

Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore (MP)

Think Excellence. Live Excellence.

Shri Vaishnav Institute of Information Technology

Department of Information Technology

Lecture Notes

COMPUTER SYSTEM ORGANIZATION

(BTIT205)

Subject Teacher

Er. Gaurav Shrivastava
B.E. (CSE), M.E. (IT)

Asst. Professor (IT Department)

IT- First Year Coordinator

SVITS-SVVV, Indore

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2

Syllabus

Unit-I: Computer Basics and CPU : Von Newman model, various subsystems, CPU, Memory, I/O,

System Bus, CPU and Memory registers, Program Counter, Accumulator, Instruction register, Micro

operations, Register Transfer Language, Instruction Fetch, decode and execution, data movement and

manipulation, Instruction formats and addressing modes of basic computer. 8085 microprocessor

organization

Unit-II Control Unit Organization: Hardwired control unit, Micro and nano programmed control unit,

Control Memory, Address Sequencing, Micro Instruction formats, Micro program sequencer,

Microprogramming, Arithmetic and Logic Unit: Arithmetic Processor, Addition, subtraction,

multiplication and division, Floating point and decimal arithmetic and arithmetic units, design of

arithmetic unit.

Unit-III Input Output Organization: Modes of data transfer – program controlled, interrupt driven and

direct memory access, Interrupt structures, I/O Interface, Asynchronous Data Transfer, I/O processor,

8085 I/O structure, 8085 instruction set and basic programming. Data Transfer – Serial / parallel,

synchronous/asynchronous, simplex,/half duplex and full duplex.

Unit-IV Memory organization: Memory Maps, Memory Hierarchy, Cache Memory - Organization and

mappings. Associative Memory, Virtual Memory, Memory Management Hardware.

Unit-V Multiprocessors: Pipeline and Vector processing, Instruction and arithmetic pipelines, Vector

and array processors, Interconnection structure and inter-processor communication.

References:

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3

Unit-I:
Computer Basics and CPU

1. Computer Types

A computer can be defined as a fast electronic calculating machine that accepts the (data)

digitized input information process it as per the list of internally stored instructions and

produces the resulting information.

List of instructions are called programs & internal storage is called computer memory.

The different types of computers are

1. Personal computers: - This is the most common type found in homes, schools,

Business offices etc., It is the most common type of desk top computers with processing

and storage units along with various input and output devices.

2. Note book computers: - These are compact and portable versions of PC

3. Work stations: - These have high resolution input/output (I/O) graphics capability,

but with same dimensions as that of desktop computer. These are used in engineering

applications of interactive design work.

4. Enterprise / Mainframe systems: - These are used for business data processing in

medium to large corporations that require much more computing power and storage

capacity than work stations. Internet associated with servers has become a dominant

worldwide source of all types of information.

5. Super computers: - These are used for large scale numerical calculations required in

the applications like weather forecasting etc.

2. Functional unit

A computer consists of five functionally independent main parts input, memory,

arithmetic logic unit (ALU), and output and control unit.

Fig : Functional units of computer

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4

Input device accepts the coded information as source program i.e. high level language.

This is either stored in the memory or immediately used by the processor to

perform the desired operations. The program stored in the memory determines the

processing steps. Basically the computer converts one source program to an object

program. I.e. into machine language

Finally the results are sent to the outside world through output device. All of these

actions are coordinated by the control unit.

Input unit: -

The source program/high level languages program/coded information/simply data is fed

to a computer through input devices keyboard is a most common type. Whenever a key is

pressed, one corresponding word or number is translated into its equivalent binary code

over a cable & fed either to memory or processor.

Joysticks, trackballs, mouse, scanners etc. are other input devices.

Memory unit: -

Its function into store programs and data. It is basically to two types

I. Primary memory

II. Secondary memory

I. Primary memory: - Is the one exclusively associated with the processor and operates

at the electronics speeds programs must be stored in this memory while they are being

executed. The memory contains a large number of semiconductors storage cells. Each

capable of storing one bit of information. These are processed in a group of fixed site

called word.

To provide easy access to a word in memory, a distinct address is associated with each

word location. Addresses are numbers that identify memory location.

Number of bits in each word is called word length of the computer. Programs must reside

in the memory during execution. Instructions and data can be written into the memory or

read out under the control of processor.

Memory in which any location can be reached in a short and fixed amount of time after

specifying its address is called random-access memory (RAM).

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5

The time required to access one word in called memory access time. Memory which is

only readable by the user and contents of which can‘t be altered is called read only

memory (ROM) it contains operating system.

Caches are the small fast RAM units, which are coupled with the processor and are aften

contained on the same IC chip to achieve high performance. Although primary storage is

essential it tends to be expensive.

II. Secondary memory: - Is used where large amounts of data & programs have to be

stored, particularly information that is accessed infrequently.

