
Scalable Practical Byzantine Fault Tolerance with Short-Lived
Signature Schemes

Xinxin Fan
IoTeX

Menlo Park, CA, USA
xinxin@iotex.io

ABSTRACT
The Practical Byzantine Fault Tolerance (PBFT) algorithm is a pop-
ular solution for establishing consensus in blockchain systems. The
execution time of the PBFT consensus algorithm has an important
effect on the blockchain throughput. Digital signatures are exten-
sively used in PBFT to ensure the authenticity of messages during
the different phases. Due to the round-based and broadcast natures
of PBFT, nodes need to verify multiple signatures received from
their peers, which incurs significant computational overhead and
slows down the consensus process. To address this issue, we pro-
pose an efficient short-lived signature based PBFT variant, which
utilizes short-length cryptographic keys to sign/verify messages in
PBFT for a short period of time and blockchain-aided key distribu-
tion mechanisms to update those keys periodically. We also present
efficient algorithms for accelerating the software implementation
of the BLS threshold signature scheme. Our extensive experiments
with three elliptic curves and two signature schemes demonstrate
the efficacy of using short-lived signature schemes for improving
the scalability of PBFT significantly.

KEYWORDS
Practical Byzantine Fault Tolerance, Scalability, Short-Lived Public
Key, ECDSA, BLS Threshold Signature
ACM Reference Format:
Xinxin Fan. 2018. Scalable Practical Byzantine Fault Tolerance with Short-
Lived Signature Schemes. In Proceedings of 28th Annual International Con-
ference on Computer Science and Software Engineering (CASCON’18). ACM,
New York, NY, USA, 12 pages.

1 INTRODUCTION
A blockchain constitutes a distributed ledger that records trans-
actions in an append-only fashion across a network of random
agents, nodes or peers. At the center of the blockchain operation is
the maintenance of the consistent global view of the information
recorded on the blockchain, which forms the backbone for enabling
users to interact with each other in a trustless and decentralized
manner. The security of the consensus model is perhaps the most
critical aspect for a blockchain platform. The two key properties
of a consensus model are: i) Safety/Consistency: All honest nodes
produce the same output and the outputs produced by the honest

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CASCON’18, October 2018, Markham, Ontario, Canada
© 2018 Copyright held by the owner/author(s).

nodes are valid; and ii) Liveness: All honest nodes in consensus
eventually produce a value. A secure and robust consensus protocol
needs to tolerate a wide variety of Byzantine behaviors, includ-
ing, but not limited to, failures of network nodes, partition of the
network, message delay, out-of-order and corruption, and reach
consensus in the present of Byzantine nodes as long as the number
of those nodes within the system is limited.

The seminal Practical Byzantine Fault Tolerance (PBFT) algo-
rithm, proposed by Castro and Liskov [8], provides a practical
Byzantine state machine replication [36] that tolerates Byzantine
failures with low overhead. Essentially, a group of replicas running
the PBFT algorithm are ordered in a sequence with one replica being
the leader and others the validators. The leader node is changed in
round-robin manner and in every round all the nodes communicate
with each other asynchronously through a three-phase protocol.
The final result is that all honest nodes reach an agreement on
the order of the record by either accepting or rejecting it. PBFT
provides safety and liveness guarantees provided that the number
of Byzantine nodes is less than one third of the overall nodes in the
system for any given window of vulnerability. In other words, to
tolerate f Byzantine faults, the group needs at least 3f +1 members.
In practice, PBFT and its variants have been adopted by a handful
of blockchain platforms such as Hyperledger [21], Tendermint [41],
Zilliqa [45], IoTeX [22], just to name a few.

Although PBFT offers the salient property like instant trans-
action finality, it only works well in its classical form with small
consensus group size due to the broadcast nature of the three-phase
protocol. More specifically, upon receiving the block proposal from
the leader, all the validators need to exchange their opinions in the
subsequent phases by broadcasting and verifying multiple signed
messages. Using digital signatures at high security levels (e.g., 128-
bit), while providing strong security guarantees, incurs significant
computational and communication overhead in PBFT, thereby lim-
iting its scalability and throughout. We note that a typical round of
PBFT consensus process in blockchain systems is rather fast (i.e.,
in a few tens of seconds) for a group of tens of nodes. Therefore, it
is possible to utilize digital signatures at low or medium security
levels (e.g., 56- or 80-bit) in PBFT and update the short-length key
pairs periodically, which enables us to maintain the throughput
and improve the scalability of PBFT simultaneously. The extensive
experiments with two short-lived signature schemes demonstrate
that the verification time for multiple signatures received from
peers can be reduced significantly in PBFT. We also propose novel
key updating techniques to refresh the short-length key pairs with
the aid of the blockchain as well as efficient algorithms for acceler-
ating the software implementation of the BLS threshold signature
scheme at the medium security level.

1



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

The rest of the paper is organized as follows. Section 2 give an
overview of elliptic curve and pairing-based cryptography as well
as the ECDSA and (threshold) BLS signature schemes, followed by
the detailed description of the short-lived signature based PBFT
variant and the corresponding blockchain-aided key distribution
schemes in Section 3. In Section 4, we describe various optimization
techniques for efficient software implementations of two short-lived
signature schemes. Section 5 presents our experimental results for
the performance of the short-lived signature schemes under the
PBFT setting, which is followed by a summary of the related work
in Section 6. Finally, we conclude this paper in Section 7.

2 PRELIMINARIES
2.1 Elliptic Curve Cryptography and ECDSA

2.1.1 Elliptic Curve Cryptography. Let Fq be a finite field with
q = pl elements, where p is a prime and l is a positive integer. An
elliptic curve E(Fq ) is the set of solutions (x ,y) over Fq satisfying
an equation of the form

E(Fq ) : y2 + a1x + a3y = x3 + a2x
2 + a4x + a6,

where a1,a2,a3,a4,a6 ∈ Fq and the curve discriminant ∆ , 0,
together with an additional point-at-infinity, denoted by O. The
points on an elliptic curve form an additive Abelian group, where
O is the identity element and the group operation is defined by
the well-known chord-and-tangent rule [20]. The order of E(Fq )
is denoted by #E(Fq ) and the order of a point P ∈ E(Fq ) is defined
as the smallest non-negative integer n such that nP = O, where
n |#E(Fq ) and nP is the addition of the point P to itself n − 1 times.
Let G = ⟨P⟩ be a cyclic subgroup of E(Fq ) generated by the point P ,
such that the Elliptic Curve Discrete Logarithm Problem (ECDLP)
is intractable. For more details about elliptic curve cryptography,
the interested reader is referred to [20].

2.1.2 Elliptic Curve Digital Signature Algorithm (ECDSA). The
ECDSA is the elliptic curve analogue of the Digital Signature Al-
gorithm (DSA). Let G = ⟨P⟩ be a cyclic subgroup of E(Fq ) gener-
ated by the point P with prime order n and identity element O,
and H : {0, 1}∗ → Z∗n be a collision-resistant hash function. The
ECDSA works as follows:

• KeyGen(): Choose a random d ′
R←− Zn , set Q = d ′P and

output a private/public key pair (sk,pk) = (d ′,Q).
• Sign(sk,m): Given a private key sk and a message m ∈
{0, 1}∗, the signer does the following:
1. Select a random k ′

R←− Zn and compute R = k ′P =
(x1,y1).

2. Compute r = x1 (mod n). If r = 0 then goto step 1.
3. Compute s = k ′−1(H (m) + d ′ · r ) mod n. If s = 0 then

goto step 1.
4. Output the signature (r , s).
• Verify(pk,m,σ ): Given the public key pk , the message m,
and the signature (r , s), the verifier does the following:
1. Check that r , s ∈ [1,n − 1]. If any verification fails, reject

the signature.
2. Compute w = s−1 (mod n),u1 = H (m) · w (mod n) and

u2 = r ·w (mod n).

3. Compute R′ = u1P + u2Q = (x ′1,y
′
1). If R

′ = O, reject the
signature. Otherwise, compute v = x ′1 (mod n).

4. Accept the signature if and only if v = r .

2.2 Bilinear Pairing and BLS Signature
2.2.1 Bilinear Pairing. Let n be a positive integer and G1 and

G2 be additively-written groups of order n with identity O, and
let GT be a multiplicatively-written group of order n with iden-
tity 1. A bilinear pairing – or pairing for short – is a computable,
non-degenerate function: e : G1 × G2 7→ GT satisfying the addi-
tional properties. The most important property for cryptographic
applications is so-called bilinearity, namely:

e(aP ,bQ) = e(P ,bQ)a = e(aP ,Q)b = e(P ,Q)ab ,

for all P ∈ G1, Q ∈ G2 and a,b ∈ Zn . In practice, the groups
G1 and G2 are subgroups or quotient groups of an elliptic curve
defined over a finite field Fq or one of its extensions and GT is a
subgroup or quotient group Fqk , where k is called the embedded
degree. The security of pairing-based cryptography requires that the
discrete logarithm problem onG1,G2 andGT is sufficiently difficult.
For more details about the bilinear pairing and its cryptographic
applications, the interested reader is referred to [16, 32].

