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Abstract
Speaker anonymization has gained increasing popularity recently. This project aims

at evaluating three methods of voice anonymization based on adding noises. This project
quantitatively evaluates the effects of these methods. In addition, the equal error rate (in
speaker verification) and the word error rate (in speech recognition) are computed to eval-
uate the efficacy of the anonymization methods. All analysis codes are open-sourced at
https://github.com/ZiningZhu/CSC2518.

1 Introduction
Speaker identification is a prevalent task in speech processing. The speaker identification sys-
tems are widely applied. In a telephone-based customer service system, speaker identification
can help build the profiles of customers, enabling the potential for a user-specific customer ser-
vice strategy. Speaker identification can also be helpful for security. A speech for as short as 30
seconds can enable high-accuracy speaker identification systems [1]. Phone banking services
can use speaker identification as an additional “fingerprint”. If the user loses the password by
accident, the password could be retrieved through this “voice-based fingerprint”.

Recently, as the attention toward privacy is raised, it is increasingly desirable to protect
the speaker’s identity. For example, a smart assistant located indoors does not need to know
who the speaker is. It is sufficient to automatically recognize the speech content and respond
accordingly1. In another example, a customer might want to avoid the telemarketing companies
to make customized phone sales based on the features extracted from their speeches. These
scenarios motivate the protection against identification, i.e., voice anonymization.

Researchers have proposed a wide collection of voice anonymization techniques. This
project is specifically interested in an avenue of approach: noise injection. I intend to em-
pirically evaluate the efficacy of these approaches in removing the voice-based fingerprints. In
addition, I intend to assess the impacts of these anonymization techniques on ASR systems:
While it is desirable to anonymize the voice, it is undesirable to erase the useful information.
The Equal Error Rate (EER) is used to evaluate the effect of anonymization, and the Word Er-
ror Rate (WER) of speech recognition is used to evaluate the amount of remaining portion of
information.

This project applies some voice anonymization techniques to a subset of the LibriSpeech
data, which is used by the VoicePrivacy initiative evaluation plan [2]. The techniques are
based on multimodal Gaussian noises applied to the utterances of the speakers. As baselines,
unimodal Gaussian noises and non-adaptive noises are also tested.

1One might argue that an assistant located in a smartphone should respond to only the owner of the smartphone.
However, for a smart assistant located indoors, only the commands of those people physically in the household
can reach that smart assistant.
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2 Related Works
There are many voice anonymization attempts using signal processing techniques. Voice Trans-
formation [3] aimed at changing some attributes of voice so that it sounds like a target speaker.
They tested approaches including changing the fundamental frequency F0, changing the du-
ration, and “transterpolating” (i.e., interpolate to beyond (0, 1) ranges) the Mel-cepstral coeffi-
cients (MCEP). VoiceMask [1] applied frequency-warping functions to change the characteris-
tics of the speeches. Vocal tract length normalization (VTLN) [4, 5] was originally proposed to
improve the automatic speech recognization performances, especially in the case of small train-
ing data. However, since VTLN aims to adjust for some characteristics of individual speakers,
VTLN effectively anonymizes the speeches.

[6] considered an approach based on adjusting the McAdams coefficients. In musical
synthesis, a popular approach generates the timbre of music through a weighted addition of
(co)sinusoidal oscillations. Let y(t) be the music signal, then this synthesis approach can be
written as y(t) = Σkrk(t)cos(2π(kf0)α)t + ϕk, where rk(t) is the amplitude, f0 is the funda-
mental frequency, ϕk is the phase shifts, and α is referred to as the McAdams coefficients [7],
which adjusts the frequency of each harmonic. Changing the McAdams coefficients adjusts
the timbre of the music. Similarly, this approach adjusts the styles of the speech during a “lin-
ear predictive coding – resynthesis” pipeline. As a side note, a relevant approach, “automatic
speech recognition (ASR) – synthesis” are used in voice transformation [8]. However, one may
argue that ASR preserves some aspects of speech (e.g., the choice of wording) that can reveal
the identity of the speakers. These aspects may be carried over in the synthesized speech, which
does not really result in true anonymization.