Examples: - Magnetic disks & tapes, optical disks (ie CD-ROM‘s), floppies etc.,

Arithmetic logic unit (ALU):-

Most of the computer operators are executed in ALU of the processor like addition,

subtraction, division, multiplication, etc. the operands are brought into the ALU from

memory and stored in high speed storage elements called register. Then according to the

instructions the operation is performed in the required sequence.

The control and the ALU are many times faster than other devices connected to a

computer system. This enables a single processor to control a number of external devices

such as key boards, displays, magnetic and optical disks, sensors and other mechanical

controllers.

Output unit:-

These actually are the counterparts of input unit. Its basic function is to send the

processed results to the outside world.

Examples: - Printer, speakers, monitor etc.

Control unit:-

It effectively is the nerve centre that sends signals to other units and senses their states.

The actual timing signals that govern the transfer of data between input unit, processor,

memory and output unit are generated by the control unit.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6

3. The von Neumann Computer Model

 Von Neumann computer systems contain three main building blocks:

o the central processing unit (CPU),

o memory,

o Input/output devices (I/O).

 These three components are connected together using the system bus.

 The most prominent items within the CPU are the registers: they can be

manipulated directly by a computer program.

Components of the Von Neumann Model

1. Memory: Storage of information (data/program)

2. Processing Unit: Computation/Processing of Information

3. Input: Means of getting information into the computer. e.g. keyboard, mouse

4. Output: Means of getting information out of the computer. e.g. printer, monitor

5. Control Unit: Makes sure that all the other parts perform their tasks correctly and

at the correct time.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7

4. System Bus

The system bus connects the CPU with the main memory and, in some systems, with the

level 2 (L2) cache. Other buses, such as the IO buses, branch off from the system bus to

provide a communication channel between the CPU and the other peripherals.

The system bus combines the functions of the three main buses, which are as follows:

 The control bus carries the control, timing and coordination signals to manage the

various functions across the system.

 The address bus is used to specify memory locations for the data being transferred.

 The data bus, which is a bidirectional path, carries the actual data between the

processor, the memory and the peripherals.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8

5. CPU and Memory Registers,

CPU Register:

A processor register (CPU register) is one of a small set of data holding places that are

part of the computer processor.

A register may hold an instruction, a storage address, or any kind of data (such as a bit

sequence or individual characters). Some instructions specify registers as part of the

instruction. For example, an instruction may specify that the contents of two defined

registers be added together and then placed in a specified register. A register must be

large enough to hold an instruction - for example, in a 64-bit computer; a register must be

64 bits in length. In some computer designs, there are smaller registers - for example,

half-registers - for shorter instructions. Depending on the processor design and language

rules, registers may be numbered or have arbitrary names.

Memory Registers:

Register are used to quickly accept, store, and transfer data and instructions that are being

used immediately by the CPU, there are various types of Registers those are used for

various purpose. Among of the some Mostly used Registers named as AC

or Accumulator, Data Register or DR, the AR or Address Register, program

counter (PC), Memory Data Register (MDR) ,Index register, Memory Buffer Register.

These Registers are used for performing the various Operations. While we are working

on the System then these Registers are used by the CPU for Performing the Operations.

When We Gives Some Input to the System then the Input will be Stored into the

Registers and When the System will gives us the Results after Processing then the Result

will also be from the Registers.

So that they are used by the CPU for Processing the Data which is given by the User.

Registers Perform:-

1) Fetch: The Fetch Operation is used for taking the instructions those are given by the

user and the Instructions those are stored into the Main Memory will be fetch by using

Registers.

2) Decode: The Decode Operation is used for interpreting the Instructions means the

Instructions are decoded means the CPU will find out which Operation is to be

performed on the Instructions.

3) Execute: The Execute Operation is performed by the CPU. And Results those are

produced by the CPU are then Stored into the Memory and after that they are displayed

on the user Screen.

http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-registers-function-performed-by-registers-types-of-registers
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-cpu
http://ecomputernotes.com/fundamental/input-output-and-memory/what-is-registers-function-performed-by-registers-types-of-registers
http://ecomputernotes.com/fundamental/introduction-to-computer/personal-computer

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e9

Types of Registers are as Followings

Memory Address Register (MAR)

This register holds the memory addresses of data and instructions. This register is used to

access data and instructions from memory during the execution phase of an

instruction. Suppose CPU wants to store some data in the memory or to read the data

from the memory. It places the address of the-required memory location in the MAR.

Program Counter

The program counter (PC), commonly called the instruction pointer (IP) in Intel x86

microprocessors, and sometimes called the instruction address register, or just part of the

instruction sequencer in some computers, is a processor register

It is a 16 bit special function register in the 8085 microprocessor. It keeps track of

the next memory address of the instruction that is to be executed once the execution of

the current instruction is completed. In other words, it holds the address of the memory

location of the next instruction when the current instruction is executed by the

microprocessor.

