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Introduction

* Conventional machine learning models are developed based on the
assumption that the test set is I.i.d with respect to the training set.

 This assumption is often violated in real-world problems
 The mismatch between the training and test distributions is of three types:
Covariate shift:  Pigin(X) # Prest (X)

Correlation shift: Piqin (Y| X) # Prest (Y| X)
Label shift: Pirain(Y) # Piest (YY)



Introduction

* Neural networks typically fail to yield their optimum performance in domains
with shifted distribution

* The reason for this failure is believed to be neural network’s inability In
capturing generalizable and invariant features

* Our hypothesis is that the labeling mechanism employed by humans is also a
contributing factor to this matter.

* Providing one label for a datapoint maximizes the risk that a model pick up a
spurious correlation as the main differentiating feature for a classification task.



Intuition
Cow-Camel classification problem




Theory

Definitions

empirical risk:  Lep,p (A, S, R) = % S i LW, Z;),
population risk: L(A,S,R)=Ez plt(W,Z"),

e S: adataset of ni.i.d samples
* R: arandom variable representing the stochasticity of data

* A: alearning algorithm that provides W, the parameters of the learning model,
as a function of S and R

* Generalization gap:

Es r|L(A,S,R)—Lemp(A, S, R)||



Theory

Theorem 2.1 (Xu & Raginsky (2017)). If £(w, Z"), where Z' ~ D, is 0 — subgaussian for all w € W, then

2021(W; S)

n

‘ 4:S,R[L"(Av S, R) _Lemp(Aa S, R)” < \/ (3)

Theorem 2.2 (Harutyunyan et al. (2021)). Let U be a random subset of |n| with size m, independent of S and R. If {(w, Z"),
where Z' ~ D, is 0 — subgaussian for all w € W, then

‘ 4:S,R[ﬁ(Aa S, R) — Eemp(Aa Sa R)]l

2 .
< cuNU\/ 20°1(W; S) 4)

™m




Theory

Theorem 2.4. Let {(w, Z’) is 0 — subgaussian for all w € W, and Z' ~ D. Given a dataset S of n samples where each
sample has K labels, for all w € VW, the expected generalization bound is tighter by a factor of \/LE than the case where

each sample of a dataset with the same size has only 1 label. In other words,
‘ *:S,R[E(A’ S, R) _ Eemp(Aa S, R)H
< \/202I(W; S) \/2021(W; S)

n Km

)

* Please note that across the single-label and multi-label scenarios, we assume that the
number of parameters and the stochasticity of dataset does not change. What can be
inferred from this theorem is that m=n/K number of multi-label training samples provide
the same upper bound on the expected generalization gap that n number of single-label
datapoints from the same distribution would do. In other words, given equal number of
training examples from both scenarios, the upper bound of expected generalization gap

for the multi-label scheme is 1/4/ K times tighter than the one of single-label case.



Results

Themes

 When the final label is among concepts (CelebA and Waterbirds)

 When final label is inferred from underlying concepts (Colored-MNIST)

A

* Independent Bottleneck, where the modules are trained independent from each other, 1e., g =
arg mln Ez,g (gj(a:@) yz)andf arg mlnfz Ll( ( ) l’&)

* Sequential Bottleneck, where the concept bottleneck is trained first based on g = arg min » ; - L ( g’ (z;); yg ), and
then the inference module is trained on the outputs of the concept bottleneck, i.e., f = arg min r 2 La(f(g(s)); Ls).

* Joint Bottleneck, where the two modules are trained simultaneously based on a weighted sum of the loss for the two
modules, i.e., §, f = arg min, >, [Li(f(g(x:)); ;) + > ALy (97 (x:); v )]



Results

Table 1: Accuracy of concept-based learning in OoD generalization over the Colored-MNIST dataset.

Concept Accuracy Label Accuracy
Method  +90% +80% {+90%}J{+80%} +90% +80% {+90%} J{+80%}
Independent 98.98  98.87 99.24 10.95  26.90 11.82
Sequential  98.82  98.89 99.35 57.09 54.09 57.59
Joint 98.93  99.07 99.16 12.93  27.01 13.00
ERM 50.95  26.18 74.32 17.08  29.82 28.91




Results

Table 2: Accuracy of concept learning 1n OoD generalization over Waterbirds and CelebA datasets.

Waterbirds CelebA
Model Worst group Average Worst group Average
GDRO (Sagawa et al., 2019) 83.80 89.40 88.30 91.80
ERM 60.00 97.30 41.10 94.80
VIB (Alemi et al., 2016) 75.31 95.39 78.13 91.94
CIM (Taghanaki et al., 2021) 73.35 89.78 81.25 89.24
CIM+VIB (Taghanaki et al., 2021) 77.23 95.60 83.99 90.61

Ours 88.99 91.85 97.65 98.13




Results

Sample efficiency
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