More recent approaches tackle the voice anonymization problem through the lens of “style”.
[9] set up neural networks to learn x-vector that represents the styles. For each speaker, swap-
ping out the x-vector changes the styles into those of a “pseudo-speaker”. Up till now, x-vector
is considered the state-of-the-art in competitions, including the VoicePrivacy Challenge. [10]
used CycleGAN to convert the styles of speeches between male and female speakers. Subse-
quently, they perturbed the pitches and tempo to arrive at anonymized speeches.

3 Methods

3.1 Problem setting
Let y(s)(t) represent the speech signals from speaker s. An utterance of the speech signals
is stored as an array {y(1), ..., y(T )}(s). Let x(s)(t) represent the text that correspond to the
speech signals y(s)(t). We consider an avenue of anonymization: noise injection. This changes
the speech signals into y(s)(t) + ϵ(t), where ϵ(t) is the adaptive noise. The rest of this project
report adopts the notations described here.

3.2 Voice anonymization
Different anonymization approaches is referred to by the natures of the adaptive noise ϵ(t).

• Uniform noise is a simple noise drawn from Gaussian distribution with fixed scale: ϵ(t) ∼
N (0, σ2)

• Adaptive noise is a Gaussian noise with the variance proportional to the amplitude of
the utterance: ϵ(t) ∼ N (0, γσ2), where σ2 = Var(y(s)(t)), and γ is a hyperparameter
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Figure 1: Audio lengths by frames.

that adapts the scales of the noise. In this setting, an utterance with more salient speaker
identification features would be added by a noise with a larger scale.

• Multimodal adaptive noise follows the intuition that the speech signals have more than
one modes. This approach first fits a Gaussian Mixture model with m components to each
utterance: ŷ(s) ∼ ΣmωmΓ(µm, σ

2
m), where ωm, µm and σ2

m are the model parameters,
and Γ(µm, σ

2
m) denotes a Gaussian model. This project uses an off-the-shelf toolkit,

scikit-learn [11] to solve for the parameters of the Gaussian Mixture model. Then, this
approach adds m adaptive noises (weighted by ωm) to anonymize the speech signal:
ϵ(t) ∼ ΣmωmN (µm, γσ

2
m).

3.3 Speaker identification
This project assumes the following attack model in speaker identification. An adversary A has
access to all utterances y(s)(t), but the adversary only has partial knowledge of the speaker
identity s for some frames.

The speaker identification is done in the following procedure. First, MFCCs are computed
using the default configurations of the librosa toolkit2. Each utterance is converted into varying
frames (mean 224.76, std 146.71). Figure 1 shows a histogram of the length distributions. We
take the first N = 50 frames, and evenly split into a “train set” vs. a “dev set” with stratified
sampling. Those audios that are shorter than 50 frames (there are 4, accounting for 0.15%) are
skipped.

The adversary learns to predict the speaker from the MFCC features of the frames of speech.
A MLPClassifier from scikit-learn is used, together with the default configuration in train-
ing. To evaluate the performance of classification, I follow the VoicePrivacy recipe and compute
the equal error rate (EER), which is the false positive rate Pfp when the prediction threshold θ
is adjusted so that Pfp equals the false negative rate Pfn:

EER = Pfp(θ) = Pfn(θ)

2https://librosa.org
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Figure 2: Distribution plots of audio length (left) and transcript length (right) by speaker.

3.4 ASR evaluation
To evaluate the informativeness of the anonymized audios, automatic speech recognization
(ASR) is used. Here I use a pre-trained model, asr-crdnn-rnnlm-librispeech, im-
plemented by SpeechBrain [12]. Following the convention, word-error-rate (WER) is used to
quantify the quality of the transcription.

4 Data
The dev-clean-100 subset of LibriSpeech is used. There are 2,703 utterances from 40 speakers,
totaling 5.39 hours of speech. On average, each utterance is 7.18 seconds in length.

For each speaker, there are 484.90 seconds (std=4.78) of audio, with 1360 words (std=139)
of transcript. Figure 2 shows the distribution of the audio and transcript lengths of the speakers.

5 Experiments

5.1 A case study for anonymized spectrograms
Figure 3 illustrates the effects of the anonymization mechanisms through spectrograms of an
utterance (Speaker 84, session 121123, id 0007). The transcript is “WHAT DO YOU MEAN
SIR”, and the hyperparameters for the added noise follow the default configurations (σ =
0.01 for uniform noise, γ = 0.1 for both adaptive and multimodal noises, and n = 3 for the
multimodal noise).

