impose

structural priors (other than what is inherent in our proposed framework) when building

the models.

5These CN-specific hyper-parameters include the structure of discriminator (i.e., 1-layer fully con-
nected network), and the manner of iterative training between the consensus and the classification
mechanisms (i.e., set up consensus and classification mechanisms by 1:1). Zhu et al. (2018) discussed
some alternative optimization methods.
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Knowledge prior Different from many state-of-the-art natural language understand-

ing models, we do not explicitly incorporate prior knowledge from large, pre-training

corpus like BERT (Devlin et al., 2018) and GPT (Radford et al., 2019). Instead, we use

existing word embeddings in an off-the-shelf manner. Neither do we fine-tune (i.e., allow

gradients to backprop to) the embeddings like ULMFit (Howard and Ruder, 2018).

By controlling the knowledge prior as such, we compromise some accuracy in classi-

fication, but achieve something more important: cleaner evaluation of model capacities.

Transferred knowledge is hard to control. Sometimes the models preserve too much

knowledge from previous, heterogeneous tasks, resulting in negative transfer, while

sometimes the models forget too much information, giving catastrophic forgetting (Mc-

Closkey and Cohen, 1989). By controlling the knowledge prior, we are able to analyze

the effectiveness of our NLU models against baselines without being impacted by the

relatively hard-to-control transferred knowledge.

Model specific hyper-parameters We tune the model-specific hyper-parameters of

all models in the same, systematic manner, and report the best performance in each

problem scenario. The optimal parameters for all scenarios in our experiments are

included in Appendix A.

Training methods We follow the same training routine for all models. In all types

of optimizations, we use Adam optimizer (Kingma and Ba, 2014) with a learning rate

10−5 and zero weight decay. Other Adam optimizer parameters follow PyTorch default

(Paszke et al., 2017). The learning rate and weight decay are decided based on sev-

eral priliminary experiments with LSTMClassify and AlignAttention on IMDB dataset.

Each optimization is run for 100 steps, and the result from the step with the lowest

validation loss is recorded.

5.4 Future Work

While our researches establish a compositional alignment NLU framework, Future works

could be taken in several avenues.

First, we could extend the analysis and evaluate our compositional alignment NLU

framework more thoroughly using both downstream tasks and intrinsic evaluations.
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Potential downstream tasks include semantic role labeling (He et al., 2017). Possible

intrinsic evaluation methods include SimLex-999 (Hill et al., 2015) and SimVerb-3500

(Gerz et al., 2016), which measure the model’s abilities to map semantic similarity of

individual words into numerical space. These analysis could further and more compre-

hensively evaluate the natural languages understanding capacities of our models.

Second, more intuitions could be drawn from linguistics and philosophy. Linguistic

compositionality is not the only framework to analyze language and meanings. Semantic

holism, for example, considers the whole language context to have impact on meanings

of individual expressions. Pragmatics, as another example, considers the meanings of

languages when they are used in social interactions. Both of them could be considered

to motivate the developments of new natural languages understanding frameworks.



Conclusion

In this thesis, we propose a natural languages understanding (NLU) framework inspired

by linguistic compositionality, which states that language meanings depend on sentence

structures and the meanings of component words. We use bidirectional LSTMs to

capture syntactic aspects, and use off-the-shelf word embeddings to gather word mean-

ings. We use consensus networks (Zhu et al., 2019) to align various existing embedding

methods in two methods: AlignEmbed and AlignAttention. On two NLU evaluation

tasks, sentiment detection and textual entailment classification, our best compositional

alignment models outperform baseline attentional LSTM classifier with the same word

embeddings but concatenated. Our compositional alignment framework could serve as

an ensemble method to utilize the benefits of multiple existing but imperfect word em-

beddings. In the future, more NLP algorithms inspired by linguistic and philosophical

frameworks could be applied to build NLU models.
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Appendix

A.1 Model hyper-parameters for IMDB experiments

Table A.1 lists the hyper-parameters for our best models in IMDB sentiment analysis

experiments.

Note that there is a seqlen and a step hyper-parameter. These come from the way

we divide the movie reviews into fixed-length sequences for recurrent neural networks.

