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¢ Spatial and Gray-level (Intensity) Resolution:

e Spatial resolution 1s the smallest discernable detail 1n an 1mage.

* Gray-level resolution 1s the smallest discernable change 1n gray(intensity)

level.

* For spatial resolution to say a image has a 512x 512 pixels resolution 1s
not a meaningful statement without stating the spatial dimensions

encompassed by the image.




¢ Spatial/Coordinate Resolution:

Original image 512*512 Sample image (256*256) Sample image (128*128)
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A 512 x 512, 8 bit image subsampled down to size 256 x 256, 128 x 128, 64 x 64 , 32 x 32 and 16 x 16 pixels. The
number of intensity levels kept at 256.




¢ Aliasing (Down Sampling) :

* Shannon sampling theorem tells us that, if the function 1s sampled at a rate equal
to or greater than twice its highest frequency (fs>2fm )it 1s possible to recover
completely the original function from the samples.

e If the function 1s downsampled, then a phenomenon called aliasing(distortion if
two pattern or spectrum overlap, the overlapped portion 1s called aliased) corrupts
the sampled 1mage.

e The corruption 1s i the form ol additional frequency components being

mtroduced mto the sampled function. These are called aliased frequencies.
Downsampling results in a “Checker board” pattern due to reduction of samples.




** Up Sampling :

* For zooming an 1image we need to do mterpolation. Interpolation 1s the process of
using know data to estimate values of unknown locations.

(1) Nearest neighbor interpolation:
Assigns the value of closest pixel to the new pixel.

(2) Bilinear mterpolation:
Bilinear interpolation considers the closest 2x2 neighborhood of known pixel
values surrounding the unknown pixel. It then takes a weighted average of these 4
pixels to arrive at its final interpolated value.

(3) Bicubic mterpolation:
It considers the closest 4 x 4 neighborhood of known pixels and takes the
welghted average of these 16 pixels.




Original Image (64x64)

Zoomed Image (512x512), using Nearest neighbor interpolation Zoomed Image (512x512), using Bilinear interpolation




** Gray-Level/Intensity Resolution :

Image using bit &
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Image using bit 7

Image using bit 6

Image using bit 5
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Fig: 512 x 512, 256 level(8 bit) image. Further displayed in 128 level (7 bit), 64 level (6 bit), 32 level (5 bit), 16 level (4
bit), 8 level (3 bit), 4 level (2 bit) and 2 level (1 bit), while keeping spatial resolution constant.
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* Image enhancement 1s the process of enhancing image so that the

resultant 1mage 1s more suitable than original for specific applications.

Image Enhancement

Frequency domain

Spatial domain
Point processing Neighbourhood processing
E.g. Negative Image, contrast E.g. Averaging filter, median filtering
stretching, thresholding etc. etc.

E.g. Image sharpening using Gaussian
high pass filters, unsharp masking,
highboost filtering etc.




* The spatial domain processes can be denoted by the expression, g(x, y) = T f(x, y)|, where f(x, y) 1s the input 1mage,
g(x, y) 1s the output 1mage, and 7" 1s an operator on / defined over a neighborhood of pont (x, y).

* The smallest possible neighborhood 1s of size 1 x 1. Here, ¢ depends only on the value of  at a single point (x, y)
and 7" becomes s = T'(r), where, for simplicity in notation, s and r are variables denoting, respectively, the
mtensity of g and /£ at any point (x, y).
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+* Contrast stretching:

Original Image Contrast streched Image
N, = - = g




¢ Thresholding:
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*»* Image Negatives:

* Negative 1mage means mverting the grey levels 1.e. black 1 the original 1image will

become white and vice-versa.
e The transformation for image negative can be given by,
s=L-1-r
where, s 1s the output mtensity value, L 1s the highest intensity levels and r1s

the mput intensity value

e It 1s particularly suited for enhancing white or gray detall embedded m dark

regions of an 1mage, especially when the black areas are dominant 1n size
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FIGURE 3.4

(a) Original digital
mammogran.

(b) Negative
image obtained
using the negative
transformation

in Eq.(3.2-1).
{Courtesy of G.E.
Medical Systems. )
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¢ Log transformations:

e s=clog(l +1)
where, ¢ 1s constant, s 1s the output mntensity value and r 1s the mput intensity
value
e It maps a narrow range of low intensity values i the mput into a wide range of
output levels.
* The opposite 1s true of higher values of input levels.
* [t expands the values of dark pixels in an 1mage while compressing the higher level
values.
e It compresses the dynamic range of images with large variations in pixel values.
* Logreduces contrast of brighter regions.
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** Power-Law (Gamma) transformations:

e s=cr’
where ¢ and y are both positive constants, r =input and s = output

e With fractional values(0<y<I) of gamma map a narrow range of dark mput values
into a wider range of output values, with the opposite being true for higher values
(y >1)of mput levels.

 C=gamma=1 means 1t 1s an identity transformations.

* Varlety of devices used for image capture , printing, and display respond according
to a power law.

* Process used to correct these power law response phenomena 1s called gamma
correction.

* Power-law enhances contrast of brighter regions.
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FIGURE 3.7

{a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
with a pgamma of
2.5. (c) Gamma-
corrected image.
{d) Corrected
image as viewed
on Lhe same

monitor. Compare
(d) and (a).