Accumulator Register

This Register is used for storing the Results those are produced by the System. When the

CPU will generate Some Results after the Processing then all the Results will be Stored

into the AC Register.

Memory Data Register (MDR)

MDR is the register of a computer's control unit that contains the data to be stored in the

computer storage (e.g. RAM), or the data after a fetch from the computer storage. It

acts like a buffer and holds anything that is copied from the memory ready for the

processor to use it. MDR hold the information before it goes to the decoder.

MDR which contains the data to be written into or readout of the addressed location. For

example, to retrieve the contents of cell 123, we would load the value 123 (in binary, of

course) into the MAR and perform a fetch operation. When the operation is done, a copy

of the contents of cell 123 would be in the MDR. To store the value 98 into cell 4, we

load a 4 into the MAR and a 98 into the MDR and perform a store. When the operation is

completed the contents of cell 4 will have been set to 98, by discarding whatever was

there previously.

The MDR is a two-way register. When data is fetched from memory and placed into the

MDR, it is written to in one direction. When there is a write instruction, the data to be

written is placed into the MDR from another CPU register, which then puts the data into

memory.

The Memory Data Register is half of a minimal interface between a micro program and

computer storage, the other half is a memory address register.

http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
http://ecomputernotes.com/fundamental/input-output-and-memory/what-are-the-different-types-of-ram-explain-in-detail
http://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
0

 Index Register

A hardware element which holds a number that can be added to (or, in some cases,

subtracted from) the address portion of a computer instruction to form an effective

address. Also known as base register. An index register in a computer's CPU is a

processor register used for modifying operand addresses during the run of a program.

 Memory Buffer Register

MBR stand for Memory Buffer Register. This register holds the contents of data or

instruction read from, or written in memory. It means that this register is used to store

data/instruction coming from the memory or going to the memory.

 Data Register

A register used in microcomputers to temporarily store data being transmitted to or from

a peripheral device.

6. Microoperations

In computer central processing units, micro-operations (also known as a micro-ops) are

detailed low-level instructions used in some designs to implement complex machine

instructions (sometimes termed macro-instructions in this context).

Usually, micro-operations perform basic operations on data stored in one or more

registers, including transferring data between registers or between registers and external

buses of the central processing unit (CPU), and performing arithmetic or logical

operations on registers. In a typical fetch-decode-execute cycle, each step of a macro-

instruction is decomposed during its execution so the CPU determines and steps through

a series of micro-operations. The execution of micro-operations is performed under

control of the CPU's control unit, which decides on their execution while performing

various optimizations such as reordering, fusion and caching.

7. Register Transfer Language

• A register transfer language is a notation used to describe the microoperation transfers

between registers.

• It is a system for expressing in symbolic form the microoperation sequences among

register that are used to implement machine-language instructions.

Registers are denoted by capital letters and are sometimes followed by numerals, e.g.,

– MAR – Memory Address Register (holds addresses for the memory unit)

– PC – Program Counter (holds the next instruction‘s address)

– IR – Instruction Register (holds the instruction being executed)

– R1 – Register 1 (a CPU register)

• We can indicate individual bits by placing them in parentheses, e.g., PC (8-15), R2 (5),

etc.

Block Diagrams of Registers

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
1

Register Transfer Language Instructions

Basic Symbols for Register Transfer

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
2

8. Instruction cycle:
An instruction cycle (sometimes called a fetch–decode–execute cycle) is the basic

operational process of a computer. It is the process by which a computer retrieves a

program instruction from its memory, determines what actions the instruction dictates,

and carries out those actions. This cycle is repeated continuously by a computer's central

processing unit (CPU), from boot-up to when the computer is shut down.

In simpler CPUs the instruction cycle is executed sequentially, each instruction being

processed before the next one is started. In most modern CPUs the instruction cycles are

instead executed concurrently, and often in parallel, through an instruction pipeline: the

next instruction starts being processed before the previous instruction has finished, which

is possible because the cycle is broken up into separate steps.

Components

Program counter (PC)

An incrementing counter that keeps track of the memory address of the instruction

that is to be executed next or in other words, holds the address of the instruction to

be executed next.

Memory address register (MAR)

Holds the address of a block of memory for reading from or writing to.

Memory data register (MDR)

A two-way register that holds data fetched from memory (and ready for the CPU

to process) or data waiting to be stored in memory. (This is also known as

the memory buffer register (MBR).)

Instruction register (IR)

A temporary holding ground for the instruction that has just been fetched from

memory.

Control unit (CU)

Decodes the program instruction in the IR, selecting machine resources, such as a

data source register and a particular arithmetic operation, and coordinates

activation of those resources.

Arithmetic logic unit (ALU)

Performs mathematical and logical operations.

Accumulator: Accumulator is a register in which intermediate arithmetic and logic

results are stored.