2.2.2 The BLS Signature Scheme. In [6], Boneh et al. described
a simple, deterministic short signature scheme, namely the BLS
short signature. It works in any Gap Diffie-Hellman (GDH) group
and requires a hash function from the message space onto the
group. Let д1,д2 and дT be an arbitrary generator of G1,G2 and
GT , respectively, and H1 : {0, 1}∗ 7→ G1 be a hash function with
values in G1. The BLS signature scheme consists of the following
three algorithms:

• KeyGen(): Choose a random α
R←− Zn , set h ← дα2 ∈ G2

and output a private/public key pair (sk,pk) = (α ,h).
• Sign(sk,m): Given a private key sk and a message m ∈
{0, 1}∗, output σ ← H1(m)sk ∈ G1. Note that the signa-
ture σ is a single group element.
• Verify(pk,m,σ ): Given a public key pk , a messagem, and
a signature σ , check whether e(σ ,д2) = e(H1(m),pk) and
output "accept" or "reject" accordingly.

Due to the simple mathematical structure, the BLS signature scheme
supports a variety of extensions [4, 5], including threshold signa-
tures, multisignatures, aggregate signatures, and blind signatures.

2.2.3 The BLS Threshold Signature Scheme. In [5], Boneh et al.
showed that one can build a non-interactive threshold signature
scheme based on the plain BLS signature scheme and the Shamir’s
secret sharing [40]. For a system with N entities P1, . . . , PN , t of
which may be corrupted, and a trusted dealer TD, the BLS threshold
signature consists of the following five algorithms:

• KeyGen(): TD chooses a random α
R←− Zn and seth ← дα2 ∈

G2. The system private/public key pair is (sk,pk) = (α ,h).
TD also generates a random polynomial f (z) ∈ Zn of degree
t , such that f (0) = sk . TD then computes N private key
shares ski = f (Idi ) and public key shares pki = дski2 for
i ∈ [1,N ]. The private key share ski as well as the public key

2



Scalable PBFT with Short-Lived Signature Schemes CASCON’18, October 2018, Markham, Ontario, Canada

shares pkj , j ∈ [1,N ], j , i are sent to Pi through a secure
channel.
• SignShareGen(ski ,m): Given a private key share ski and
a message m ∈ {0, 1}∗, output the signature share σi ←
H1(m)sk ∈ G1.
• SignShareVerify(pki ,m,σi ): Given a public key sharepki , a
messagem, and a signature shareσi , checkwhether e(σi ,д2) =
e(H1(m),pki ). If the verification is successful, σi is a valid
signature share received from Pi .
• SignShareCombine(σi1 , . . . ,σit+1 ): Given t + 1 valid signa-
ture shares σi1 , . . . ,σit+1 , {i1, . . . , it+1} ⊂ {1, . . . ,N }, out-
put signatureσ =

∏t+1
j=1 σ

λij
i j

, where λik =
∏t+1

j=1, j,k
0−Idik

Idij −Idik
,

k = 1, . . . , t + 1 are Lagrange coefficients.
• Verify(pk,m,σ ): Given a public key pk , a messagem, and a
combined signatureσ , checkwhether e(σ ,д2) = e(H1(m),pk)
and output "accept" or "reject" accordingly.

3 SCALABLE PBFT USING SHORT-LIVED
SIGNATURE SCHEMES

3.1 Key Observation on the PBFT Algorithm
PBFT runs in rounds with one node acting as a leader and others
as validators in each round. Every round of PBFT consists of the
following three phases as illustrated in Figure 1:
1. Pre-prepare phase: The leader initiates the consensus process

by sending a signed PRE-PREPARE message that is a block pro-
posal containing a certain number of transactions.

2. Prepare phase: Upon receiving the PRE-PREPARE message,
every node in the consensus group checks the correctness and
validity of the block and multicasts a signed PREPARE message
(i.e., ‘YES/NO’) to all the other nodes.

3. Commit phase: Based on the analysis of the received PREPARE
messages, each node multicasts a signed COMMIT message
(i.e., ‘YES/NO’) to the consensus group. The block proposal is
committed to the blockchain only if a sufficient number of nodes
in the consensus group agree on it.

Figure 1: Overview of Three Phases in PBFT

At the end of the three phases, all the honest nodes in the consensus
group have the same view regarding to the state of blockchain by

either accepting or rejecting the block proposal, thereby achiev-
ing the instant transaction finality. In PBFT, both the Prepare and
Commit phases involve intensive interactions among nodes within
the consensus group. Given that a consensus group of N players
can tolerate f = ⌊(N − 1)/3⌋ Byzantine nodes in PBFT, each honest
node needs to collect and verify 2f + 1 digital signatures for both
phases, respectively, which limits the application of PBFT to small
consensus groups due to significant communication and computa-
tional overhead. For improving the scalability of PBFT and reducing
the computational cost, it is crucial to speeding up the signature
verification process. One key observation is that one round of PBFT
within a small consensus group can be completed in as little as a
few seconds. As a result, in lieu of utilizing digital signatures at
the high security levels (e.g., 128-bit), nodes can sign the PREPARE
and COMMIT messages with short-lived private keys at the low or
medium security levels (e.g., 56- or 80-bit) consecutively for a num-
ber of rounds before refreshing those keys. Introducing short-lived
key pairs into PBFT brings the following benefits:

• The signature size is smaller, which reduces the communica-
tion overhead;
• The signature verification is faster, which reduces the com-
putational overhead.

The lifetime of a short-lived key pair depending on the difficulty
of breaking underlying cryptosystems with the state-of-the-art
cryptanalysis techniques and appropriate security margins should
be kept when using short-lived key pairs in practice.

3.2 Security Strength of Short Public Keys
In this work we aim to evaluate the performance when applying
the short-lived ECDSA and BLS signature schemes to the Prepare
and Commit phases in PBFT. For the BLS signature, we focus
on the threshold variant due to its non-interactive and signature
aggregation properties. Three elliptic curves at the low (i.e., 56-bit)
and medium (i.e., 70- and 80-bit) security levels are chosen in our
experiments. The security strength of those curves, which provides
guidance on setting the lifetime of a short-length key pair, has been
extensively studied during the past few years.

Regarding to the short-lived ECDSA signatures, we use ellip-
tic curves secp112r1 and sect163k1 specified in [39], which have
security levels of 56-bit and 80-bit, respectively. According to [7],
the ECDLP on secp112r1 can be solved on a single PS3 with six
Synergistic Processing Units (SPUs) in about 1.75 years. On the
other hand, breaking the ECDLP on sect163k1 would take about
2.16 · 109 days using 5.19 · 106 FPGAs at the cost of around 10 - 100
billion USD [42]. For implementing the short-lived BLS threshold
signature scheme, we utilize the Tate pairing defined over a Miyaji-
Nakabayashi-Takano (MNT) curve [31] with embedding degree
k = 6, which offers an approximate security level of 70-bit. The
most recent report [19] for cracking discrete logarithms on a 170-bit
MNT curve with embedded degree k = 3 requires 2.97 years and no
attempt has been made for the case of k = 6. While these curves are
not recommended for protecting systems requiring high security
levels, they are adequate for securing short-lived applications like
the round-based PBFT algorithm. In particular, a short-lived key
pair can be used safely for at least hundreds of rounds in PBFT,

3



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

(a) Key Distribution for the ECDSA Signature Scheme

(b) Key Share Distribution for the BLS Threshold Signature Scheme

Figure 2: Blockchain-Aided Key Distribution for Short-Lived Signatures in the PBFT Algorithm

based on the state-of-the-art techniques for solving the ECDLP on
the elliptic curves in question.

3.3 Blockchain-Aided Key Distribution
One remaining challenge for using short-lived signature schemes in
PBFT is to refresh the key pair after a certain number of rounds. We
note that a blockchain does provide a reliable communication chan-
nel for handling key distribution in a dynamic and distributed net-
work environment where entities might behave arbitrarily. Based
on this observation, we describe efficient, blockchain-aided key
distribution techniques for the ECDSA and BLS threshold signature
schemes in this subsection. We assume that node i starts using a
new, short-lived key pair (ski ,pki ) at round L for the consecutive
T rounds, during which each node in the consensus group acts as
the leader exactly K times (i.e., K = T /N ).

3.3.1 Blockchian-Aided Key Distribution for the ECDSA Signa-
ture Scheme. To update the short-lived key pair (ski ,pki ) in ECDSA,
node i in the consensus group does the following:

1. Once node i becomes the leader for the first time, it generates a
new key pair (sk ′i ,pk

′
i ) as well as a secret key ki .

2. Node i encrypts the new public key pk ′i using a symmetric-key
algorithm (e.g., AES) and adds the ciphertext Encki (pk ′i ) into the
‘extra data’ field in its block proposal.

3. If the block fails to be appended to the blockchain for some
reason, node i will repeat the Step 2 next time it acts as the leader.

This step continues until the block containing the ciphertext
Encki (pk ′i ) has been committed in the blockchain successfully.

4. When node i works as the leader for the K1-th time (K1 < K ), it
aims to release the secret key ki to the public by adding it into
the ‘extra data’ field in its block proposal.

5. If the block cannot pass the consensus process, node i will repeat
the Step 4 next time it becomes the leader. This step continues
until the block containing the secret key ki has been appended
to the blockchain successfully.

6. After the block proposal containing the secret key ki occurs
in the blockchain, other nodes in the consensus group are able
to decrypt the ciphertext Encki (pk ′i ) and retrieve the updated
public key pk ′i of node i .

7. Node i will be replaced by another node in the system provided
that it fails to distribute the updated public key pk ′i to its peers
during the lifetime of the key pair (ski ,pki ).

The above two-phase key distribution process is illustrated in Fig-
ure 2a. Essentially every node in the consensus group first generates
a new short-lived key pair and commits the encrypted public key
to the blockchain, followed by the release of the secret key for
decryption towards the end of life of the old key pair. If a node fails
to distribute the updated public key, it is highly likely that the node
is under attack and should be evicted from the consensus group.