Original image | Gamma
correction

Gamma-corrected image

Original image as viewed
On monitor

Gamma-corrected image as
viewed on the same monitor
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FIGURE 3.9

(a) Aerial image.
(b)—{(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ = 1and

y = 3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)—{d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ = 1and

v = (.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)
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** Piece-wise Linear Transformation:

* Piece-wise Linear Transformation 1s type of gray level transformation that 1s used
for image enhancement. It 1s a spatial domain method. It 1s used for manipulation
ol an 1mage so that the result 1s more suitable than the original for a specific
application.

* Some commonly used piece-wise linear transformations are:

(1) Contrast Stretching

(2) Intensity Level Slicing

(3) Bit Plane Shcing




¢ Contrast Stretching:
* Contrast 1s the difference between the highest grey level and low grey level of

an 1mage.

* Low contrast images can result from poor illuminations, Lack of dynamic
range 1n the mmaging sensor, or even the wrong setting of a lens aperture
during 1mage acquisition.

e It expands the range of intensity levels in an 1mmage so that 1t spans the full
intensity range of display devices.

* The contrast can be stretched by making darker portion more darker and

brighter portion more brighter.




2 55 . .................. - a

“ é ~ Identify | . (Smax —Smin

“ " i transformation ) #(1 = Tmin) + Smin

"max ~— "min

Modified
grey level
s
‘ For the first part,

s=(05*x(r—-0)+0
For the second part,
s=2)*x(r—LT)+ (0.5*LT)
For the third part,
s=(05)*«(r—-UT)+ (0.5*LT) +
2% (UT — LT)




a b
c d

FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences.
Australian National
University,
Canberra.
Australia.)

. §

intensity level

Output




Original Image Contrast stretched Image

=== oaNZI
= g0

e P

Contrast-Stretch Transformation function
200

180

-

(o2}

o
T

N

FaN

o
T

-

N

o
T

100

Intensity in output image
B [} oo
o o o

N
o
T

0 1 1 1 1 1
50 100 150 200 250

Intensity in input image




'Thank You




Piecewise linear transformation
function: Intensity-level slicing in

DIP and implementation in
MATILAB

© Dr. Daida




** Piece-wise Linear Transformation:

* Piece-wise Linear Transformation 1s type of gray level transformation that 1s used
for image enhancement. It 1s a spatial domain method. It 1s used for manipulation
ol an 1mage so that the result 1s more suitable than the original for a specific
application.

* Some commonly used piece-wise linear transformations are:

(1) Contrast Stretching

(2) Intensity Level Slicing

(3) Bit Plane Shcing




¢ Intensity/Grey Level Shicing:

* Highlighting specitic range of intensities in an image.

 Enhances features such as masses of water i satellite 1magery and
enhancing flaws i X-ray images.

* It can be Implemented two ways:

1) To display only one value (say, white) 1 the range of interest and rests
are black which produces binary image.

2) Brightens (or darkens) the desired range of itensities but leaves all
other mtensity levels 1n the 1image unchanged.
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FIGURE 3.11 (a) This
transformation
highlights intensity
range |A, ] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range

| A, B] and preserves
all other intensity
levels
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FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a). with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b). with the selected area set to black, so that grays in the area of the
blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)
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Original Image Intensity sliced Image

Grey (Intensity level) slicing Transformation function
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Original Image Intensity sliced Image
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** Piece-wise Linear Transformation:

* Piece-wise Linear Transformation 1s type of gray level transformation that 1s used
for image enhancement. It 1s a spatial domain method. It 1s used for manipulation
ol an 1mage so that the result 1s more suitable than the original for a specific
application.

* Some commonly used piece-wise linear transformations are:

(1) Contrast Stretching

(2) Intensity Level Slicing

(3) Bit Plane Shcing




(3) Bit Plane Shcing:

* Pixels are digital numbers composed of bits.
e 256 gray scale image 1s composed of 8 bits.

e Instead of highhghting mtensity level ranges, we could highlight the
contribution made to total image appearance by specitic bits.

e 8-bit image may be considered as being composed of eight 1-bit planes,

with plane 1 containing the lowest order bit of all pixels 1n the 1image
and plane 8 all the highest-order bits.




FIGURE 3.13 One 8-bit byte Bit plane 8

Y ? plane
Bit-plane ( most significant)
representation of

an 8-bit image.

Bit plane 1
(least significant)
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 x 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.
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» Histogram equalization:

e Histogram 1s the graphical representation of any data.

 Histogram provide a global description of the appearance of an mmage. It 1s a
spatial domain method.

* Histogram 1s the representation of relative frequency of occurrence of various grey
levels of an 1mage.

e Histogram equalization 1s used for image enhancement.

* Histogram can control the quality of an 1image by normalizing the histogram values

to a flat profile.




Image Gray level
5 2 |2 |3 |4
6 |6 |4 |4 |5
5 |7 (316 |0
7 |6 |5 |5 |4
Graylevels |0 |1 2 4 |5 [6 [7
EZZ?:ES: = 1 0 2 4 5 5 4
{no. of pizels)
% o
4 4 4
T T :
2
P
o 1 2 3 a4 & & 7 '

Histogram Processing

Dark imazo

u“llzlg‘l %

Bricht imasc

I crmw ocontrasl immose

Il

h‘!