For each document, we take sequence of length seqlen as an input data sample, and slide

backwards by step size step to take the next sequence. This step is repeated until there

is not enough words for the next sequence in the document. All of the sequences are

given the label of the document. In case the whole document contains less than seqlen

words, we pad dummy words (e.g., ”pad”) to the end of the document to make its

length equal to seqlen. During inference, all sequences from one document go through

a ”majority voting” process to determine the predicted probability of the document.

To prevent training on testing data, we make sure that none of the sequences from the

same document spread across train / dev / test sets.

A.2 Model hyper-parameters for SNLI experiments

Table A.2 lists the hyper-parameters for our best models in SNLI textual entailment

analysis experiments. Note that each sentence pair is either padded or truncated to one

sequence of a fixed length (seqlen). There is no majority voting here.

40
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Model layers dlsrm seqlen step noise
LSTMClassify (F+G) 1 128 300 100 N/A
LSTMClassify (F+W) 1 128 300 100 N/A
LSTMClassify (W+G) 1 128 300 100 N/A
LSTMClassify (W+F+G) 1 128 300 100 N/A
AlignEmbed-shared (F+G) 1 128 300 100 No noise
AlignEmbed-shared (F+W) 1 128 300 100 Gaussian (var=0.5)
AlignEmbed-shared (W+G) 1 128 100 50 Gaussian (var=2.0)
AlignEmbed-shared (W+F+G) 1 128 300 100 No noise
AlignEmbed-sep (F+G) 1 128 300 50 Gaussian (var=2.0)
AlignEmbed-sep (F+W) 1 128 300 100 Gaussian (var=2.0)
AlignEmbed-sep (W+G) 1 128 100 50 Gaussian (var=2.0)
AlignEmbed-sep (W+F+G) 1 128 300 100 Gaussian (var=2.0)
AlignAttention-shared (F+G) 1 128 300 100 No noise
AlignAttention-shared (F+W) 1 128 300 100 Gaussian (var=2.0)
AlignAttention-shared (W+G) 1 128 300 100 Gaussian (var=2.0)
AlignAttention-shared (W+F+G) 1 128 300 100 Gaussian (var=2.0)
AlignAttention-sep (F+G) 1 128 300 100 Gaussian (var=2.0)
AlignAttention-sep (F+W) 1 128 300 100 Gaussian (var=5.0)
AlignAttention-sep (W+G) 1 128 100 50 Gaussian (var=2.0)
AlignAttention-sep (W+F+G) 1 128 300 100 Gaussian (var=2.0)

Table A.1: Hyper-parameters for our best models in IMDB experiments.
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Model layers dlstm seqlen noise
LSTMClassify (F+G) 1 300 40 N/A
LSTMClassify (F+W) 1 300 40 N/A
LSTMClassify (W+G) 1 300 40 N/A
LSTMClassify (W+F+G) 1 300 40 N/A
AlignEmbed-shared (F+G) 1 50 40 Gaussian (var=2.0)
AlignEmbed-shared (F+W) 1 150 40 Gaussian (var=2.0)
AlignEmbed-shared (W+G) 1 100 40 Gaussian (var=2.0)
AlignEmbed-shared (W+F+G) 1 150 40 Gaussian (var=2.0)
AlignEmbed-sep (F+G) 1 150 40 Gaussian (var=2.0)
AlignEmbed-sep (F+W) 1 150 40 Gaussian (var=2.0)
AlignEmbed-sep (W+G) 1 150 40 Gaussian (var=2.0)
AlignEmbed-sep (W+F+G) 1 150 40 Gaussian (var=2.0)
AlignAttention-shared (F+G) 1 100 40 Gaussian (var=2.0)
AlignAttention-shared (F+W) 1 150 40 Gaussian (var=2.0)
AlignAttention-shared (W+G) 1 100 40 Gaussian (var=2.0)
AlignAttention-shared (W+F+G) 1 100 40 Gaussian (var=2.0)
AlignAttention-sep (F+G) 1 50 40 Gaussian (var=2.0)
AlignAttention-sep (F+W) 1 150 40 Gaussian (var=2.0)
AlignAttention-sep (W+G) 1 150 40 Gaussian (var=2.0)
AlignAttention-sep (W+F+G) 1 150 40 Gaussian (var=2.0)

Table A.2: Hyper-parameters for our best models in SNLI experiments.
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