3.3.2 Blockchian-Aided Key Share Distribution for the BLS Thresh-
old Signature Scheme. Due to the lack of a trusted dealer in blockchain
networks, the key updating for the BLS threshold signature scheme
involves a distributed key generation (DKG) protocol such as the

4



Scalable PBFT with Short-Lived Signature Schemes CASCON’18, October 2018, Markham, Ontario, Canada

one proposed by Pedersen in [34]. The Pedersen’s DKG scheme
requires every node in the consensus group to distribute the shares
of a randomly generated secret to all its peers. To update the short-
lived key pair share (ski ,pki ) in the BLS threshold signature scheme,
node i in the consensus group does the following:

1. Once node i becomes the leader for the first time, it chooses at
random a polynomial fi (z) of degree t over Zn :

fi (z) = ai0 + ai1z + · · · + aitzt ,

where fi (0) = ai0 = x̄i is a random secret that node i selects.
Node i then computes the shares x̄i j = fi (Idj ) (mod n) for j ∈
[1,N ], j , i , where Idj is the identifier of node j.

2. For j ∈ [1,N ], j , i , node i encrypts the shares x̄i j using a public-
key algorithm and obtains a set of ciphertexts {Enc′pkj (x̄i j )}.
Node i also computes a set of witnesses {Wik = aikP} for k ∈
[0, t]. Both ciphertext and witness sets are then added into the
‘extra data’ field in node i’s block proposal.

3. If the block fails to be appended to the blockchain for some
reason, node i will repeat the Step 2 next time it acts as the leader.
This step continues until the block containing the ciphertext and
witness sets has been committed in the blockchain successfully.

4. When all the peers in the consensus group complete the above
steps, node i is able to compute the new key pair share (sk ′i ,pk

′
i )

by following the Pedersen’s DKG scheme.
5. Node i will be replaced by another node in the system provided

that it is marked by its peers as ‘disqualified’ in the DKG scheme
or fails to commit the block containing the ciphertext andwitness
sets during the lifetime of the key pair share (ski ,pki ).
The above key share distribution process is illustrated in Fig-

ure 2b. Basically every node in the consensus group acts as the
trusted dealer and commits the encrypted shares of a randomly
selected secret to the blockchain. By collecting the corresponding
shares from the blockchain, each node is able to calculate the new
short-lived key pair share. If a node provides incorrect shares or
fails to distribute the shares, it will be evicted from the consensus
group due to potential attacks.

4 OPTIMIZATION TECHNIQUES FOR
IMPLEMENTING SHORT-LIVED
SIGNATURE SCHEMES

In this section, we discuss various optimization techniques used in
our implementations of the short-lived ECDSA and BLS threshold
signature schemes.

4.1 Efficient Implementation of the ECDSA
Signature Scheme

The parameters of the two elliptic curves secp112r1 and sect163k1
are summarized in Appendix A.1 and A.2, respectively. While
secp112r1 is an elliptic curve defined over a 112-bit prime field,
sect163k1 is a Koblitz curve defined over a 163-bit binary field. For
efficient implementation of elliptic curve arithmetic, we utilize var-
ious optimization techniques proposed in the literature such as the
lambda coordinates [33], the window-Non-Adjacent Form (NAF)
method [20], the pre-computation [43], etc. Furthermore, BLAKE2

hash function [35] is used in our implementation due to its high
performance on different computing platforms.

For speeding up the verification of multiple ECDSA signatures in
the PBFT algorithm, we implement the efficient batch verification
technique proposed in [10], which is applicable to the modified
ECDSA scheme in [1]. The security of the modified ECDSA scheme
is equivalent to the standard ECDSA, but the modified signature is
the pair (R, s) instead of (r , s) in the original scheme.

4.2 Efficient Implementation of the BLS
Threshold Signature Scheme

The parameters of the MNT curve with embedding degree k = 6 is
summarized in Appendix A.3. To improve the performance of the
threshold BLS signature scheme, we propose a multibase variant of
Miller’s algorithm for computing the Tate pairing and generalize
the method of encapsulating the computation of the line function
with the group operations described in [9] to the multibase case, as
detailed in the following subsections.

4.2.1 Tate Pairing on Elliptic Curves. Tate pairing is defined in
terms of divisors of a rational function. For our purpose, a divisor
is a formal sum D =

∑
P ∈E aP ⟨P⟩ of points on the curve E(Fqk ).

The degree of a divisor D is the sum deg(D) = ∑
P ∈E aP . The set

of divisors forms an Abelian group by the addition of correspond-
ing coefficients in their formal sums. Let f : E(Fqk ) → Fqk be
a rational function on the elliptic curve, then the divisor of f is
div(f ) ≡ ∑

P ∈E ordP (f )⟨P⟩, where ordP (f ) is the order of the zero
or pole of f at P . Let D be a divisor of degree zero, the evaluation of
the rational function f at D is defined as f (D) ≡∏

P ∈E f (P)aP . A
divisorD is called a principal divisor ifD = div(f ) for some rational
function f . A divisor D =

∑
P ∈E aP ⟨P⟩ is principal if and only if

deg(D) = 0 and
∑
P ∈E aPP = O. Two divisors D1 and D2 are equiv-

alent (i.e., D1 ∼ D2) if their difference D1 −D2 is a principal divisor.
Let P ∈ E(Fq )[n] where n is coprime to q and Q ∈ E(Fqk ). Let DP
be a divisor equivalent to ⟨P⟩ − ⟨O⟩ and therefore there is a rational
function fn,P ∈ Fq (E)∗ such that div(fn,P ) = nDP = n⟨P⟩ − n⟨O⟩.
Let DQ be a divisor equivalent to ⟨Q⟩ − ⟨O⟩ with its support
disjoint from div(fn,P ). The Tate pairing [15] is a well defined,
non-degenerate, bilinear map en : E(Fq )[n] × E(Fqk )/nE(Fqk ) →
F∗
qk
/(F∗

qk
)n given by en (P ,Q) = fn,P (DQ ). The computation of

fn,P (DQ ) is achieved by an application of Miller’s algorithm [30],
whose output is only defined up to n-th powers in F∗

qk
which is

usually undesirable in practice since many pairing-based protocols
require a unique pairing value. According to Theorem 1 in [2], one
can define reduced Tate pairing as e(P ,Q) = fn,P (Q)(q

k−1)/n . The
extra powering required to compute the reduced pairing is referred
to as the final exponentiation.

4.2.2 Multibase Number Representation. Variousmultibase num-
ber representations (MSRs) have been proposed to accelerate elliptic
curve scalar multiplication, see [12, 13, 25, 28] for examples. The
basic idea behind MSR is to record a scalar in a very compact and
sparse form and therefore significantly reduce the number of point
additions during the computation of scalar multiplication. In [28],

5



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

Longa and Miri introduced the following generic multibase repre-
sentation for a scalar n:

n =
m∑
i=1

ni

J∏
j=1

a
ci (j)
j ,

where (1) bases a1 , a2 , · · · , a J are positive primes (a1 is called
the main base) andm is the length of the expansion; (2)ni are signed
digits from a given set D; (3) c1(j) ≥ c2(j) ≥ · · · ≥ cm (j) ≥ 0 for
each j from 2 to J ; and (4) c1(1) > c2(1) > · · · > cm (1) > 0. Based
on the above MSR, Longa et al. [25, 28] proposed Multibase Non-
Adjacent Form (mbNAF) and its window-based variants including
Window-w Multibase Non-Adjacent Form (wmbNAF) and Fractional
Window-w Multibase Non-Adjacent Form (Frac-wmbNAF). Com-
bined with optimized composite operations and precomputation
schemes [27], the multibase methods have set new speed records
for computing the elliptic curve scalar multiplication [25].

4.2.3 A Multibase Variant of Miller’s Algorithm. We propose a
multibase variant of Miller’s algorithm and show how to efficiently
extract the required rational functions in this case. Considering that
one inversion is required for each group operation in the process
of computing Tate pairings, and the calculation of the inversion of
an element in large characteristic is usually quite expensive, we
use Jacobian coordinates to represent points on an elliptic curve
instead of affine coordinates. Moreover, we also employ the Frac-
wmbNAF method [25] to record the scalar, which has been shown
to achieve the highest performance among window-based methods
for standard elliptic curves in Weierstrass form.

LetA = {a1,a2, · · · ,a J } be a set of bases, where a1 = 2 and a2 ,
a3 , · · · , a J are positive odd primes. Let D = {0,±1,±3, · · · ,±t}
be a digit set, where t ≥ 3 is an odd integer. Let P ∈ E(Fq )[n] and
Q ∈ E(Fqk ), where n is a prime. Assume that n is represented by the

Frac-wmbNAF method as (n(bl )l , · · · ,n
(b2)
2 ,n

(b0)
0 ), where n(bi )i ∈ D

is the i-th digit and the superscript bi ∈ A denotes the base as-
sociated to the corresponding digit for 0 ≤ i ≤ l . With the above
notations, the multibase variant of Miller’s algorithm is described
in Algorithm 1. The algorithm includes two phases: the precom-
putation phase that calculates the required points and evaluates
the corresponding rational functions at the image point Q , and the
main loop that uses the results of the precomputation phase to
compute the Tate pairing efficiently.