HFisgh-uonirast imegsc




¢ Steps in Histogram processing

Step 1: Plot the onginal Histogram

Ny
F ]
T
il o
40
10
1 .
Step 2 : Perform I'[istng:am Equalization
Grey | m PDF=ny/n | CDF=Y, PDF | CDF x| Rounding off
Level (L-1) (New Grey
CDFx7 | Level)

1] T 0.175 —| 0.175 1.22 1

1 100 | 0.25 (~= 0.425 2.07 3

2 40 01 L-—0.525 3.67 4

3 al 015 0.675 4. 72 5

4 0 L] 0.675 4.72 5

] 80 0.2 0.875 6.12 (1]

(1] 10 0.025 0.9 6.3 [}

T 40 01 1 T T

Total | n=400

Step 3: Make new hiztogram table

Old Grey Level | m New Grey Level
0 70 / |1 70
1 100 | 3 100
2 40 [ 4 40
3 60 | 5 60 + 0 = 60
4 0 | 5
E 50 \ | 80 + 10 = 90
6 10 N\ |6
7 40 \|7 40
Step 4: Plot the equalized Histogram
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*» Histogram Matching/Specification:

e Histogram equalization 1s automatic and 1s not always good.

At many times 1t 1s desirable to have an interactive method 1 which certain grey
levels are highlighted.

e If we modity the grey level of an 1image that has a uniform PDF, using the inverse
transformation we can get back the original histogram. Using this knowledge, we
can obtain any shape of the grey level histogram by processing the given image.

* The method used to generate a processed 1mmage that has a specified histogram 1s

called histogram matching or specification.
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FIGURE 3.23

(a) Image of the
Mars moon
Phobos taken by
NASA's Mars
Global Surveyor.
(b) Histogram.
(Original image
courtesy of
NASA.)
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FIGURE 3.24

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
oul appearance ).
(c) Histogram

of (b).
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FIGURE 3.25

(a) Specified
histogram.

(b) Transformations.
(c) Enhanced image
using mappings
from curve (2).

(d) Histogram of (c).
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Gl:&:i,f 1] 1 2 3 4 5 [i] 7
Level
MNo. of 790 1023 350 [i%]i] 329 245 122 31
pixels
Image A
G’l:&}* (1] 1 2 3 4 3 [i] 7
Level
MNo. of 1] L] 0 614 319 1230 319 614
pixels
Image B
Step 1: Plot histogram forimage A and Image B
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o1 v+ 2 3 4 % 8 7 v
L1 1]
Step 2 : Equalize i.rnage A
Grey g Pir)= | CDF CDF=x Mew
Level m/n (L-1) Grey
L=8 Level
1] 70 019 0.19 1.33 1
1 1023 0.25 0.44 3.08 3
2 350 0.21 0.65 4.55 5
3 656 0.1a 0.51 5.67 (1]
4 329 0.08 0.39 0.23 3]
5 245 0,06 0,95 6.25 7
[i] 122 0.03 0.958 0.30 7
T 31 0.02 1 T T

Step 3 ; Equalize image B
Before equakzmg image B, note the values of the distmct lustogram levels after
histogram equakzation of mnage A

Grey 0 1 2 3 4 5 ] T

Level

MNo. of 0 Ton 1] 1023 0 350 Q35 448

pixels

MNow equalize i.tnag& B

Grey I Puir) = CDF CDF = Rounding Mew

Level m/n (L-1) off Grey
L=8 Level

0 0 0 0 0 1} 0

1 0 0 0 0 0 0

2 0 0 0 0 1} 0

3 old 0. 149 0.149 1.05 1 1

4 519 0.20 0.35 2.5 3 3

5 1230 0.30 0.65 4.55 5 5

[] 519 0.20 0.85 5.97 [ [

7 o0ld4 0.15 1 7 7 7

Total{n] 4096

=4

448
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Image Enhancement

Spatial domain Frequency domain

E.g. Image sharpening using Gaussian
high pass filters, unsharp masking,

Point processing Neighbourhood processing highboost filtering etc.
E.g. Negative Image, contrast E.g. Averaging filter, median filtering
stretching, thresholding etc. etc.

e Spatial hltering change the grey level of a pixel (x,y) depending on the
pixel values mm a square neighborhood centered at (x,y) using a

matrix(filter, mask, kernel/window).
* There are many things that can be achieved by neighborhood

processing which are not possible with point processing.




Spatial filters
|

Sharpening spatial filters (HPF)

Smoothing spatial filters (LPF)
Linear filters Non-linear(Order statistics) spatial filter Laplacian linear filter
| |
Averaging filter Weighted averaging filter

AN N

Minimum filter | | Maximum filter | | Median filter




¢ Averaging Linear Filtering:

* To achieve neighborhood processing, a 3 x 3 mask (or5x 5,7x7....)
on the mmage, muluply each component ol the mask with the
corresponding value of the 1image, add them up and place the value
that we get, at the center. The operation being same as convolution.

* This smoothing process 1s used for blurring sharp edges.

il
Q ‘ g\ R=WEL-Df =1y -1+ w(=10)f(x = 1y) + -
wnly, T +w(0,0)f(x,y) + -+ w(L0)f(x + 1,y) + w(L1)f(x + 1,y + 1)

/ 0,-1) w(0,0) w(o, 1)

7
/ / / w(l,-1) w(1,0) wil, lk >< h

@ @ P Mask coefficients
/ \[/ glx, ]—ZZw{st]f[x+sy+t]
qern | e | aren r / 02 27}’ ><, 3 " el P=—h
5X5H .. where a=(m-1)2andb=(mn-1)/2




————Inputimage Output image
boy 215 212\
00

Filter mask 215 212 208 196 181 184 186 206 205
B OX
A 108 5 | | 180 183 206 207
! 1 : (199 207 202 201 211 181 183 184 206 208
1 1 /9
: X J/— 20 218 210 210 198 206 208 186 182 181
1 1 1
: 03 218 210 @ 198 | | 207 210 189 183 180
t/\/elghtw
/ 200 215 212 208 205 206 209 189 184 181
N/ g
[ Z | (6 %
2 & 7 [ XZ0
O+ | X254 X2 (
. Z ( TGHEIKXLZACKNTG I XS | [ XZOZH (XTG4 [3o07 zxzazg/q

\(/ — '64—0/51 = 3222 > |5,
Filter

* The two noises are replaced with the average of their surrounding points.
I'he process of reducing the influence of noise 1s called smoothing or blurring.
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Effect of averaging filter. (3) Onginal image. (b)-(f) Results of smoothing with

square averagmg filter masks of sizes n=13,59,15, and 35, respectively.