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Memory_address_register
https://en.wikipedia.org/wiki/Memory_data_register
https://en.wikipedia.org/wiki/Memory_buffer_register
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Control_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
3

Steps

Each computer's CPU can have different cycles based on different instruction sets, but

will be similar to the following cycle:

1. Fetch the instruction: The next instruction is fetched from the memory address

that is currently stored in the program counter (PC), and stored in the instruction

register (IR). At the end of the fetch operation, the PC points to the next

instruction that will be read at the next cycle.

2. Decode the instruction: During this cycle the encoded instruction present in the

IR (instruction register) is interpreted by the decoder.

3. Read the effective address: In case of a memory instruction (direct or indirect)

the execution phase will be in the next clock pulse. If the instruction has

an indirect address, the effective address is read from main memory, and any

required data is fetched from main memory to be processed and then placed into

data registers (Clock Pulse: T3). If the instruction is direct, nothing is done at this

clock pulse. If this is an I/O instruction or a Register instruction, the operation is

performed (executed) at clock Pulse.

4. Execute the instruction: The control unit of the CPU passes the decoded

information as a sequence of control signals to the relevant function units of the

CPU to perform the actions required by the instruction such as reading values

from registers, passing them to the ALU to perform mathematical or logic

functions on them, and writing the result back to a register. If the ALU is

involved, it sends a condition signal back to the CU. The result generated by the

operation is stored in the main memory, or sent to an output device. Based on the

condition of any feedback from the ALU, Program Counter may be updated to a

different address from which the next instruction will be fetched.

The cycle is then repeated.

https://en.wikipedia.org/wiki/Program_counter
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Instruction_register
https://en.wikipedia.org/wiki/Indirect_address

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
4

Fig: CPU Cycle

9. Internal Communication:-

Memory Read Operation :-

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
5

Memory Write Operation:-

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
6

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
7

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
8

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e1
9

10. Instruction Set:-

The instruction set, also called instruction set architecture (ISA), an instruction set is a

group of commands for a CPU in machine language. The term can refer to all possible

instructions for a CPU or a subset of instructions to enhance its performance in certain

situations.

All CPUs have instruction sets that enable commands to the processor directing the CPU

to switch the relevant transistors. Some instructions are simple read, write and move

commands that direct data to different hardware.

The two major instruction sets architectures are

1) CISC (Complex Instruction Set Computing)

2) RISC (Reduced Instruction Set Computing)

10.1 CISC Architecture

In the early days machines were programmed in assembly language and the memory

access is also slow. To calculate complex arithmetic operations, compilers have to create

long sequence of machine code.

This made the designers to build an architecture , which access memory less frequently

and reduce burden to compiler. Thus this lead to very power full but complex instruction

set.

http://www.electronicshub.org/wp-content/uploads/2015/09/RISC-Vs-CISC.jpg
http://www.electronicshub.org/wp-content/uploads/2015/09/RISC-Vs-CISC.jpg

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
0

CISC architectures directly use the memory, instead of a register file. The above figure

shows the architecture of CISC with micro programmed control and cache memory.

This architecture uses cache memory for holding both data and instructions. Thus, they

share the same path for both instructions and data.

CISC has instructions with variable length format. Thus, the number of clock cycles

required to execute the instructions may be varied.

Instructions in CISC are executed by micro program which has sequence of

microinstructions.

Advantages of CISC Architecture

 Microprogramming is easy to implement and much less expensive than hard

wiring a control unit.

 It is easy to add new commands into the chip without changing the structure of the

instruction set as the architecture uses general-purpose hardware to carry out

commands.

 This architecture makes the efficient use of main memory since the complexity (or

more capability) of instruction allows to use less number of instructions to achieve a

given task.

 The compiler need not be very complicated, as the micro program instruction sets

can be written to match the constructs of high level languages.

Disadvantages of CISC Architecture

 A new or succeeding versions of CISC processors consists early generation

processors in their subsets (succeeding version). Therefore, chip hardware and

instruction set became complex with each generation of the processor.

http://www.electronicshub.org/wp-content/uploads/2015/09/CISC-Architecture.jpg
http://www.electronicshub.org/wp-content/uploads/2015/09/CISC-Architecture.jpg

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
1

 The overall performance of the machine is reduced because of slower clock speed.

 The complexity of hardware and on-chip software included in CISC design to

perform many functions.

Examples of CISC processor

1. IBM 370/168

2. Intel 80486

3. VAX 11/780

10.2 RISC (Reduced Instruction Set Computer) Architecture

Although CISC reduces usage of memory and compiler, it requires more complex

hardware to implement the complex instructions.

In RISC architecture, the instruction set of processor is simplified to reduce the execution

time. It uses small and highly optimized set of instructions which are generally register to

register operations.

The speed of the execution is increased by using smaller number of instructions .This

uses pipeline technique for execution of any instruction.