We now explain how to perform the precomputation and the
main loop efficiently. Let I ,M and S denote an inversion, a multi-
plication and a squaring in Fq , and let Mk and Sk denote a mul-
tiplication and a squaring in the large field Fqk . We also assume
that an elliptic curve E over Fq admits a twist E ′ of degreew with
w | k . Letting d = k/w , we can take Q to be a point on the twist
curve E ′(Fqd ) in this case, which allows us to apply the efficient
denominator elimination technique due to Barreto, Lynn and Scott
[3]. Using twist curves, we can work within the groups E(Fq )[n]
and E ′(Fqd ) at all times except when a pairing is being evaluated,
where we use the twist map and operate in Fqk .

4.2.4 Precomputation Method. The precomputed points Pi and
function values fi are extensively used to accelerate the compu-
tation of Tate pairing in the above multibase variant of Miller’s

Algorithm 1. A Multibase Variant of Miller’s Algorithm
for Computing Tate Pairing

Input: n = (n(bl )l , · · · ,n
(b2)
2 ,n

(b0)
0 ), where n(bi )i ∈ D and bi ∈ A

P = (xP ,yP ) ∈ E(Fq )[n] and Q = (xQ ,yQ ) ∈ E(Fqk )
Output: e(P ,Q) = fn,P (Q)(q

k−1)/n

[Precomputation]:
1. Compute Pi = iP for i ∈ {1, 3, · · · , t}, t ≥ 3 is an odd integer
2. Compute f±i = f±i,P (Q) for i ∈ {1, 3, · · · , t}, where

div(fi ) = i⟨P⟩ − ⟨iP⟩ − (i − 1)⟨O⟩
[Main Loop]:
3. f ′ ← f

n
(bl )
l

,T ← P
n
(bl )
l

4. for i ← l − 1 downto 0 do
5. if bi = 2, then f ′ ← f ′2 · lT ,T (Q )v2T (Q ) ,T ← 2T

6. else f ′ ← f ′bi · lT ,T (Q )v2T (Q ) ·
l2T ,T (Q )
v3T (Q ) · · ·

l2T , (bi −2)T (Q )
vbiT (Q )

,T ← biT

7. if n(bi )i , 0 then
8. if n(bi )i > 0, then P ′ ← P

n(bi )i
; else P ′ ← −P−n(bi )i

9. f ′ ← f ′ · f
n(bi )i
· lT ,P ′ (Q )vT+P ′ (Q )

,T ← T + P ′

10. return f ′(q
k−1)/n

algorithm. Longa and Miri [27] proposed a highly efficient pre-
computation scheme for elliptic curve cryptosystems over prime
fields, which is based on the combination of the traditional chain
P → 2P → 3P → 5P → · · · → tP and the special point addition
formula with the same z-coordinate introduced by Meloni [29]. In
this subsection, we show how to efficiently obtain the function
values f±i = f±i,P (Q) for i ∈ {1, 3, · · · , t} and Q ∈ E ′(Fqd ) based
on the precomputation scheme in [27]. Considering that the pre-
computed table {P , 3P , · · · , tP} are stored in affine coordinates, it
is not hard to find that fi can be computed more efficiently in
affine coordinates instead of projective coordinates. Assuming that
jP = (x jP ,yjP ) for any j ∈ Z∗ and Q = (xQ ,yQ ), we first have
f1 = f1,P (Q) = 1 and f−1 = f−1,P (Q) = 1

xQ−xP . Using the parabola
method proposed by Eisenträger et. al. [14], we can calculate f±3
simultaneously as follows:

f3 = f3,P (Q) =
lP,P (Q)
v2P (Q)

·
l2P,P (Q)
v3P (Q)

=
(xQ − xP )2 + (λ1 + λ2)

[
λ1(xQ − xP ) − (yQ − yP )

]
xQ − x3P

=
(xQ − xP )2 + λ1(λ1 + λ2)(xQ − xP ) − (λ1 + λ2)(yQ − yP )

xQ − x3P

=
(xP − x2P )(xQ − xP )2 + (3x2

P + a)(xQ − xP ) + 2y2
P − 2yPyQ

(xP − x2P )(xQ − x3P )
,

where λ1 and λ2 are the slopes of the lines lP,P and l2P,P , respec-
tively. Using the fact that −jP = (x jP ,−yjP ) for any j ∈ Z∗, we
can obtain f−3 virtually for free by reusing the intermediate results
during the computation of f3:

f−3 =
(xP − x2P )(xQ − xP )2 + (3x2

P + a)(xQ − xP ) + 2y2
P + 2yPyQ

(xP − x2P )(xQ − x3P )
.

6



Scalable PBFT with Short-Lived Signature Schemes CASCON’18, October 2018, Markham, Ontario, Canada

Note that (3x2
P + a) and 2y2

P can be obtained from the computation
of 2P and the denominator (xP − x2P )(xQ − x3P ) can be eliminated
by the final exponentiation. Therefore, we only need to compute
the numerators of f±3 and the computation cost is dM , with a
precomputation of 1Sd + (d + k)M .

Similarly, for an odd integer s satisfying 5 ≤ s ≤ t , f±s can be
computed simultaneously as follows:

fs = fs,P (Q) = f2 · fs−2 ·
l2P,(s−2)P (Q)
vsP (Q)

= f2 · fs−2 ·
(yQ − y2P ) − λs (xQ − x2P )

vsP (Q)

= f2 · fs−2 ·
(x(s−2)P − x2P )(yQ − y2P ) − (y(s−2)P − y2P )(xQ − x2P )

(x(s−2)P − x2P )(xQ − xsP )
,

and

f−s = f−2 · f−(s−2) ·
(x(s−2)P − x2P )(yQ + y2P ) + (y(s−2)P − y2P )(xQ − x2P )

(x(s−2)P − x2P )(xQ − xsP )
,

where λs is the slope of the line l2P,(s−2)P . Hence, given f±(s−2),
we need 2Mk + (k + d + 1)M to calculate the numerators of f±s
simultaneously.

We summarize the precomputation scheme inAlgorithm 2. Again,
we only consider the computations of the numerators of f±i due
to the efficient denominator elimination technique [3]. Note that
Pi , i ∈ {1, 3, · · · , t} can be calculated with 1I + 9(t−1)

2 M + (t + 5)S
using the precomputation method (Scheme 2) in [27]. Moreover,
we also need to cost another 4M to recover the affine coordi-
nates of 2P that are used in the computation of f±i . Therefore,
the total cost of the precomputation scheme in Algorithm 2 is
(t − 3)Mk + 1Md + 1I +

(
(5t − 2) + (k+d )(t−1)

2

)
M + (t + 5)S .

Algorithm 2. Precomputation Scheme for the Multibase Variant
of Miller’s Algorithm

Input: P = (xP ,yP ) ∈ E(Fq )[n] and Q = (xQ ,yQ ) ∈ E(Fqk )
Output: Pi = iP and the numerators f ′±i of f±i = f±i,P (Q) for

i ∈ {1, 3, · · · , t}, where t ≥ 3 is an odd integer and
div(fi ) = i⟨P⟩ − ⟨iP⟩ − (i − 1)⟨O⟩.

1. Compute Pi = iP = (xiP ,yiP ) for i ∈ {1, 3, · · · , t} and
2P = (x2P ,y2P ) using the precomputation method proposed
in [27] (see pp. 238-240 of [27])

2. f ′1 ← 1, f ′−1 ← 1
3. T1 ← −

(
2y2

P + (3x
2
P + a)(xQ − xP )

)
, T2 ← 2yPyQ

f ′2 ← T1 +T2, f ′−2 ← T1 −T2

4. T1 ← xQ − xP ,T2 ← T1
(
(xP − x2P )T1 + (3x2

P + a)
)
+ 2y2

P ,

T3 ← 2yPyQ , f ′3 ← T2 −T3, f ′−3 ← T2 +T3
5. for s from 5 to t do
6. T1 ← x(s−2)P − x2P ,T2 ← T1yQ

T3 ← T1y2P + (y(s−2)P − y2P )(xQ − x2P )
7. f ′s ← f ′2 · f

′
s−2 · (T2 −T3), f ′−s ← f ′−2 · f

′
−(s−2) · (T2 +T3)

s ← s + 2
8. return Pi and f ′±i for i ∈ {1, 3, · · · , t}

4.2.5 Encapsulated Composite Operations and Line Computa-
tions. In [9], Chatterjee et. al. introduced the idea of encapsulating
elliptic curve group operations (i.e., point addition and point dou-
bling) and line computations, and applied this idea to improve the
computation of Tate pairing for two families of pairing-friendly
curves with embedding degree 2. It is also straightforward to adapt
this idea to other pairing-friendly curves which admit twists of
degreew withw | k . Moreover, fast doubling and mixed-addition
formulae proposed in [26] can be used to further improve Chatter-
jee et. al.’s algorithms. In this subsection, we show how to efficiently
perform the main loop in the multibase variant of Miller’s algorithm
by encapsulating fast composite operations and line computations.

Encapsulated Point Mixed-Addition and Line Computation:
LetT = (X1,Y1,Z1) and P ′ = (x2,y2) be two points in Jacobian and
affine coordinates, respectively, on the elliptic curve E(Fq ). The
mixed additionT + P ′ = (X3,Y3,Z3) can be computed efficiently as
follows [26]:

X3 = α2 − 4β3 − 8X1β
2,

Y3 = α(4X1β
2 − X3) − 8Y1β

3,

Z3 = (Z1 + β)2 − Z 2
1 − β

2,

where α = 2(Z 3
1y2 − Y1) and β = Z 2

1x2 − X1. In this case, the
evaluation of the line function lT ,T at the image point Q can be
calculated as follows:

lT ,P ′(Q) = (yQ − y2) −
2(Z 3

1y2 − Y1)
Z3

· (xQ − x2)

=
Z3yQ − αxQ + (αx2 − Z3y2)

Z3
, (1)

where Z3 and α are available from the point mixed-addition. The
encapsulated point mixed-addition and line computation are given
in Algorithm 3, which requires (9 + d + k)M + 4S . Note that in the
case of d = 1 (i.e., xQ ∈ Fq ) we can save one more field multipli-
cation by combining the terms involvingα in the above equation (1).

