

# **Predicting Fine-tuning Performances with Probing**

# Zining Zhu $^{1,2}$ , Soroosh Shahtalebi $^2$ , Frank Rudzicz $^{1,2,3}$







<sup>1</sup> University of Toronto. <sup>2</sup> Vector Institute of Artificial Intelligence. <sup>3</sup> Unity Health Toronto.



#### People can develop high-performing DNNs

| Rank Name                    | Model                                 |
|------------------------------|---------------------------------------|
| 1 Liam Fedus                 | SS-MoE                                |
| 2 Microsoft Alexander v-team | Turing NLR v5                         |
| 3 ERNIE Team - Baidu         | ERNIE 3.0                             |
| 4 Zirui Wang                 | T5 + UDG, Single Model (Google Brain) |
| 5 DeBERTa Team - Microsoft   | DeBERTa / TuringNLRv4                 |
| 6 SuperGLUE Human Baseline   | s SuperGLUE Human Baselines           |



### Models are evaluated by fine-tuning performances

There is a common theme in the developments of DNN models:

- Explore novel techniques to train models.
- Evaluate the effectiveness by fine-tuning.
  - i.e., Attach a classification layer. Optimize this layer and the network *together* on the target dataset.
- Report the quality of the models using (mostly) fine-tuning results.



#### Probing can also evaluate DNN models

| Fine-tuning                           | Probing                                   |
|---------------------------------------|-------------------------------------------|
| Task resembles deployment             | Tasks are out-of-domain                   |
| Test cases are inclusive              | Test cases are specific                   |
| Aim at high performance               | Aim at faithful interpretations           |
| Computation-heavy (e.g., 20h for QQP) | Lighter (e.g., 1 hr CPU time for 7 tasks) |



# Question: Can probing be used in model developments?

#### **Challenges:**

*Feasibility*: The probing results appear disjointed to fine-tuning results -- are they relevant? *Operation*: There are many probing configurations. Where should we probe?

This project:

*Feasibility*: We give a positive answer.

Operation: We provide some empirical answers.



#### Predict the fine-tuning performance with probing

- K models are tested on some probing tasks.
- The probing accuracies of the  $k^{th}$  model are written in the vector  $\mathbf{S}^{(k)}$ .
- On fine-tuning task T , the  $k^{th}$  model can reach performance  $\mathcal{A}_T^{(k)}$  .
- We predict  $\mathcal{A}_T$  from **S** using a linear regressor (parameterized by  $\theta$ ).

$$egin{aligned} & heta_* = \mathrm{argmin}_{ heta} \Sigma_k || heta^T \mathbf{S}^{(k)} - \mathcal{A}_T^{(k)} ||^2 \ & \mathrm{RMSE} = \sqrt{rac{1}{K} \Sigma_k || { heta_*}^T \mathbf{S}^{(k)} - \mathcal{A}_T^{(k)} ||^2} \end{aligned}$$



#### **Control setting**

We need to control for the artefacts. Why?

- Suppose our regressor using  ${f S}$  gets  ${
  m RMSE}=0.01$  on both  $T_1$  and  $T_2$ .
- But  $T_2$  appears slightly "harder"...
- Random features can get  $\mathrm{RMSE}_c = 0.02$  for  $T_1$  but only 0.10 for  $T_2$ .
- Then  ${f S}$  provides more predictability for  $T_2$  than  $T_1$ , but  ${
  m RMSE}$  itself can't tell.

So we instead measure and report the RMSE\_reduction:

$$\mathrm{RMSE\_reduction} = rac{\mathrm{RMSE}_c - \mathrm{RMSE}}{\mathrm{RMSE}_c} imes 100$$



#### Models

- 5 Transformer-based models from huggingface: roberta-base, xlm-robertabase, microsoft/deberta-base, albert-base-cased, xlnet-base-cased
- Corrupt by MLM on scrambled Wikipedia for 500, 1k, 2k, 4k, 6k steps.
  - Except xlnet (since MLM doesn't apply to it)
  - $\circ~$  In an ablation study (§ 5.9), we show that this procedure produces sufficiently diverse models.
- There are 25 models in total.



#### **Probing tasks**

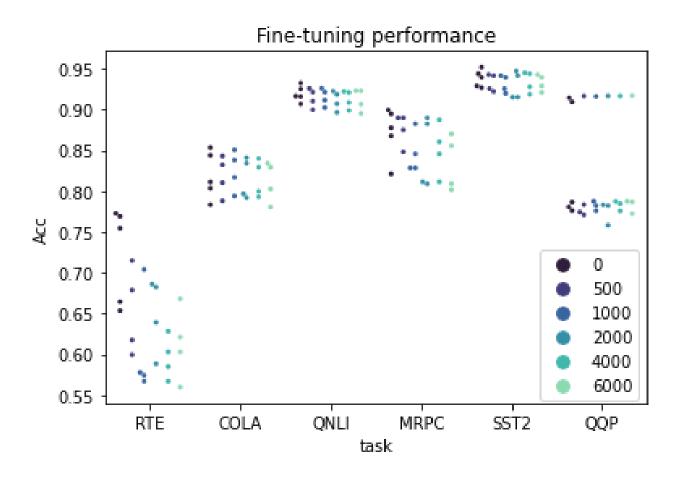
We take 7 probing tasks from SentEval (Conneau and Kiela, 2018):

- Bigram Shift, Coordination Inversion, Objective Number, Semantic Odd-Man Out, Past vs. Present, Subject Number, Tree Depth.
- We subsample 1,200 data points per class.
  - Zhu et al., (2022) showed that several thousand samples already can have sufficient statistical powers.