LPF (Smoothed) Image
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Image Enhancement

Spatial domain Frequency domain

E.g. Image sharpening using Gaussian
high pass filters, unsharp masking,

Point processing Neighbourhood processing highboost filtering etc.
E.g. Negative Image, contrast E.g. Averaging filter, median filtering
stretching, thresholding etc. etc.

e Spatial hltering change the grey level of a pixel (x,y) depending on the
pixel values 1 a square neighborhood centered at (x,y) using a

matrix(filter, mask, kernel/window).
* There are many things that can be achieved by neighborhood

processing which are not possible with point processing.




Spatial filters
|

Sharpening spatial filters (HPF)

Smoothing spatial filters (LPF)
Linear filters Non-linear(Order statistics) spatial filter Laplacian linear filter
| |
Averaging filter Weighted averaging filter

AN N

Minimum filter | | Maximum filter | | Median filter




¢ Non-Linear Order statistics Spatial Filtering:
* Median filtering 1s a nonlinear method used to remove noise from 1mages.
* Jtis widely used as 1t 1s very effective at removing noise while preserving edges.

e [t is particularly effective at removing ‘salt and pepper’ type noise.

* The median hlter works by moving through the mmage pixel by pixel, replacing
each value with the median value of neighboring pixels.
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Im

age with Salt & Pepper noise Median filtered Image

et ] = N

Effect of median filter. (a) Image corrupted by salt & pepper noise. (b) Result of
applying 33 standard averaging filter on (a). (¢) Result of applying 3*3 median filter on (a).

e The effects of median filter are: (1) Noise reduction,
(2) Less blurrning than averaging filter




Minimum filtered Image
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R

& Minimum filter:

R =mm{Z, | k=1,2,3,.....9}

It 1s used for finding the darkest point.
It 1s used for removing the salt noise.

=755 s Whate

Maximum filtered Image
( :

At

Maximum filter:

R =max{Z, | k=1,2,3,.....9}

It 1s used for finding the brightest
point.

It 1s used for removing the pepper
noise.
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Image Enhancement

Spatial domain Frequency domain

E.g. Image sharpening using Gaussian
high pass filters, unsharp masking,

Point processing Neighbourhood processing highboost filtering etc.
E.g. Negative Image, contrast E.g. Averaging filter, median filtering
stretching, thresholding etc. etc.

e Spatial hltering change the grey level of a pixel (x,y) depending on the
pixel values 1 a square neighborhood centered at (x,y) using a

matrix(filter, mask, kernel/window).
* There are many things that can be achieved by neighborhood

processing which are not possible with point processing.




Spatial filters
|

Sharpening spatial filters (HPF)

Smoothing spatial filters (LPF)
Linear filters Non-linear(Order statistics) spatial filter Laplacian linear filter
| |
Averaging filter Weighted averaging filter

AN N

Minimum filter | | Maximum filter | | Median filter




¢ Sharpening Spatial Filters:

e Sharpening filters are used to highhght fine details (e.g. edges) 1n an 1mage, or
enhance details that are blurred through errors or imperfect capturing devices.

e Sharpening 1s opposite of smoothing(averaging). Hence 1n mathematics, it 1s given
by partial derivatives(HPF) as averaging 1s integration(LLPF).

* While linear smoothing 1s based on the weighted summation or ntegral
operation on the neighborhood, the sharpening 1s based on the derivative
(gradient) or finite difference.

* In smoothing we try to smooth noise and ignore edges and 1in sharpening we try

to enhance edges and ignore noise.




¢ Partial derivatives of digital image:
e The first order partial derivative of the digital image f(x,y) are:

af

= FO 1)~ f(0y) and oo = oy + 1~ ()

The first derivative must be:
1) Zero along flat segments (1.e. constant grey levels)

(
(2) Non-zero at the outset of grey level step or ramp (edges or noise)
(3) Non-zero along segments of continuing changes (1.e. ramps)

The second order partial denvatives of the digital image f(x,y) are:

V

°f
dx?
62
\/a_yz: flx,y+ 1)+ f(x,y—1) —2f(x,¥)

e The second derivative must be:

=fx+Ly)+f(x—1y)—-2f(x,y)

(1) Zero along flat segments (1.e. constant grey levels)
(2) Non-zero at the outset of grey level step or ramp (edges or noise)




s Isclated pomnt !
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w AP ! Thinline g
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& ‘Flatsegment i
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Image strip| S|5)4[3[2[1]c|oo|@Po[oofo[1|B[1[o]ofofo[7(@N7]7]- -]
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Second Derivative D0 ¢ 0 0 1 0 r11®1no7—7@

Example of partial derivatives

2 7
o 6
©5:3
2 4
- 3
3
g2 2
0
U

The fhrst dervative detects thick
edges while second derivative detects
thin edges. ' =1(x*1) - 1(x)

Second derivative has much stronger
response at grey level step than first

d

lerivative. 1" =1(x+1) + f(x-1) - 2f(x)

rq

d

I'hus we can expect a second order

ertvative to enhance fine detail (thin

lines, edges, mcluding noise) much
more than a first order derivative.