The figure shown below is the architecture of RISC processor, which uses separate

instruction and data caches and their access paths also different. There is one instruction

per machine cycle in RISC processor.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
2

The pipelining technique allows the processor to work on different steps of instruction

like fetch, decode and execute instructions at the same time. Below is image showing

execution of instructions in pipelining technique.

Generally, execution of second instruction is started, only after the completion of the first

instruction. But in pipeline technique, each instruction is executed in number of stages

simultaneously.

When the first stage of first instruction is completed, next instruction is enters into the

fist stage. This process continuous until all the instructions are executed.

Advantages of RISC Architecture

 The performance of RISC processors is often two to four times than that of CISC

processors because of simplified instruction set.

 This architecture uses less chip space due to reduced instruction set. This makes to

place extra functions like floating point arithmetic units or memory management

units on the same chip.

 The per-chip cost is reduced by this architecture that uses smaller chips consisting

of more components on a single silicon wafer.

 RISC processors can be designed more quickly than CISC processors due to its

simple architecture.

 The execution of instructions in RISC processors is high due to the use of many

registers for holding and passing the instructions as compared to CISC processors.

Disadvantages of RISC Architecture

 The performance of a RISC processor depends on the code that is being executed.

The processor spends much time waiting for first instruction result before it

http://www.electronicshub.org/wp-content/uploads/2015/09/pipelining.jpg
http://www.electronicshub.org/wp-content/uploads/2015/09/pipelining.jpg

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
3

proceeds with next subsequent instruction, when a compiler makes a poor job of

scheduling instruction execution.

 RISC processors require very fast memory systems to feed various instructions.

Typically, a large memory cache is provided on the chip in most RISC based

systems.

Examples of RISC processors

This architecture includes alpha, AVR, ARM, PIC, PA-RISC, and power architecture.

Understand RISC & CISC architecture with example

Let we take an example of multiplying two numbers

 A = A * B; <<<======this is C statement

The CISC Approach: - The primary goal of CISC architecture is to complete a task in

as few lines of assembly as possible. This is achieved by building processor hardware

that is capable of understanding & executing a series of operations, this is where our

CISC architecture introduced.

 For this particular task, a CISC processor would come prepared with a

specific instruction (we‘ll call it ―MULT‖). When executed, this instruction

1. Loads the two values into separate registers

2. Multiplies the operands in the execution unit

3. And finally third, stores the product in the appropriate register.

Thus, the entire task of multiplying two numbers can be completed with one instruction:

 MULT A, B <<<======this is assembly statement

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
4

 MULT is what is known as a ―complex instruction.‖ It operates directly

on the computer‘s memory banks and does not require the programmer to explicitly call

any loading or storing functions.

The RISC Approach: - RISC processors only use simple instructions that can be

executed within one clock cycle. Thus, the ―MULT‖ command described above could be

divided into three separate commands:

1. ―LOAD‖ which moves data from the memory bank to a register

2. ―PROD‖ which finds the product of two operands located within the registers

3. ―STORE‖ which moves data from a register to the memory banks.

 In order to perform the exact series of steps described in the CISC

approach, a programmer would need to code four lines of assembly:

 LOAD R1, A <<<======this is assembly statement

 LOAD R2,B <<<======this is assembly statement

 PROD A, B <<<======this is assembly statement

 STORE R3, A <<<======this is assembly statement

 At first, this may seem like a much less efficient way of completing the

operation. Because there are more lines of code, more RAM is needed to store the

assembly level instructions. The compiler must also perform more work to convert a

high-level language statement into code of this form.

Which one is better?

We cannot differentiate RISC and CISC technology because both are suitable at its

specific application. What counts is how fast a chip can execute the instructions it is

given and how well it runs existing software. Today, both RISC and CISC manufacturers

are doing everything to get an edge on the competition.

Comparison between RISC and CISC:

 RISC CISC

Acronym
It stands for ‗Reduced Instruction Set

Computer‘.

It stands for ‗Complex Instruction Set

Computer‘.

Definition

The RISC processors have a smaller set

of instructions with few addressing

nodes.

The CISC processors have a larger set of

instructions with many addressing nodes.

Memory unit

It has no memory unit and uses a

separate hardware to implement

instructions.

It has a memory unit to implement

complex instructions.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
5

Program
It has a hard-wired unit of

programming.
It has a micro-programming unit.

Design It is a complex complier design. It is an easy complier design.

Calculations The calculations are faster and precise. The calculations are slow and precise.

Decoding Decoding of instructions is simple. Decoding of instructions is complex.

Time Execution time is very less. Execution time is very high.

External memory
It does not require external memory for

calculations.

It requires external memory for

calculations.

Pipelining Pipelining does function correctly. Pipelining does not function correctly.

Stalling
Stalling is mostly reduced in

processors.
The processors often stall.

Code expansion Code expansion can be a problem. Code expansion is not a problem.

Disc space The space is saved. The space is wasted.