The first observation is perhaps the reduction of variation between the pattern and the back-
ground. Adding noises to the audio makes the spectrogram patterns less salient. Especially,
the high-frequency bands in the middle of the plot become barely visible in the adaptive and
multimodal noise spectrograms.

On the other hand, the low-frequency patterns pertaining to the voiced words are still
visible, indicating that the contents that are recognizable are largely preserved during the
anonymization.
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Figure 3: Spectrograms of an example utterance (“what do you mean sir”), processed by dif-
ferent mechanisms.

5.2 A case study for anonymized transcripts
Table 1 shows some examples of ASR transcription errors of one sample. The ASR transcrip-
tion errors mostly focus on some “hard-to-transcribe” words, which are highlighted by colors.

Some transcription errors are relevant to the context. For example, used to is frequently
transcribed into mister – a term occurring twice in the surrounding context. I do not observe
evidence that this type of transcription error is affected by choice of anonymization mecha-
nisms.

Another type of transcription error involves frequent tokens. For example, his is sometimes
transcribed into the ’s or es markers at the end of the preceding nouns. I hypothesize that the
language model in the ASR system plays an important role in making these adjustments.

As a side note, both in the adaptive noise and the multimodal noise settings, a larger noise
scale is accompanied by more transcription errors – for the settings with larger noises, a part
of the sentence (“and Mister John Collier gives his sitter a cheerful slap on the back”) is not
recognized at all. Apparently, the ASR system stops translation when the probabilities for
words appear relatively small compared to that of an “end-of-sentence” token.

5.3 Comparison of results
To account for the difference in random seeds in generating noises, for each configuration of
experiments, three runs (with random seeds 1234, 42, 0, respectively) are proceeded. The EER
and WER scores of the three runs are reported in Table 2.

The EER values in most settings appear larger than the baseline, indicating that the injected
noise indeed protects the identity of the speaker to varying extents. However, in an ideal sce-
nario where it is impossible to identify the speakers, the EER should be 1.00, which none of the
experimented anonymization methods achieve. Note that in 1-sample t-tests (dof = 3) against
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Setting Transcription

Ground truth IN THE SAME WAY THAT MISTER CARKER USED TO FLASH
HIS TEETH AND MISTER JOHN COLLIER GIVES HIS SITTER A
CHEERFUL SLAP ON THE BACK

Baseline IN THE SAME WAY THAT MISTER CARKER USED TO FLASH
HIS TEETH AND MISTER JOHN CALLED HERE GIVES HIS SIT-
TER A CHEERFUL SLAP ON THE BACK

Uniform (std=0.01) IN THE SAME WAY THAT MISTER CARKER MISTER FLASH’S
TEETH AND MISTER JOHN COLLIER GIVES HIS CIGAR A
CHEERFUL SLAP ON THE BACK

Adaptive (γ = 0.1) IN THE SAME WAY THAT MISTER CARKER MISTER FLASH’S
TEETH AND MISTER JOHN COLLIER GIVE HIS SITTER A
CHEERFUL SLAP ON THE BACK

Adaptive (γ = 0.3) IN THE SAME WAY THAT MISTER CARKER MISTER FLASH’S
TEETH

Multimodal (n = 3, γ = 0.03) IN THE SAME WAY THAT MISTER CARKER USED TO FLASH
HIS TEETH AND MISTER JOHN COLLIER GIVES HIS SITTER A
CHEERFUL SLAP ON THE BACK

Multimodal (n = 3, γ = 0.1) IN THE SAME WAY THAT MISTER CARKER MISTER FLASHES
TEETH

Table 1: An excerpt of some transcriptions in different configurations.

the baseline, none turned out to have p < 0.05 due to small sample sizes. Additional launches
of experiments with other random seeds can make the finding more solid.

The WER values in most settings appear larger than that of the baseline, indicating that the
anonymization methods sacrifice some informativeness.

5.4 Ablating on the scaling factor
It is hypothesized that in all of the uniform noise, adaptive noise, and the multimodal noise
settings, the EER and WER both increase with the scale of the noise. This trend is supported
in the uniform and the adaptive noise settings but less so in the multimodal noise settings.