¢ The Laplacian filter:

* The Laplacian operator of an image f(x,y) 1s 0 11 0
5 Ef azf /
V'S = dx? ﬁy | fj @ Gg&%;@
Vif(x,y) =\f(x + 1,y) +if(x — 1,y) +/f(x,y + 1) +/f(x,y — 1) 0
—4f(x, y)

* This equation can be implemented using the 3 x 3 mask:

 As the Laplacian filter 1s a linear spatial filter, we can apply 1t using the same
mechanism of convolution. This will produce a Laplacian image that has grayish
edge lines and other discontinuities, all superimposed on a dark, featureless
background.

* Background features can be “recovered” while sull preserving the sharpening
eftects of the Laplacian simply by addmgr the original and Laplacian images.

g(x,y)=f(x, )+ Vf(x,y)
P




Filter mask Output 1image

0 1 0 0(-15y0 |0 |0
————10.%0y)0 [0 |0

1 4|1 S
0_[15 o [(15)0
0 1|0 0 |0 |0 (&D)o0
0 |0 |0 |C15)0

[~
= O 20T OF20-ZoZ 0O+ O f Lot O = GO

(4L 20F+0OH420 —Fot20r T+ 5)0 = "1 5

—
—




Original Image

Laplacian filtered Image

]

ARRRAUIY_

' Example of applying L aplacian filter. (a) Original image. {b) Laplacian image.
(c) Sharpened image.
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Image Enhancement

Spatial domain Frequency domain

E.g. Image sharpening using Gaussian
high pass filters, unsharp masking,

Point processing Neighbourhood processing highboost filtering etc.
E.g. Negative Image, contrast E.g. Averaging filter, median filtering
stretching, thresholding etc. etc.

* The frequency content of an 1image refers to the rate at which the
oray levels change 1 time. Rapidly changing brightness values
correspond to high frequency terms, slowly changing brightness
values correspond to low frequency terms. The Fourler transform 1s a
mathematical tool that analyses a signal (e.g. 1mages) mto 1its spectral

components depending on its frequency content.




Frequency domain filters

Smootliing frequency filters (LPF) Sharpening frequency filters (HPF)
Ideal LPF Ideal HPF
Butterworth LPF Butterworth HPF
Gaussian LPF Gaussian HPF
| |
High Boost Filter Homomorphic filter




Frequency domain vs. Spatial domain

Fregquency domain Spatial domain
1. | 15 resulted from Fourner 15 resulted from sampling and
transform quantization

2. | refers to the space defined by | refers to the image plane itself.

values of the Founer 1.e. the total number of pixels
transform and 1its frequency | composing an image, each has
vaniables (u,v). spatial coordinates (x,v)

3. has complex quantities has integer quantities

o= 66| Scop sy

G\ )= FUAD X SN, 9% = § 0yl Gy
%QC;?:};\(@@‘/VS)WWP\RIXBW




¢ Advantages of filtering in frequency domain:

* The frequency domain filtering 1s advantageous because it 1s computationally
faster to perform two 2D Fourier transforms and a filter multiply than to perform
a convolution 1n the spatial domain.

* JFrequency domain gives you control over the whole 1mages, where we can
enhance(eg. Edges) and suppress(eg. Smooth shadow) different characteristics of
the 1mage very easily.

* Frequency domain has a established suit of processes and tools that can be
borrowed directly from signal processing in other domain.

 Image enhancement 1in the frequency domain 1s straightforward. The 1dea of blurring an
1mage by reducing its high frequency components, or sharpening an 1mage by increasing

the magnitude of its high frequency components 1s intuitively easy to understand.




— Fourier transform of a discrete function of one variable f(x),x = 0,1,2,.... M — 1 (discrete Fourier transform,

or DFT)
1 M-1 |
Fiu)=-r Y . el foru=0,1,2,... M —1
=0
— Inverse DFT
M1 _
Fg) = ) Plu)elPer forz =0,1,2,....M —1
U= O

e Two-dimensional DFT and its inverse

— In 2D, DFT of an image f(x,y) of dimensions M x N is given by

;] M-IN-d
= — - —j2m(uzx/M+vy/N)
Flu,v) = MN Z Z flx,y)e
=0 y=0
— The inverse Fourier transform is given by
M—-1N-1
Flzay) = Z Z F(u, v)ed2m(uz/M+vy/N)

u=0 wv=0




The domain of # and v valuesu =0. 1, ..., M-1,v=0.1..... N-1 1s called
the frequency domain of f{x,v).

N col e ——

CO J> 0, | OJZ— Q,z

M—1N—

1
R(u,v) = M—Z Z fx,y) cos( (M Tﬁ)) is called real part /Y) 3 l )

x=0 y=0 (M /\/)\— > ﬂ
1 M—1N-—1
- : ux vy . . .
I(u,v) = WN f(x,v)sin (ZH (M‘ + N )) is called imaginary part m
x=0 y=0
Kows ‘—

The magnitude of F(u,v). |F(u,v)| =[R2(u, v)+I z(u,v)]l’f2 . 1s called the

Fourier spectrum of the transform.

The phase angle (phase spectrum) of the transform is:

I(u,v)
R(u, ‘u)]

@(u,v) = tan™? [

Note that, F(0,0) = the average value of f{x,y) and is referred to as the dc
component of the spectrum.