Applications

Used in high end applications such as

video processing, telecommunications

and image processing.

Used in low end applications such as

security systems, home automations, etc.

11. Data-transfer instructions
Following is the table showing the list of Data-transfer instructions with their meanings.

Opcode Operand Meaning Explanation

MOV Rd, Sc

M, Sc

Dt, M

Copy from the source

(Sc) to the

destination(Dt)

This instruction copies the contents of the source

register into the destination register without any

alteration.

Example − MOV K, L

MVI Rd, data

M, data

Move immediate 8-bit The 8-bit data is stored in the destination register

or memory.

Example − MVI K, 55L

LDA 16-bit address Load the accumulator The contents of a memory location, specified by a

16-bit address in the operand, are copied to the

accumulator.

Example − LDA 2034K

LDAX B/D Reg. pair Load the accumulator

indirect

The contents of the designated register pair point

to a memory location. This instruction copies the

contents of that memory location into the

accumulator.

Example − LDAX K

LXI Reg. pair, 16- Load the register pair The instruction loads 16-bit data in the register

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
6

bit data immediate pair designated in the register or the memory.

Example − LXI K, 3225L

LHLD 16-bit address Load H and L registers

direct

The instruction copies the contents of the memory

location pointed out by the address into register L

and copies the contents of the next memory

location into register H.

Example − LHLD 3225K

STA 16-bit address 16-bit address The contents of the accumulator are copied into

the memory location specified by the operand.

This is a 3-byte instruction, the second byte

specifies the low-order address and the third byte

specifies the high-order address.

Example − STA 325K

STAX 16-bit address Store the accumulator

indirect

The contents of the accumulator are copied into

the memory location specified by the contents of

the operand.

Example − STAX K

SHLD 16-bit address Store H and L registers

direct

The contents of register L are stored in the

memory location specified by the 16-bit address

in the operand and the contents of H register are

stored into the next memory location by

incrementing the operand.

This is a 3-byte instruction, the second byte

specifies the low-order address and the third byte

specifies the high-order address.

Example − SHLD 3225K

XCHG None Exchange H and L with

D and E

The contents of register H are exchanged with the

contents of register D, and the contents of register

L are exchanged with the contents of register E.

Example − XCHG

SPHL None Copy H and L registers

to the stack pointer

The instruction loads the contents of the H and L

registers into the stack pointer register. The

contents of the H register provide the high-order

address and the contents of the L register provide

the low-order address.

Example − SPHL

XTHL None Exchange H and L with

top of stack

The contents of the L register are exchanged with

the stack location pointed out by the contents of

the stack pointer register.

The contents of the H register are exchanged with

the next stack location (SP+1).

Example − XTHL

PUSH Reg. pair Push the register pair

onto the stack

The contents of the register pair designated in the

operand are copied onto the stack in the following

sequence.

The stack pointer register is decremented and the

contents of the high order register (B, D, H, A)

are copied into that location.

The stack pointer register is decremented again

and the contents of the low-order register (C, E,

L, flags) are copied to that location.

Example − PUSH K

POP Reg. pair Pop off stack to the The contents of the memory location pointed out

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
7

register pair by the stack pointer register are copied to the low-

order register (C, E, L, status flags) of the

operand.

The stack pointer is incremented by 1 and the

contents of that memory location are copied to the

high-order register (B, D, H, A) of the operand.

The stack pointer register is again incremented by

1.

Example − POPK

OUT 8-bit port

address

Output the data from the

accumulator to a port

with 8bit address

The contents of the accumulator are copied into

the I/O port specified by the operand.

Example − OUT K9L

IN 8-bit port

address

Input data to

accumulator from a port

with 8-bit address

The contents of the input port designated in the

operand are read and loaded into the accumulator.

Example − IN5KL

12. Instruction Format:-

The most common fields found in instruction format are:-

(1) An operation code field that specified the operation to be performed

(2) An address field that designates a memory address or a processor registers.

(3) A mode field that specifies the way the operand or the effective address is

determined.

Computers may have instructions of several different lengths containing varying number

of addresses. The number of address field in the instruction format of a computer

depends on the internal organization of its registers. Most computers fall into one of three

types of CPU organization.

(1) Single Accumulator organization ADD X AC ® AC + M [×]

(2) General Register Organization ADD R1, R2, R3 R ® R2 + R3

(3) Stack Organization PUSH X

Three address Instruction

Computer with three addresses instruction format can use each address field to specify

either processor register are memory operand.

ADD R1, A, B A1 ® M [A] + M [B]

ADD R2, C, D R2 ® M [C] + M [B] X = (A + B) * (C + A)

MUL X, R1, R2 M [X] R1 * R2

The advantage of the three address formats is that it results in short program when

evaluating arithmetic expression. The disadvantage is that the binary-coded instructions

require too many bits to specify three addresses.

Two Address Instructions

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
8

Most common in commercial computers. Each address field can specify either a

processes register on a memory word.