Encapsulated Point Doubling and Line Computation:
LetT = (X1,Y1,Z1) be a point in Jacobian coordinates on the elliptic
curve E(Fq ). The point doubling 2T = (X3,Y3,Z3) can be computed
efficiently as follows [26]:

X3 = α2 − 2β ,
Y3 = α(β − X3) − 8Y 4

1 ,

Z3 = (Y1 + Z1)2 − Y 2
1 − Z

2
1 ,

where α = 3X 2
1 + aZ 4

1 and β = 2
[
(X1 + Y 2

1 )
2 − X 2

1 − Y
4
1
]
for a

general a, and α = 3(X1 + Z 2
1 )(X1 − Z 2

1 ) and β = 4X1Y 2
1 if a = −3.

In this case, the evaluation of the line function lT ,T at the image
point Q can be calculated as follows:

lT ,T (Q) =
(
yQ −

Y1

Z 3
1

)
−

3X 2
1 + aZ

4
1

Z3
·
(
xQ −

X1
Z 2

1

)
=
(Z3Z 2

1 )yQ −
(
(2Y 2

1 − αX1) + (αZ 2
1 )xQ

)
Z3Z 2

1
, (2)

7



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

Algorithm 3. Encapsulated Point Mixed-Addition and Line Computation
Input: T = (X1,Y1,Z1) in Jacobian coordinates, P ′ = (x2,y2) in affine coordinates on E(Fq ) and Q = (xQ ,yQ ) ∈ E(Fqk )
Output: T + P ′ = (X3,Y3,Z3) in Jacobian and the numerator lADD of lT ,P ′(Q)

Point Mixed-Addition
1. T1 ← Z 2

1 6. Z3 ← Z 2
3 11. T1 ← T1 − Y1 16. Y3 ← Y1 ·T2 21. T4 ← T4/2

2. T2 ← x2 ·T1 7. Z3 ← Z3 −T1 12. T1 ← T1 +T1 17. T2 ← T2/2 22. T4 ← T4 − X3

3. T2 ← T2 − X1 8. Z3 ← Z3 −T3 13. T3 ← 8 ·T1 18. T2 ← T2 +T4 23. T4 ← T1 ·T4
4. T3 ← T 2

2 9. T1 ← Z1 ·T1 14. T2 ← T2 ·T3 19. X3 ← T 2
1 24. Y3 ← T4 − Y3

5. Z3 ← Z1 +T2 10. T1 ← y2 ·T1 15. T4 ← X1 ·T3 20. X3 ← X3 −T2
Line Computation

1. T2 ← x2 ·T1 3. T2 ← T2 −T3 5. Tk ← yQ · Z3 7. lADD ← Tk +T2
2. T3 ← y2 · Z3 4. Td ← xQ ·T1 6. Tk ← Tk −Td
Return (X3,Y3,Z3) and lADD

Algorithm 4. Encapsulated Point Doubling and Line Computation
Input: T = (X1,Y1,Z1) in Jacobian coordinates on E(Fq ) and Q = (xQ ,yQ ) ∈ E(Fqk ).
Output: 2T = (X3,Y3,Z3) in Jacobian coordinates and the numerator lDBL of lT ,T (Q).

Point Doubling
a = −3 General a

1. T1 ← Z 2
1 11. T4 ← X1 ·T3 1. T1 ← Z 2

1 9. Z3 ← Z 2
3 17. T4 ← T4 +T4

2. T2 ← X1 +T1 12. T4 ← 4 ·T4 2. T2 ← T 2
1 10. Z3 ← Z3 −T1 18. X3 ← T 2

2
3. T3 ← X1 −T1 13. X3 ← T 2

2 3. T2 ← a ·T2 11. Z3 ← Z3 −T3 19. X3 ← X3 −T4
4. T2 ← T2 ·T3 14. X3 ← X3 −T4 4. T4 ← X 2

1 12. T5 ← X1 +T3 20. X3 ← X3 −T4
5. T2 ← 3 ·T2 15. X3 ← X3 −T4 5. T4 ← 3 ·T4 13. T5 ← T 2

5 21. T5 ← 8 ·T5

6. T3 ← Y 2
1 16. T4 ← T4 − X3 6. T2 ← T2 +T4 14. T4 ← T5 −T4 22. T4 ← T4 − X3

7. Z3 ← Y1 + Z1 17. T4 ← T2 ·T4 7. T3 ← Y 2
1 15. T5 ← T 2

3 23. T4 ← T2 ·T4

8. Z3 ← Z 2
3 18. Y3 ← T 2

3 8. Z3 ← Y1 + Z1 16. T4 ← T4 −T5 24. Y3 ← T4 −T5
9. Z3 ← Z3 −T1 19. Y3 ← 8 · Y3

10. Z3 ← Z3 −T3 20. Y3 ← T4 − Y3
Line Computation

1. T4 ← Z3 ·T1 3. T1 ← T1 ·T2 5. T3 ← T3 −T2 7. Td ← Td +T3 9. lDBL ← Tk −Td
2. T3 ← T3 +T3 4. T2 ← T2 · X1 6. Td ← xQ ·T1 8. Tk ← yQ ·T4
Return (X3,Y3,Z3) and lDBL

where Z3,Z 2
1 ,Y

2
1 and α are available from the point doubling. The

encapsulated point doubling and line computation are given in Al-
gorithm 4, where some intermediate results of the point doubling,
as shown in the boxes, can be reused for the line computation. Al-
gorithm 4 requires (5+d +k)M + 8S to compute the point doubling
and evaluate the line function. In the case a is small, this cost is
(4+d+k)M+8S and for the case a = −3, this cost is (6+d+k)M+5S .
Note that in the case of d = 1 (i.e., xQ ∈ Fq ) we can save two more
field multiplications by combining the terms involving α in the
above equation (2).

Encapsulated Point Tripling and Line Computation:
LetT = (X1,Y1,Z1) be a point in Jacobian coordinates on the elliptic
curve E(Fq ). The point tripling 3T = (X3,Y3,Z3) can be computed

efficiently as follows [26]:

X3 = 16Y 2
1 (2β − 2α) + 4X1ω

2,

Y3 = 8Y1[(2α − 2β)(4β − 2α) − ω3],
Z3 = (Z1 + ω)2 − Z 2

1 − ω
2,

where 2α = (θ + ω)2 − θ2 − ω2, 2β = 16Y 4
1 ,θ = 3X 2

1 + aZ 4
1

and ω = 6
[
(X1 + Y 2

1 )
2 − X 2

1 − Y
4
1
]
− θ2 for a general a. For the

case when a = −3, θ and ω can be computed more efficiently as
θ = 3(X1 + Z 2

1 )(X1 − Z 2
1 ) and ω = 12X1Y 2

1 − θ
2. Similar to the

precomputation procedure, we can apply the parabola method [14]
again to simplify the required line function f3,T . However, in the
main loop of Algorithm 2 the points T and Q are represented in
Jacobian and affine coordinates, respectively. Letting λ′1 and λ′2 be
the slopes of the lines lT ,T and l2T ,T , we can obtain λ′1 =

θ
2Y1Z1

and

λ′1 + λ
′
2 =

8Y 3
1

Z1ω . In this case, the evaluation of the line function f3,T

8



Scalable PBFT with Short-Lived Signature Schemes CASCON’18, October 2018, Markham, Ontario, Canada

Algorithm 5. Encapsulated Point Tripling and Line Computation (a = −3)
Input: T = (X1,Y1,Z1) in Jacobian coordinates on E(Fq ) and Q = (xQ ,yQ ) ∈ E(Fqk ).
Output: 3T = (X3,Y3,Z3) in Jacobian coordinates and the numerator lTRL of f3,T (Q).