It is a common practice to multiply the image f(x.y) by (-1)*". In this
case, the DFT of (f(x.y)(-1)*"Y) has its origin located at the centre of the
1mage, 1.e. at (u,v) = (M/2.N/2).

ZJLC>C;3)

1> sew =4




Lowpass and Highpass Filters

—7 Shosperun




¢ Filtering in the Frequency Domain

he

v W

=

Frequency domain filtering operation

Filter
function
Hu,v)

Inverse
Fourier
transform

Fourier
transform

2

Fwv) = Hwv)Fwr) 44 g
Post-
1 processing

Pre-

Multiply the mput 1mage by (-1)/\x+y  \ procesing .
to center the transform o g(”
Compute F(u,v), the DFT of mnput i i
Muluply F(u,v) by a filter H(u,v) e orferne e e ot

Computer the mverse DFT of 3
Obtain the real part of 4
Multiply the result n 5 by (-1)/Mx+y)
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* . . m_ .= TSN XNQ,V) = Gl
% Smoothing Filters "= 1l =rrr = Fonmin)-o6.)

& IFT&

Ideal lowpass filters 1 if D(u,v) < Dy This has a sharp
H(u,v) = { 0 offcraise discontinuity and hence,
Ringing effect 1s present

Butterworth lowpass Does not have a sharp
filters 1 discontinuity and hence
H(u,v) = ringing 1s only observed
! 1 D N/ Da2n sg y
10w, 2)/ D] for filters of higher
orders.

Gaussian lowpass filters The profile of GLPF is
2 2 : f
H{( _ —D?*(uw)/2D] not as tight as that o
)= BLPF and hence no

ringing effect 1s present.




X | Filter
+* Ideal Lowpasscp qu\)l\t? Wﬁ

H{wv)

I

H(u.v) N

= D i, v)

a-h e

FIGURE 4.10 (a) Perspective plot of an ideal lowpass lilter transfer function. (b) Filter displaved as an
image. (c) Filter radial cross section.
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Ringing Effect

o Fl) . _ f(1)

1 hﬂw
FT { . IFT
— —_—
—+Time — Frequency ‘ r/\v/\v/\\_/ \J/\V/\V/\‘ :Time

Frequency
h(x,¥)
H (u. v} ) — >
& ?
IFT AWAWA)
— NN
» D(u, v} —U v
1/Dg 2/Dg
Do
h(x, y)
H{u v)
»
IDFT
——n i
PEAWANANWANFAWA /\/\/\r\f’
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Ideal Lowpass Filters

Input Image F.T. of i/fp without shift F.T. of i/p after shift

Ideal Low pass filter surface plot LPF

0.5 4

0
500
600




Ideal Lowpass Filters

Input Image F.T. of i/fp without shift F.T. of i/p after shift

Ideal Low pass filter surface plot LPF Low pass image

300




Butterworth Lowpass Filters

Defimtion:

H(u,v)= L

1+[D(u,v)/ D, "

abc

FIGURE 4.14 (a) Perspective plot of a Butterworth lowpass filter transfer function. (b) Filter displayed as an
image. (¢) Filter radial cross sections of orders 1 through 4.
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a b FIGURE 4.15 (a) Original image. (bi-(f) Results of fillering with BLPFs of order 2,
cd  with cutofl Frequencies al radii of 5, 15, 30, 80, and 230, as shown in Fig. 4.11(b).
el

Compare with Fig, 4.12,

Butterworth LP Filter

F.T. of i/jp without shift Frequency domain image

surface plot BLPF

100 100

Butterworth LP Filtered image

] B




Ringing Eftect

a b d

FIGURE 4.16 (a)—(d) Spatial representation of BLPFs of order 1. 2. 5. and 20. and corresponding gray-level
profiles through the center of the filters (all filters have a cutoff frequency of 5). Note that ringing increases
as a function of filter order.




Gaussian Lowpass Filters

Detinition:
—D?(u,v)/22 2
H (u ’ V) — @ (u,v) Q{.‘go
Hiu v) H(i:.i:}
1.0/
D, =10
0.667 F D, =20
D, = 40

Di{u.v)

1 s il

FIGURE 4.17 (a) Perspective plot of a GLPF transfer function. (b) Filter displaved as an image. (¢) Filler
radial cross sections for various values of D,.




Fxample
_— NPT

® S
... ¢ -:f-.':_'.-

aaaaaaad J

wd |[«d
([T 1111

sannaaa saaaaaad

SARLL L | IEEEERELY ) |} |

5@ |
T 11T

aaaaaaad aaaaaaad

FIGURE 4.18 (a) Criginal image. (b)—([) Results of llering with (Gaussian lowpass 4 h
filters with cutofl frequencies sel al radii values ol 5, 15, 30, 80, and 230, as shown in. ¢ d
Fig. 4.11(b). Compare with Figs. 4. 12 and 4.15. e f

Gaussian Low pass Filter

surface plot GLPF

Gaussian

F

Low pass Filtered image




More example

a b

FIGURE 4.19

(a) Sample text of
poor resolution
(note broken
characters in
magnified view).
(b) Result of
liltering with a
GLPF (broken
character
segments were
joined).

Historicaliy, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the yEgr

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the ygEar

o

—[ea




'Thank You




Image Sharpening (HP In
frequency domain filtering and 1ts

Implementaton m MATLAB
© Dr. Dafda




Frequency domain filters

Smootliing frequency filters (LPF) Sharpening frequency filters (HPF)
Ideal LPF Ideal HPF
Butterworth LPF Butterworth HPF
Gaussian LPF Gaussian HPF
| |
High Boost Filter Homomorphic filter




¢ Sharpening Filters

Ideal highpass filters 0 if D(u,v) < Dy
H(u,v) = { 1 DthEI'W.JiSE B

Butterworth highpass

filters H(u,v) = :

1+ [Do/D(u,v)]*"

Gaussian highpass filters

J?