MOV R1, A R1 ® M [A]

ADD R1, B R1 ® R1 + M [B]

MOV R2, C R2 ® M [C] X = (A + B) * (C + D)

ADD R2, D R2 ® R2 + M [D]

MUL R1, R2 R1 ® R1 * R2

MOV X1 R1 M [X] ® R1

One Address instruction

It used an implied accumulator (AC) register for all data manipulation. For

multiplication/division, there is a need for a second register.

LOAD A AC ® M [A]

ADD B AC ® AC + M [B]

STORE T M [T] ® AC X = (A +B) × (C + A)

All operations are done between the AC register and a memory operand. It‘s the address

of a temporary memory location required for storing the intermediate result.

LOAD C AC ® M (C)

ADD D AC ® AC + M (D)

ML T AC ® AC + M (T)

STORE X M [×]® AC

Zero – Address Instruction

A stack organized computer does not use an address field for the instruction ADD and

MUL. The PUSH & POP instruction, however, need an address field to specify the

operand that communicates with the stack (TOS ® top of the stack)

PUSH A TOS ® A

PUSH B TOS ® B

ADD TOS ® (A + B)

PUSH C TOS ® C

PUSH D TOS ® D

ADD TOS ® (C + D)

MUL TOS ® (C + D) * (A + B)

POP X M [X] TOS

13. Addressing Modes
The operation field of an instruction specifies the operation to be performed. This

operation must be executed on some data stored in computer register as memory words.

The way the operands are chosen during program execution is dependent on the

addressing mode of the instruction. The addressing mode specifies a rule for interpreting

or modifying the address field of the instruction between the operand is activity

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e2
9

referenced. Computer use addressing mode technique for the purpose of accommodating

one or both of the following provisions.

(1) To give programming versatility to the uses by providing such facilities as pointer

to memory, counters for top control, indexing of data, and program relocation.

(2) To reduce the number of bits in the addressing fields of the instruction.

Addressing Modes: The most common addressing techniques are:

1. Immediate

2. Direct

3. Indirect

4. Register

5. Register Indirect

All computer architectures provide more than one of these addressing modes. The

question arises as to how the control unit can determine which addressing mode is being

used in a particular instruction. Several approaches are used. Often, different opcodes

will use different addressing modes. Also, one or more bits in the instruction format can

be used as a mode field. The value of the mode field determines which addressing mode

is to be used. What is the interpretation of effective address. In a system without virtual

memory, the effective address will be either a main memory address or a register. In a

virtual memory system, the effective address is a virtual address or a register. The actual

mapping to a physical address is a function of the paging mechanism and is invisible to

the programmer.

Opcode Mode Address

1. Immediate Addressing:

The simplest form of addressing is immediate addressing, in which the operand is

actually present in the instruction:

OPERAND = A

This mode can be used to define and use constants or set initial values of

variables. The advantage of immediate addressing is that no memory reference other

than the instruction fetch is required to obtain the operand. The disadvantage is that

the size of the number is restricted to the size of the address field, which, in most

instruction sets, is small compared with the world length.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
0

2. Direct Addressing:

A very simple form of addressing is direct addressing, in which the address field contains

the effective address of the operand:

EA = A

It requires only one memory reference and no special calculation.

3. Indirect Addressing:

With direct addressing, the length of the address field is usually less than the

word length, thus limiting the address range. One solution is to have the address field

refer to the address of a word in memory, which in turn contains a full-length address

of the operand. This is known as indirect addressing:

EA = (A)

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
1

4. Register Addressing:

Register addressing is similar to direct addressing. The only difference is that

the address field refers to a register rather than a main memory address:

EA = R

The advantages of register addressing are that only a small address field is

needed in the instruction and no memory reference is required. The disadvantage of

register addressing is that the address space is very limited.

The exact register location of the operand in case of Register Addressing

Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is

present.

5. Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the

address field refers to a register instead of a memory location. It requires only one

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
2

memory reference and no special calculation.

EA = (R)

Register indirect addressing uses one less memory reference than indirect

addressing. Because, the first information is available in a register which is nothing

but a memory address. From that memory location, we use to get the data or

information. In general, register access is much more faster than the memory access.

14. 8085 microprocessor organization

The microprocessors that are available today came with a wide variety of capabilities and

architectural features. All of them, regardless of their diversity, are provided with at least

the following functional components, which form the central processing unit (CPU) of a

classical computer.

a) Register Section: A set of registers for temporary storage of instructions, data and

address of data.

b) Arithmetic and logic unit: Hardware for performing primitive arithmetic and

logical operations.

c) Interface Section: Input and output lines through which the microprocessor

communicates with the outside world.

d) Timing and control Section: Hardware for coordinating and controlling the

activities of the various sections within the microprocessor and other devices

connected to the interface section.