Point Tripling

1. T1 ← Z 2
1 8. T4 ← X1 ·T3 15. Z3 = Z1 +T4 22. T5 ← T4 ·T5 29. T8 ← T8 · (−T6)

2. T2 ← X1 +T1 9. T4 ← 3 ·T4 16. Z3 = Z 2
3 23. T7 ← T 2

3 30. T8 ← T8 −T5

3. T3 ← X1 −T1 10. T5 ← T 2
2 17. Z3 ← Z3 −T1 24. T6 ← T7 −T6 31. Y3 ← 4 · Y3

4. T2 ← T2 ·T3 11. T4 = T4 −T5 18. T5 ← T 2
4 25. T8 ← T3 ·T6 32. Y3 ← Y3 ·T8

5. T2 ← 3 ·T2 12. T6 = T2 +T4 19. Z3 ← Z3 −T5 26. X3 ← X3 +T8
6. Y3 ← 2Y1 13. T6 = T 2

6 20. T6 ← T6 −T5 27. X3 ← 4 · X3

7. T3 ← Y 2
3 14. T6 = T6 −T5 21. X3 ← X1 ·T5 28. T8 ← T6 +T7

Line Computation
1. T5 ← X1 ·T4 5. T6 ← X1 ·T6 9. Td ← xQ ·T5 13. Td ← Td +Td ′ 17. T3 ← T 2

2
2. T6 ← T2 ·T3 6. T5 ← T1 ·T5 10. T1 ← T 2

1 14. Td ← Td +T6 18. T3 ← T2 ·T3
3. T6 ← T5 −T6 7. T7 ← T7/2 11. T1 ← T1 ·T4 15. T2 ← Y1 · Z1 19. Tk ← yQ ·T3
4. T5 ← −(T5 +T6) 8. T6 ← T6 +T7 12. Td ′ ← x2

Q ·T1 16. T2 ← T2 +T2 20. lTRL ← Td −Tk
Return (X3,Y3,Z3) and lTRL

at the image point Q can be computed as follows:

f3,T (Q ) =
lT ,T (Q )
v2T (Q )

·
l2T ,T (Q )
v3T (Q )

=

(
xQ −

X1
Z 2

1

)2
+ (λ′1 + λ

′
2)

[
λ′1

(
xQ −

X1
Z 2

1

)
−

(
yQ −

Y1
Z 3

1

)]
xQ − x3T

=
(xQZ 2

1 − X1)
[
ω(xQZ 2

1 − X1) + 4Y 2
1 θ

]
+ 8Y 4

1 − (2Y1Z1)3yQ
ωZ 4

1 (xQ − x3T )
(3)

=
(ωZ 4

1 )x
2
Q + Z

2
1 (4Y

2
1 θ − 2ωX1)xQ + X1(ωX1 − 4Y 2

1 θ ) + 8Y 4
1 − (2Y1Z1)3yQ

ωZ 4
1 (xQ − x3T )

, (4)

where θ ,ω, 4Y 2
1 ,Z

2
1 , 8Y

4
1 andZ 4

1 are available from the point tripling.
Due to space limitations, we only describe the encapsulated point
tripling and line computation for the case a = −3 in the following
Algorithm 5, where some intermediate results of the point tripling,
as shown in the boxes, can be reused for the line computation.
However, it is also straightforward to derive the explicit formula
for a general a. Assuming that x2

Q is precomputed with 1Sd , Algo-
rithm 3 requires (14 + 2d + k)M + 9S to calculate the point tripling
and evaluate the line functions. In the case a is small, this cost is
(12+2d+k)M+11S and for a generala, this cost is (13+2d+k)M+11S .
Note that in the case of d = 1 or 2 (i.e., xQ ∈ Fq or Fq2 ) it is more
efficient to evaluate the line functions using equation (3) instead of
(4), which can save 3M + 1S and 1M + 1S , respectively.

we summarize the cost of our encapsulated composite operations
and line computations as well as previous work for computing the
Tate pairing in Table 1. When compared to the Chatterjee et. al.’s
work (where k = 2 and d = 1) [9], our formulae trade 2M for 2S in
the encapsulated point doubling and line computation, and 1M for
1S in the encapsulated point mixed addition and line computation,
respectively. We also give the computation cost of the encapsulated
composite operations and line computations on general pairing-
friendly curves.

4.2.6 Finite Field Arithmetic. For the MNT curve in our imple-
mentation, p ≡ 1 mod 3 (where ξ = −2 is a cubic non-residue in Fp )
and γ = − 3√−2 is a quadratic non-residue in Fp3 . We can construct
the extension field Fp6 as a tower of finite extensions:

Fp3 = Fp [X ]/(X 3 − ξ ),

Fp6 = Fp3 [Y ]/(Y 2 − γ ).

Hence an elementη ∈ Fp6 can be represented in any of the following
three ways:

η = η0 + η1
6
√
ξ

= (η0,0 + η0,1
3
√
ξ + η0,2

3
√
ξ 2) + (η1,0 + η1,1

3
√
ξ + η1,2

3
√
ξ 2) 6

√
ξ

= η0,0 + η1,0
6
√
ξ + η0,1

3
√
ξ + η1,1

√
ξ + η0,2

3
√
ξ 2 + η1,2

6
√
ξ 5,

where η0,η1 ∈ Fp3 and η0,0,η0,1,η0,2,η1,0,η1,1,η1,2 ∈ Fp . With the
above notations, the group homomorphism ϕ : E ′(Fp3 ) → E(Fp6 )
defined as ϕ((x ,y)) 7→ (x ,y 6

√
ξ ) can be computed at no cost. For

the arithmetic in Fp3 , Karatsuba’s method reduces a multiplication
and a squaring in Fp3 to 6 multiplications and 6 squarings in Fp ,
respectively. Moreover, inversion in Fp3 costs 1I +9M +3S in Fp via
the following direct inversion formulae: if µ = µ0 + µ1X + µ2X 2 ∈
Fp3 , then µ−1 = ν0 + ν1X + ν2X 2 where ν0 = (µ2

0 + 2µ1µ2)∆−1,ν1 =

−(2µ2
2 + µ0µ1)∆−1,ν2 = (µ2

1 − µ0µ2)∆−1 and ∆ = µ0(µ2
0 + 6µ1µ2) +

2(2µ3
2−µ

3
1). Since Fp6 is a tower of cubic and quadratic extensions, it

is more efficient to use Karatsuba over Karatsuba for multiplication,
and use Complex over Karatsuba for squaring in Fp6 based on the
exhaustive testing described in [11]. Therefore, the computation
cost for the multiplication and the squaring in Fp6 is 18M and 12M ,
respectively. Furthermore, inversion in Fp6 can be reduced to 1
inversion, 2 multiplications, and 2 squarings in Fp3 .

4.2.7 Fast Hashing to G′2. To implement the BLS scheme on the
MNT curve, we require a point Q ∈ E(Fp6 ) of order n. Since the

9



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

Table 1: Cost of Group Operations and Line Computations for Computing the Tate Pairing

Reference Coordinate k and d General a Small a a = −3
Point Doubling and Line Computation

Zhao et. al. [44] Affine General 1I + (4 + 3.5k)M + 2S – –
Chatterjee et. al. [9] Jacobian k = 2,d = 1 8M + 6S 7M + 6S 8M + 4S
This work Jacobian k = 2,d = 1 6M + 8S 5M + 8S 7M + 5S
(see Algorihtm 3) General (5 + d + k)M + 8S (4 + k + d)M + 8S (6 + d + k)M + 5S

Point (Mixed) Addition and Line Computation
Zhao et. al. [44] Affine General 1I + (3 + 2.5k)M + 1S
Chatterjee et. al. [9] Jacobian k = 2,d = 1 11M + 3S
This work Jacobian k = 2,d = 1 10M + 4S
(see Algorithm 4) General (9 + d + k)M + 4S

Point Tripling and Line Computation
Zhao et. al. [44] Affine General 1I + (9 + 2k)M + 4S + 1Mk – –
This work Jacobian d = 1 (12 + k)M + 10S (11 + k)M + 10S (13 + k)M + 8S
(see Algorithm 5) d = 2 (16 + k)M + 10S (15 + k)M + 10S (17 + k)M + 8S

d ≥ 3 (13 + 2d + k)M + 11S (12 + 2d + k)M + 11S (14 + 2d + k)M + 9S

MNT curve has quadratic twists E ′(Fp3 ), we only need to generate
a point Q ′ ∈ E ′(Fp3 ) of order n. The standard approach is to first
generate a random point on E ′(Fp3 ) and then multiply by the co-
factor c = #E ′(Fp3 )/n which is of a size in bits approximately the
same as p2. In [38], Scott et. al. proposed a fast method for the co-
factor multiplication on G′2 = ⟨Q

′⟩ using an efficiently computable
homomorphism. Here, we adapt their idea to the MNT curve in
question. Noting that n = (z2 − z + 1)/3,p = 2n + z and the trace of
the Frobenius τ = z + 1, we can represent the cofactor c in terms of
p and z as follows:

c =
#E ′(Fp3 )

n
=
p3 + 1 + τ 3 − 3τp

n
= 2p2 + (2z + 3)p − z − 2.

Let πp be the p-power Frobenius map on E and ϕ be the group
homomorphism defined above. Thenψ = ϕ−1πpϕ is an endomor-
phism of E ′ such thatψ : G′2 → G

′
2 and for any point Q ′ ∈ G′2 the

identity [p]Q ′ = [τ ]ψ (Q ′) −ψ 2(Q ′) holds [17]. Using this identity,
we can calculate cQ as follows:

cQ ′ = [−z − 2]Q ′ + (2z + 3)[p]Q ′ + 2[p2]Q ′

= [2]Q ′ + [4z + 2]ψ (Q ′) + [4z]ψ 2(Q ′)
= 2Q ′ +ψ (4zQ ′ + 2Q ′) +ψ 2(4zQ ′).

Hence, the cost for computing cQ ′ is one point doubling, one scalar
multiplication by 2z, three applications of the homomorphism ψ
and three point additions.

4.2.8 Final Exponentiation. For the MNT curve used in our im-
plementation, the output of the multibase variant of Miller’s al-
gorithm must be exponentiated to the power of (p6 − 1)/n. The
final exponentiation can be further broken down into the following
three components:

(p6 − 1)/n = (p3 − 1) · (p + 1) · [(p2 − p + 1)/n].

Let f ′ = f ′0 + f ′1
6
√
ξ ∈ Fp6 be the output of Miller’s algorithm.