5.5 Ablating on the GMM number of components
Another important hyperparameter in the multimodal noise setting is the number of components
in the Mixture of Gaussian model. If we increase the number of components, the distribution of
the noise (which is a scaled version of the Gaussian mixture) would have the capacity to mask
a larger portion of the transmitted information, resulting in a higher EER and a larger WER. As
shown in the last a few rows in Table 2, the contrary might be more likely, while the differences
between n = 3, n = 5, and n = 8 are not statistically significant.

6 Discussion
Do the noise addition mechanisms work? Compared to the baseline, adding noise to the voice
audio files indeed improves the EER while compromising the WER slightly. The actual extent

6



Method Hyperparameter setting EER WER

Baseline (no noise) N/A 0.4128 0.0315

Uniform noise per utterance
σ = 0.003 0.4966 ± 0.0628 ∗0.0352 ± 0.0004
σ = 0.01 0.5077 ± 0.0738 0.0430 ± 0.0133
σ = 0.03 0.5478 ± 0.0808 ∗∗0.1458 ± 0.0023

Adaptive noise per utterance
γ = 0.03 0.5521 ± 0.0883 ∗0.0332 ± 0.0003
γ = 0.1 0.4897 ± 0.1129 ∗∗0.0371 ± 0.0006
γ = 0.3 0.4855 ± 0.0282 ∗∗0.0650 ± 0.0002

Multimodal noise per utterance

n = 3, γ = 0.03 0.4359 ± 0.0622 ∗∗0.1064 ± 0.0024
n = 3, γ = 0.1 0.5769 ± 0.1764 ∗∗0.1084 ± 0.0034
n = 3, γ = 0.3 0.5068 ± 0.1745 ∗∗0.1072 ± 0.0027

n = 5, γ = 0.1 0.5821 ± 0.1336 ∗∗0.0626 ± 0.0031
n = 8, γ = 0.1 0.5180 ± 0.0468 ∗∗0.0409 ± 0.0010

Table 2: Comparison of results, with mean ± std of the trials with different random seeds. The
∗ and ∗∗ markers refer to p < 0.05 and p < 0.01, respectively, in a one-sample t-test (two-tailed,
dof = 3) against the baseline.

of the improvement and compromise should be further scrutinized via statistical tests with
higher degrees of freedom.

Following this avenue of research, several other approaches can be evaluated as well. For
example, the adaptive noise can be expanded to speaker-level. In LibriSpeech, each speaker
participates in multiple sessions, each of which contains multiple utterances. This project only
considers utterance-level noises, but speaker-level modeling might introduce anonymization
mechanisms that can capture more speaker-specific features.

In addition, the baselines could be made stronger. Two popular benchmark systems, x-
vector, and McAdams coefficient adjustment should be compared against using the codebase
of the VoicePrivacy challenge when the time and computation resource allows.

Moreover, the route toward speaker anonymization can be equipped with the theoretical
bases of differential privacy (DP). For a wide variety of noises, DP provides a theoretical guar-
antee that the outputs of a system do not change much with a high probability, when the, e.g.,
added noise is sufficiently large. The system could be a speaker verification or speech recog-
nition one. However, how to reconcile the two systems in a theoretical-driven method requires
further exploration.

7 Conclusion
Speaker anonymization is a direction that has become increasingly popular. In this project, I
evaluate three methods of adding utterance-level noises to the speaker’s voice: uniform, adap-
tive Gaussian, and multimodal Gaussian. In addition to some qualitative case studies, the equal
error rate (in speaker verification) and the word error rate (in speech recognition) are computed
to evaluate the efficacy of the anonymization methods.
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A Computation budget
The computation resources used in this project are listed as follows:
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• Noise addition: within seconds for uniform noise and adaptive noise. The procedure
takes between 30 and 60 minutes for the multimiodal Gaussian mixture noises, for all
utterances.

• ASR transcription: between 5.5 and 7 hours for 2,703 utterances.

Other computations are finished within seconds. All operations are done on a cloud-based CPU
cluster. Overall, there are 34 sets of configurations, each taking around 6 hours. In total, 204
hours of CPU time is consumed.
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