#### **Fine-tuning tasks**

These tasks come from GLUE: RTE, COLA, QNLI, MRPC, SST2, QQP





# Is there a "more useful" probing task than others? ( $\S$ 5.2)

RTE COLA MRPC SST2 ONLI QQP All layers one task (§5.2) 6.24 53.18 **BShift** 52.80 29.7855.29 51.64 CoordInv 2.1066.59 18.18 44.24 56.35 56.57 2.19 72.38 ObjNum 44.20 28.02 53.15 60.64 SOMO 44.75 29.39 29.28 55.68 30.90 38.64 Tense 3.07 48.42 34.65 22.29 41.37 75.58 SubjNum -19.66 78.56 34.48 47.75 64.74 51.50 TreeDepth 4.37 53.03 9.54 46.98 62.79 54.67

There is no definitive answers, but depending on the tasks, there are some regularities.



# Are probing some layers more useful than others? ( $\S$ 5.3)

|                                   | RTE      | COLA     | MRPC    | SST2       | QNLI     | QQP        |
|-----------------------------------|----------|----------|---------|------------|----------|------------|
| bigram shift (BShift)             | 4,5      | 2,4,5    | 2,4,5,9 | 2,5,6      | 2,4,5    | 2,4,5      |
| coordination inversion (CoordInv) | 5,6,12   | 1,2,4,6  | 1,6     | 1,4,6      | 1,4-6    | 2-4,6      |
| object number (ObjNumber)         | 1        | 1,3,8,11 | 1,3     | 1,3-5,8,11 | 1,3,8,11 | 1-5,12     |
| semantic odd man out (SOMO)       | 4,5,8,12 | 2-6      | 3,4     | 3,5,6      | 2-6      | 2,5-9,12   |
| past present (Tense)              | 1        | 1,3,5    | 1,5,6   | 1,11       | 1,3,5,8  | 1-5,8-11   |
| subject number (SubjNum)          | None     | 1,3-6,9  | 1       | 1,4        | 1        | 1,2,3,4    |
| tree depth (TreeDepth)            | 1        | 1        | 1       | 1,3,5      | 1        | 1-3,7,8,11 |

Table 2: Layers with significant probing results (p < .05 from one-way ANOVA) with residual dof = 12.



# What is the best that we can do? ( $\S$ 5.5)

With as few as 3 features, the maximum reachable  $RMSE\_reduction$  values are nontrivial.

| Fine-tuning task   | RTE   | COLA  | QNLI  | MRPC  | SST2  | QQP   |
|--------------------|-------|-------|-------|-------|-------|-------|
| $RMSE_{reduction}$ | 41.69 | 75.66 | 47.56 | 72.59 | 80.52 | 76.77 |



# Ablation: Use different probing methods ( $\S$ 5.6)

MLP-20 and RandomForest-100 are recommended.

|                                       | RTE   | COLA  | MRPC  | SST2  | QNLI  | QQP   |
|---------------------------------------|-------|-------|-------|-------|-------|-------|
| Highest-accuracy probe in §5.2 - §5.5 | 41.69 | 78.56 | 53.18 | 72.59 | 80.52 | 76.77 |
| Specify one probing method (§5.6)     |       |       |       |       |       |       |
| DecisionTree                          | 51.98 | 68.48 | 54.31 | 70.90 | 74.35 | 52.85 |
| LogReg                                | 45.28 | 78.34 | 44.87 | 70.26 | 83.13 | 73.98 |
| MLP-10                                | 48.50 | 72.12 | 45.88 | 65.87 | 73.82 | 81.97 |
| MLP-20                                | 47.37 | 74.94 | 63.79 | 69.22 | 79.10 | 82.67 |
| RandomForest-10                       | 50.64 | 74.08 | 50.17 | 68.2  | 75.19 | 59.66 |
| RandomForest-100                      | 53.94 | 79.20 | 53.21 | 71.60 | 83.25 | 72.72 |
| SVM                                   | 51.71 | 74.01 | 57.92 | 71.44 | 76.78 | 73.03 |

Table 3: Maximum RMSE reductions using different probing configurations. The **bold-font** numbers are the maximum values in each column.



#### **Other experiments**

There are many other experiments, including:

- Use only one probing task (all 12 layers).
- Use smaller probing datasets (400 instead of 1200 per class)
- Uncertainty analysis.



#### Call for completing the "feedback loop"

Currently, probing is mostly used as *post-hoc* interpretations...

- Probing analysis is (in general) computationally friendly.
- Probing can give fine-grained diagnostics to empower model developments.
- Probing literature contain rich resource of "test material".

Probing analysis can be useful for model developments!



#### Summary

How can probing be useful for building DNN models?

- We show that probing results can predict an important intermediate signal, fine-tuning accuracy.
- We analyze the utility of different parameters in configuring the probing.