Then exponentiating f ′ to p3 − 1 can be trivially computed with a
conjugationwith respect to Fp3 , a multiplication and an inversion in

Fp6 . Using the basis described in Subsection 4.2.6, the conjugation
of f ′ with respect to Fp3 is calculated as f̄ ′ = f ′0 − f ′1

6
√
ξ . The

second part of the final exponentiation can be computed with an
application of the Frobenius and one multiplication in Fp6 . The
remaining exponentiation to (p2 − p + 1)/n can be dealt with the
method proposed in [37]. Noting thatn = (z2−z+1)/3 andp = 2n+z,
we obtain the following relation:

p2 − p + 1
n

=
(2n + z)2 − (2n + z) + 1

n

=
2n(2n + 2z − 1) + (z2 − z + 1)

n
= 2(p + z) + 1.

Therefore, the last part of the final exponentiation can be calculated
with an application of the Frobenius, one squaring, two multiplica-
tions, and a simple exponentiation to the power of z in Fp6 .

5 PERFORMANCE EVALUATION
In this section, we present the experimental results to validate the
performance of the short-lived ECDSA and BLS threshold signature
schemes under the PBFT setting. We implement three software
libraries for the elliptic curves secp112r1, sect163k1 and the MNT
curve, respectively. Those libraries are written in C and complied
using the GNU C Compiler (GCC) on a MacBook Pro with an
Intel Core i7 2.2 GHz CPU and 16GB RAM. We consider PBFT
groups varying in size from 52 to 502. Recall from Section 3.1 that
in both Prepare and Commit phases each node needs to verify
2f + 1 signatures received from its peers, where f is number of
Byzantine nodes in PBFT. For the ECDSA signature scheme, we
implement the batch verification approach [10] for verifying 2f +
1 modified ECDSA signatures. On the other hand, for the BLS
threshold signature scheme, we set the threshold as 2f for different
PBFT group sizes. The performance of verifying multiple signatures
using the short-lived signature schemes is illustrated in Figure 3,
where N is the PBFT group size and S is the number of signatures
that need to be verified for each node.

10



Scalable PBFT with Short-Lived Signature Schemes CASCON’18, October 2018, Markham, Ontario, Canada

Figure 3: Performance of Verifying Multiple Signatures Us-
ing the Short-Lived Signature Schemes in PBFT

From Figure 3, we note that using the short-lived signature
schemes during the PBFT consensus process is able to increase the
performance of verifying multiple signatures significantly, thereby
improving the scalability of PBFT accordingly. In particular, the
modified ECDSA coupled with the batch verification is around 10
times faster than the BLS threshold signature scheme. The reason
lies in the slower signature share combination process and the
computation of the two Tate pairings for verification in the BLS
threshold signature scheme.

With respect to the communication overhead, the leader only
needs to sends one signed message in each round of PBFT. Each
validator, on the other hand, needs to collect 2f + 1 signatures
from its peers. Note that the size of a modified ECDSA (resp. the
BLS threshold signature scheme) is three (resp. one) field elements.
Table 2 summarizes the communication overhead for each validator
in PBFT when using the different elliptic curves and signature
schemes. It is not difficult to find out the communication overhead
with the BLS threshold signature scheme is at least 50% less than
that of the modified ECDSA scheme.

Table 2: Communication Overhead for Validators in PBFT
(in Bytes)

Group Size # Signatures Validator
secp112r1 secp163k1 MNT

52 35 1, 470 2, 205 700
100 67 2, 814 4, 221 1, 340
202 135 5, 670 8, 505 2, 700
301 201 8, 442 12, 663 4, 020
400 267 11, 214 16, 821 5, 340
502 335 14, 070 21, 105 6, 700

6 RELATEDWORK
ByzCoin [23] reduced the communication overhead of PBFT from
O(n2) toO(n) by replacing the MAC based all-to-all communication
with a primitive called scalable collective signing (CoSi). Cosi is
composed of four rounds of communication and a collective signa-
ture, which is structured as a tree of Schnorr signature, is generated
and verified by all members of the group at the end. As a result,

each node does not need to collect individual signatures form its
peers any more.

In [24], Li et al. proposed Gosig, a new BFT protocol that com-
bines crypto-based leader selection andmulti-round voting schemes
to improve the scalability under a permissioned blockchain setting.
In particular, the author adopted an (insecure) BLS multi-signature
scheme to reduce the storage and communication overhead and the
PKI to rule out the potential attacks for the aggregated signatures.

In [18], Gueta et al. presented SBFT, a scalable decentralized
trust infrastructure for blockchains. SBFT implemented a new BFT
algorithm for addressing the scalability and decentralization issues.
The BLS threshold signature scheme at the higher security level
(i.e., 128-bit) has been extensively used in the SBFT design to reduce
the communication overhead through signature aggregation.

7 CONCLUSIONS
In this paper we propose an efficient variant for the classical PBFT
consensus algorithm, which takes advantage of the short-lived
signature schemes to accelerate the signature verification process
across the different phases of PBFT. When combining with novel
blockchain-aided key distribution schemes, the scalability of the
PBFT can be improved significantly. The extensive experiments
with three elliptic curves and two signature schemes further high-
light the advantages of the proposed approach for reducing the
communicational and computation overhead of PBFT.

A PARAMETERS FOR ELLIPTIC CURVES
A.1 Elliptic Curve secp112r1
The elliptic curve secp112r1 [39] is given by the equation E(Fp ) :
y2 = x3 − 3x + b over a prime field Fp , where

p = db7c 2abf62e3 5e668076 bead208b

b = 659e f8ba0439 16eede89 11702b22

The base point G = (x ,y) is:

x = 0948 7239995a 5ee76b55 f9c2f098

y = a89c e5af8724 c0a23e0e 0ff77500

The order n of G and the cofactor h are:

n = db7c 2abf62e3 5e7628df ac6561c5

h = 01

A.2 Elliptic Curve sect163k1
The Koblitz curve sect163k1 [39] is given by the equation E(F2163 ) :
y2+xy = x3+x2+1 over a binary field F2163 , where the binary field is
defined by the irreducible polynomial f (x) = x163+x7+x6+x3+1.

The base point G = (x ,y) is:

x = 02 fe13c053 7bbc11ac aa07d793 de4e6d5e 5c94eee8

y = 02 89070fb0 5d38ff58 321f2e80 0536d538 ccdaa3d9

The order n of G and the cofactor h are:

n = 04 00000000 00000000 00020108 a2e0cc0d 99f8a5ef

h = 02

11



CASCON’18, October 2018, Markham, Ontario, Canada Xinxin Fan

A.3 MNT Curve with Embedding Degree k = 6
The MNT curve with embedding degree k = 6 [31] is given by the
equation E(Fp ) : y2 = x3 − 3x + b over a prime field Fp , where

p = 7ddca613 a2e3ddb1 749d0195 bb9f14cf 44626303

b = 21c3f3ac 7864d1f1 f99273d0 f828d365 7d8cfd4e

The order n of G and the cofactor h are:

n = 3eee5309 d171eed8 ba4e12de f44414fd 17d369b7

h = 02

The parameters p and n can be represented in terms of an 80-bit
integer z = dbd7d316ead514bb8f95 (in hexadecimal) such that
n = (z2 − z + 1)/3 and p = 2n + z.

REFERENCES
[1] A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstone, “Accelerated

Verification of ECDSA Signatures", Selected Areas in Cryptography - SAC’2005, ser.
LNCS 3897, B. Preneel and S. Tavares (eds.), Berlin, Germany: Springer-Verlag, pp.
307-318, 2005.

[2] P.L.S.M. Barreto, H. Y. Kim, B. Lynn, and M. Scott, “Efficient Algorithm for Pairing-
Based Cryptosystems", Advance in Cryptology - CRYPTO’2002, ser. LNCS 2442, M.
Yung (ed.), Berlin, Germany: Springer-Verlag, pp. 354-368, 2002.

[3] P.L.S.M. Barreto, B. Lynn, and M. Scott, “On the Selection of Pairing-Friendly
Groups", Selected Areas in Cryptography - SAC’2002, ser. LNCS 3006, M. Matsui
and R. Zuccherato (eds.), Berlin, Germany: Springer-Verlag, pp. 17-25, 2003.

[4] A. Boldyreva, "Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme", Public Key Cryptography –
PKC 2003, ser. LNCS 2567, Y.G. Desmedt (eds.), Berlin, Germany: Springer-Verlag,
pp. 31-46, 2003.

[5] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, "Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps", Advances in Cryptology – EUROCRYPT’03,
ser. LNCS 2656, E. Biham (Ed.), Berlin, Germany: Springer-Verlag, pp. 416-432,
2003.

[6] D. Boneh, B. Lynn, and H. Shacham, "Short Signatures from the Weil Pairing",
Advances in Cryptology – ASIACRYPT’01, ser. LNCS 2248, C. Boyd (Ed.), Berlin,
Germany: Springer-Verlag, pp. 514-532, 2001.

[7] J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery, "Solving
a 112-bit Prime Elliptic Curve Discrete Logarithm Problem on Game Consoles
using Sloppy Reduction", International Journal of Applied Cryptography, vol. 2, no.
3, pp. 212-228, Inderscience Enterprises Ltd., 2012

[8] M. Castro and B. Liskov, "Practical Byzantine Fault Tolerance and Proactive Re-
covery", ACM Transactions on Computer Systems, Vol. 20, Iss. 4, pp. 398-461, 2002.

[9] S. Chatterjee, P. Sarkar, and R. Barua “Efficient Computation of Tate Pairing in
Projective Coordinate over General Characteristic Fields", Information Security
and Cryptology - ICISC 2004, ser. LNCS 3506, C. Park and S. Chee (eds.), Berlin,
Germany: Springer-Verlag, pp. 168-181, 2005.