H(u,v) = 1— e D" (w0)/2D

This has a sharp

discontinuity and hence,
Ringing effect 1s present

Does not have a sharp
discontinuity and hence
ringing 1s only observed
for filters of higher
orders.

The protile of GHPF 1s
not as tight as that of
BILPF and hence no

ringing effect 1s present.




Spatial Representation of Freq. Domain HPF

- V

FIGURE 4.23 Spatial representations of typical (a) ideal. (b) Butterworth, and (¢) Gaussian frequency
domain highpass filters. and corresponding gray-level profiles.
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Ideal High Pass IExample

M (e, )
-3
KNz

e, 17

. =, w)
u " Ty 4

abh'c

FIGURE 4.24 Results of ideal highpass fillering the image in Fig. 4.11{a) with Dy, = 15, 30, and B80.
respectively. Problems with ringing are quite evident in (a) and (b).




Ideal High Pass (Sharpening) Filters IHPF:

Input Image F.T. of i/p without shift F.T. of i/p after shift

Ideal High pass filter surface plot HPF High pass image




Butterworth High Pass Fxample
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FIGURE 4.25 Results of highpass filtering the image in Fig. 4.11(a) using a BHPF of order 2 with D, = 15,
30, and 80, respectively. These results are much smoother than those obtained with an [LPF.




Butterworth High Pass (Sharpening) Filters BHPF:

Input image F.T. of ifp without shift Frequency domain image

Butterworth HP Filter surface plot BHPF Butterworth HP Filtered image

‘lllll’ 05

200 300
100 200

100




Gaussian High Pass Example

Hie, vl

H i, ) . . L1 __/./-"“_

_f__:._.-'_'F : ; : = S
R VNI f

) = 17

abh e
FIGURE 4.26 Results of highpass filtering the image ol Fig. 4.11(a) using a GHPF of order 2 with D, = 15,

30, and 80, respectively. Compare with Figs. 4.24 and 4.25.




Gaussian High Pass (Sharpening) Filters GHPF:

Input image F.T. of i/fp without shift Frequency domain image

Gaussian High pass Filter surface plot GHPF Gaussian High pass Filtered image

200 300
200
o 100
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Frequency domain filters

Smootliing frequency filters (LPF) Sharpening frequency filters (HPF)
Ideal LPF Ideal HPF
Butterworth LPF Butterworth HPF
Gaussian LPF Gaussian HPF
| |
High Boost Filter Homomorphic filter




¢ The Laplacian in the Spatial domain:
s V=21l %}’

L2 L= flz+Ly) + flz— L,y) — 2f(z,v)

e Sh=flzy+ 1)+ flz.y — 1) — 2f(z,y)

8 Vf =1f(z+1,y) +f(z— 1,y) +2f (z,y+ 1)

A

0 (B (h 1 1 e
® ol | w ]| o
i @ [l | | 1 | |




- \ 9 \ » . . v
flx,y) — V=f(z, y)if the center coefficient is negative

REL R flx,y) + V= f(z, y)if the center coefficient is positive




¢ The Laplacian in the Frequency domain:

F Hﬁf’:}} = (ju)"F(u

Then,

T [B{;{Ii; ) 3 E“dilrz -y}] . EJH}E F{u 1,] |: r .:IE F{-uj-u}
—(u® +v*) F(u, v)

Finally, G\[u,\/\ - HCQ \/) x FCa, V)
FIVif(z,y)] = —(u® + v*)F(u.v)

The Laplacian filter in the frequency domain is:

N
H(u,v) = —(u® +v?) C (ﬁ V)= (0,9)
. =
[f F(u, v) has been centered by f(:i{y)(—l ARES m

then H(u, v)= —[(u-M/2)>+(v-N/2)-]




* Laplacian filtering
VFA(x,v)=F {[(u—-M/2)Y +(v—=N/2)V1F(u,v)}

* [Enhanced image /gﬂ »)=Ax, ¥)- Vfix, )/

Vif(x,y) © —[(u — M/2)" + (v — N/2)*|F(u, v).
v’




-> H (\4;\/>

a b
doe

f
FIGURE 4.27 (a) 3-D plot of Laplacian in the frequency domain. (b Image representation of (al.
{c) Laplacian in the spatial domain obiained from the inverse DEFT of (b). (d) foomed section of the origin
of {¢]. {e) Gray-level profile through the center of (d). (F) Laplacian mask wsed in Section 3.7

C




ab
cd

FIGURE 4.28

(a} Image of the
North Pole of the
moon.

{b) Laplacian
filtered image.
(¢) Laplacian
image scaled.

(d) Image
enhanced by
using Eq. (4.4-12).
{Original image
courtesy of
NASA.)