[10] J. H. Cheon and J. H. Yi, "Fast Batch Verification of Multiple Signatures", Public
Key Cryptography - PKC 2007, ser. LNCS 4450, T. Okamoto and X. Wang (eds.),
Berlin, Germany: Springer-Verlag, pp. 442-457, 2007.

[11] A.J. Devegili, C. Ó hÉigeartaigh, M. Scott, and R. Dahab, “Multiplication and
Squaring on Pairing-Friendly Fields," Cryptology ePrint Archive, Report 2006/471,
2006, http://eprint.iacr.org/2006/471.

[12] V. Dimitrov, L. Imbert, and P.K. Mishra, “Efficient and Secure Elliptic Curve
Point Multiplication using Double-Base Chains", Advance in Cryptology - ASI-
ACRYPT’2005, ser. LNCS 3788, B. Roy (ed.), Berlin, Germany: Springer-Verlag, pp.
59-78, 2005.

[13] C. Doche, and L. Imbert, “Extended Double-Base Number System with Applica-
tions to Elliptic Curve Cryptography", Progress in Cryptology - INDOCRYPT’2006,
ser. LNCS 4329, B. Barua and T. Lange (eds.), Berlin, Germany: Springer-Verlag,
pp. 335-348, 2006.

[14] K. Eisenträger, K. Lauter, and P. L. Montgomery, “Fast Elliptic Curve Arithmetic
and Improved Weil Pairing Evaluation", The Cryptographer’s Track at RSA Confer-
ence - CT-RSA’2003, ser. LNCS 2612, M. Joye (ed.), Berlin, Germany: Springer-Verlag,
pp. 343-354, 2003.

[15] G. Frey, and H.-G. Rück, “A Remark Concerning m-Divisibility and the Dis-
crete Logarithm Problem in the Divisor Class Group of Curves," Mathematics of
Computation, 62(206):865-874, 1994.

[16] S. Galbraith, K. Paterson, and N. Smart, "Pairings for cryptographers", Discrete
Applied Mathematics, Vol. 156, Iss. 16, pp. 3113-3121, 2008.

[17] S. Galbraith, and M. Scott, “Exponentiations in Pairing-Friendly Groups Using
Homomorphisms," Pairing-Based Cryptography - Pairing’2008, ser. LNCS 5209, S.

Galbraith and K. Paterson (eds.), Berlin, Germany: Springer-Verlag, pp. 211-224,
2008.

[18] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. K. Reiter, D.-A.
Seredinschi, O. Tamir, A. Tomescu, "SBFT: a Scalable Decentralized Trust Infras-
tructure for Blockchains", CoRR, abs/1804.01626, 2018.

[19] A. Guillevic, F. Morain, and E. Thomé, "Solving Discrete Logarithms on a 170-Bit
MNT Curve by Pairing Reduction", Selected Areas in Cryptography – SAC 2016,
ser. LNCS 10532, R. Avanzi, H. Heys (Eds.), Berlin, Germany: Springer-Verlag, pp.
559-578, 2016.

[20] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer Professional Computing Series, Springer, 2004.

[21] Hyperledger. https://www.hyperledger.org/.
[22] IoTeX. https://www.iotex.io/.
[23] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, "En-

hancing Bitcoin Security and Performance with Strong Consistency via Collective
Signing", The 25th USENIX Security Symposium (USENIX Security), pp. 279-296,
2016.

[24] P. Li, G. Wang, X. Chen, W. Xu, "Gosig: Scalable Byzantine Consensus on Adver-
sarial Wide Area Network for Blockchains", CoRR, abs/1802.01315, 2018.

[25] P. Longa, and C. Gebotys, “Setting Speed Records with the (Fractional) Multibase
Non-Adjacent Form Method for Efficient Elliptic Curve Scalar Multiplication",
Cryptology ePrint Archive, Report 2008/118, 2008, http://eprint.iacr.org/2008/118.

[26] P. Longa, and A. Miri, “Fast and Flexible Elliptic Curve Point Arithmetic over
Prime Fields", IEEE Transactions on Computers, vol. 57, no. 3, pp. 289-302, 2008.

[27] P. Longa, and A. Miri, “New Composite Operations and Precomputation Scheme
for Elliptic Curve Cryptosystems over Prime Fields", Public Key Cryptography -
PKC’2008, ser. LNCS 4939, R. Cramer (ed.), Berlin, Germany: Springer-Verlag, pp.
229-247, 2008.

[28] P. Longa, and A. Miri, “New Multibase Non-Adjacent Form Scalar Multiplication
and its Application to Elliptic Curve Cryptosystems," Cryptology ePrint Archive,
Report 2008/052, 2008, http://eprint.iacr.org/2008/052.

[29] N. Meloni, “New Point Addition Formulae for ECC Applications", International
Workshop on the Arithmetic of Finite Fields - WAIFI’2007, ser. LNCS 4547, C. Carlet
and B. Sunar (eds.), Berlin, Germany: Springer-Verlag, pp. 189-201, 2007.

[30] V. S. Miller, “Short Programs for Functions on Curves," Unpublished manuscript,
1986, http://crypto.stanford.edu/miller/miller.pdf.

[31] A. Miyaji, M. Nakabayashi, and S. Takano, “New Explicit Conditions of Ellip-
tic Curve Traces for FR-Reduction," IEICE Transactions on Fundamentals, E84-
A(5):1234-1243, 2001.

[32] N. El Mrabet and M. Joye, Guide to Pairing-Based Cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series, CRC Press, 2016.

[33] T. Oliveira, J. López, D. F. Aranha, and F. Rodríguez-Henríquez, “Two is the Fastest
Prime: Lambda Coordinates for Binary Elliptic Curves”, Journal of Cryptographic
Engineering, Vol. 4, Iss. 1, pp. 3-17, 2014.

[34] T. Pedersen, "A Threshold Cryptosystem Without a Trusted Party", Advances in
Cryptology – EUROCRYPT’91, D.W. Davies (Ed.), LNCS 547, pp. 522-526, Springer-
Verlag, 1991.

[35] M-J. Saarinen and J-P. Aumasson, “The BLAKE2Cryptographic Hash andMessage
Authentication Code (MAC)”. RFC 7693 (Informational), https://tools.ietf.org/html/
rfc7693, 2015.

[36] F. B. Schneider, "Implementing Fault-Tolerant Services Using the State Machine
Approach: A Tutorial", ACM Computing Surveys, Vol. 22, Iss. 4, pp. 299-319, 1990.

[37] M. Scott, N. Benger, M. Charlemagne, P. L. J. Dominguez, and E. Kachiza, “On
the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves,"
Cryptology ePrint Archive, Report 2008/490, 2008, http://eprint.iacr.org/2008/490.

[38] M. Scott, N. Benger, M. Charlemagne, P. L. J. Dominguez, and E. Kachiza, “Fast
Hashing to G2 on Pairing Friendly Curves," Cryptology ePrint Archive, Report
2008/530, 2008, http://eprint.iacr.org/2008/530.

[39] Standards for Efficient CryptographyGroup, "SEC 2: Recommended Elliptic Curve
Domain Parameters (Version 1.0)", 2000, http://www.secg.org/SEC2-Ver-1.0.pdf.

[40] A. Shamir, "How to Share a Secret", Communications of the ACM, Vol. 22, Iss. 11,
pp. 612-613, 1979.

[41] Tendermint. https://tendermint.com/.
[42] E.Wenger and P.Wolfger, "Harder, Better, Faster, Stronger: Elliptic Curve Discrete

Logarithm Computations on FPGAs", Journal of Cryptographic Engineering, Vol. 6,
Iss. 4, pp. 287-297, Springer-Verlag, 2016.

[43] W. Yu, S. A. Musa, G. Xu, and B. Li, “A Novel Pre-Computation Scheme ofWindow
τNAF for Koblitz Curves”, IACR Cryptology ePrint Archive, Report 2017/1020,
https://eprint.iacr.org/2017/1020, 2017.

[44] C. Zhao, F. Zhang, and J. Huang, “Efficient Tate Pairing Computation Using
Double-Base Chains," Science in China Series F: Information Sciences, vol. 51, no. 8,
pp. 1096-1105, 2008.

[45] Zilliqa. https://zilliqa.com/.

12

http://eprint.iacr.org/2006/471
https://www.hyperledger.org/
https://www.iotex.io/
http://eprint.iacr.org/2008/118
http://eprint.iacr.org/2008/052
http://crypto.stanford.edu/miller/miller.pdf
https://tools.ietf.org/html/rfc7693
https://tools.ietf.org/html/rfc7693
http://eprint.iacr.org/2008/490
http://eprint.iacr.org/2008/530
http://www.secg.org/SEC2-Ver-1.0.pdf
https://tendermint.com/
https://eprint.iacr.org/2017/1020
https://zilliqa.com/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elliptic Curve Cryptography and ECDSA
	2.2 Bilinear Pairing and BLS Signature

	3 Scalable PBFT Using Short-Lived Signature Schemes
	3.1 Key Observation on the PBFT Algorithm
	3.2 Security Strength of Short Public Keys
	3.3 Blockchain-Aided Key Distribution

	4 Optimization Techniques for Implementing Short-Lived Signature Schemes
	4.1 Efficient Implementation of the ECDSA Signature Scheme
	4.2 Efficient Implementation of the BLS Threshold Signature Scheme

	5 Performance Evaluation
	6 Related Work
	7 Conclusions
	A Parameters for Elliptic Curves
	A.1 Elliptic Curve secp112r1
	A.2 Elliptic Curve sect163k1
	A.3 MNT Curve with Embedding Degree k = 6

	References