¢ High boost filtering in the Frequency domainy? - 4 -L¢]

Sometimes 1t 1s advantageous to mcrease the contribution made by the original 1mage to the overall
filtered result. This approach, called high-boost filtering, 1s a generalization of unsharp masking.
Unsharp masking consists simply of generating a sharp image by subtracting from an image a blurred
version of 1itself. Using frequency domain terminology, this means obtaining a highpass-filtered 1image

by subtracting from the 1image a lowpass-filtered version of itself.
funlX, ¥) = f(x.y) T fip(x. )
High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1:
fio = AF(x,y) = fis(t, Y} +SCoy) = FCoy) = AJOep) —SCay) 75 Gy) ~FyCoy

Thus, high-boost filtering gives us the {lexibility to increasethe contribution made by the 1mage to
the overall enhanced result. This equatijon may be wgitfen as:

fulxy) = (A= Df(5y) + (5,) = ful%,9)
Then, using above Eq. we obtain
fhh('x'- y) o (A - 1}!:(-1'1 J‘I) 25 fi]]}(x? }?) \/




This result 1s based on a highpass rather than a lowpass 1mage. When A = 1, high-boost filtering
reduces to regular highpass filtering. As A mcreases past 1, the contribuion made by the 1image
itsell becomes more dominant.

We have th (wv) = F (uv) - Flp (u,v). But Flp (u,v) = Hlp (u,v)F(u,v), where Hlp 1s the transfer

function of a lowpass filter. Therefore, unsharp masking can be mmplemented directly in the
frequency domain by using the composite ﬁlzgfj —

§/‘b(:c't)) :(A - \)&be) —+ §APCI,3)
FHBC‘L{ ,\l): @ —\XF(‘%,VX + FH PG'I;\IB
FHB(—"*NB: (A-') ‘:("P/\A‘I-HH P(“‘*I/V) *F(V’/V\‘

Similarly, high-boost filtering can be implemented with the composite f@ \

\ — N _
Hht:i“ "U:] — [iA — 1) + Hh]"[u'! El) F@(V\\{H}Q“’V\:F(}/I\AECA_\)—‘_WHP(L"\»

Ve wrln ,\l) = Q\‘ \3"\' \’\HPG"’V) ',A>-I
with A > 1. The process consists of multiplying this filter by the (centered) transform of the mput
immage and then taking the mverse transform of the product. Multplication of the real part of this

th(ﬂ, ij} — 1 — H|p[:1£, ﬂ)

result by (-I) ¥ gives us the high-boost filtered mmage f,; (x, y) in the spatial domain.
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Frequency domain filters

Smootliing frequency filters (LPF) Sharpening frequency filters (HPF)
Ideal LPF Ideal HPF
Butterworth LPF Butterworth HPF
Gaussian LPF Gaussian HPF
| |
High Boost Filter Homomorphic filter




¢ The Homomorphic Filtering:

e Homomorphic filters uses a different approach compared to other frequency
domain filters. It normalizes the brightness across an 1mmage and increases
contrast.

e Homomorphic hlter can be used to enhance an mmage due to non-uniform
tllummation. Illumination variations can be thought of as a mulaplication noise,
and can be reduced by filtering 1n the log domain.

e To evenly distribute the illumination, the high-frequency components are
increased and the low-frequency components are decreased, because thg\ “high
frequency components are assumed to represent mostly the reflectance in the
scene(the amount of light reflected oft the object in the scene), whereases the low
frequency components are _assumed to represent mostly th& lllumination mn the

scene.
 Hence high pass filtering 1s used to suppress low frequencies and amplhfy high

freguencies 1n the log-intensig domain.




An mmage {(x, y) can be expressed as the product of llummation and reflectance
components:  f(x,y) = i(x, y)r(x, y).
Equation above cannot be used directly to operate separately on the frequency

components of llumination and reflectance because the Fourier transform of the
product of two functions 1s not separable; in other words,

S{f(x y)} # Hi(x, y)}3{r(x, y)}.

. A/
Suppose, however, that we define —O=
/ \\\
2(x, y) = Inf(x, y) . ot
= Ini(x, y) + Inr(x, y). o< L;’]) O\]'
Then

or

o<m<lj’i”v‘g‘?
T
I{z(x, y)} = ¥{Inf(x, y)} 'mmj

= 3{li(x, y)} + I{Inr(x, y)} elempd

Z(u,v) = F(u,v) + F,(u,v)




If we process 7. (u, v) by means of a filter function H (u, v) then, from
S(u,v) = H(u,v)Z(u,v)
= H(u, v)F(u,v) + H(u,v)F,(u,v)
In the spatial domain, s(x, y) = S{S(u, v)}
= Y H(u, v)F(u, v)} + S H(u, v)Fu, v)}.
By letting
I'(x, y) = S{H(u, v)F(u,v)}
and
r'(x, y) = S H(u, v)F(u, v)},
s(x, y) =1'(x,y) + r'(x, y).
Finally, as z (x, y) was formed by taking the logarithm of the original image f (x, y), the mverse

(exponential) operation yields the desired enhanced 1image, denoted by g(x, y); that 1s,
g(x, y) — e"(xr}')
= ¢(x)) . gr(xy)

= Ip(x, y)ry(x, y)
where

io(x’ y) }—1 ei‘(x-y) ro(x' y) — e"(-to.v)




Homomorphic filtering approach for image enhancement

fx,y) &> In DFT H(u, v) exp g(x.y)

H(u,v) It the parameters y; and yy are chosen so that

Y. < 1 and yy > 1, the hlter function shown tends

» _>‘3_: o to decrease the contribution made by the low

frequencies (llummation) and amplhty the

— " contribuion made by high frequencies

Sl \ (reflectance). The net result 1s simultaneous

_ \ N ~ dynamic range compression and contrast
\ \Y w  enhancement.

[1 e 2 O v)/D%]] S

H(u,v) = (yg — vL)




ab

FIGURE 4.33

(a) Original
image. (b) Image
processed by
homomorphic
[iltering (note
details inside
shelter).
(Stockham.)
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