The block diagram of the microprocessor along with the memory and input / output

(I/O) devices is shown in the figure.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
3

1 Intel Microprocessors:

Intel 4004 is the first 4-bit microprocessor introduced by Intel in 1971. After that Intel

introduced its first 8-bit microprocessor 8088 in 1972.

These microprocessors could not last long as general-purpose microprocessors due to

their design and performance limitations.

In 1974, Intel introduced the first general purpose 8-bit microprocessor 8080 and this

is the first step of Intel towards the development of advanced microprocessor.

After 8080, Intel launched microprocessor 8085 with a few more features added to its

architecture, and it is considered to be the first functionally complete microprocessor.

The main limitations of the 8-bit microprocessors were their low speed, low memory

capacity, limited number of general purpose registers and a less powerful instruction

set .

To overcome these limitations Intel moves from 8-bit microprocessor to 16-bit

microprocessor.

In the family of 16-bit microprocessors, Intel‘s 8086 was the first one introduced in

1978 .

8086 microprocessor has a much powerful instruction set along with the architectural

developments, which imparted substantial programming flexibility and improvement

over the 8-bit microprocessor.

Microprocessor Intel 8085:

Intel 8085 is the first popular microprocessor used by many vendors . Due to its simple

architecture and organization, it is easy to understand the working principle of a

microprocessor .

Register in the Intel 8085:

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
4

The programmable registers of 8085 are as follows –

 One 8-bit accumulator A .

 Six 8-bit general purpose register (GPR‘s)

 B, C, D , E , H and L .

 The GPR‘s are also accessible as three 16-bit register pairs BC, DE and HL .

 There is a 16-bit program counter(PC) , one 16-bit stack pointer(SP) and 8-bit

flag register . Out of 8 bits of the flag register , only 5 bits are in use .

The programmable registers of the 8085 are shown in the figure –

Apart from these programmable registers , some other registers are also available which

are not accessible to the programmer . These registers include –

 Instruction Register (IR)

 Memory address and data buffers (MAR & MDR)

 Temporary register for ALU use .

ALU of 8085:

The 8-bit parallel ALU of 8085 is capable of performing the following operations –

Arithmetic: Addition , Subtraction , Increment , Decrement , Compare .

Logical : AND , OR , EXOR , NOT , SHIFT / ROTATE , CLEAR .

Because of limited chip area , complex operations like multiplication , division , etc are

not available , in earlier processors like 8085 .

The operations performed on binary 2‘s complement data .

The five flag bits give the status of the microprocessor after and ALU operation .

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
5

The carry (C) flag bit is set if the parity of the accumulator is even .

The Auxiliary Carry (AC) flag bit indicates overflow out of bit –3 (lower nibble) in the

same manner , as the C-flag indicates the overflow out of the bit-7.

The Zero (Z) flag bit is set if the content of the accumulator after any ALU operations is

zero .

The Sign(S) flag bit is set to the condition of bit-7 of the accumulator as per the sign of

the contents of the accumulator(positive or negative) .

The Interface Section:

Microprocessor chips are equipped with a number of pins for communication with the

outside world . This is known as the system bus .

The interface lines of the Intel 8085 microprocessor are shown in the figure –

Address and Data Bus

The AD0- AD7 lines are used as lower order 8-bit address bus and data bus , in time

division multiplexed manner .

The A8-A15 lines are used for higher order 8-bit of address 8-bit of address bus.

There are seven memory and I/O control lines –

RD : indicates a READ operation when the signal is LOW .

WR : indicates a WRITE operation when the signal is LOW .

IO/M : indicates memory access for LOW and I/O access for HIGH .

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
6

ALE : ALE is an address latch enable signal , this signal is HIGH when address

information is present in AD0-AD-7 . The falling edge of ALU can be used to latch the

address into an external buffer to de-multiples the address bus .

READY : READY line is used for communication with slow memory and I/O devices .

S0 and S1 : The status of the system bus is difined by the S0 and S1 lines as follows –

S1 S0 Operation Specified

0 0 Halt

0 1 Memory or I/O WRITE

1 0 Memory or I/O READ

1 1 Instruction Fetch

There are ten lines associated with CPU and bus control –

 TRAP , RST7.5 , RST6.5 , RST5.5 and INTR to acknowledge the INTA output

 RESET IN : This is the reset input signal to the 8085.

 RESET OUT : The 8085 generates the RESET-OUT signal in response to RESET-

IN signal , which can be used as a system reset signal .

 HOLD : HOLD signal is used for DMA signal .

 HLDA : HLDA signal is used for DMA GRANT .

Clock and Utility Lines:

X1 and X2 : X1 and X2 are provided to connect a crystal or a RC network for generating

the clock internal to the chip .

SID : input line for serial data communication

SOD : output line for serial data communication

VCC and VSS : Power supply .

The block diagram of the Intel 8085 is shown in the figure –

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
7

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
8

Unit-II

Control Unit Organization:

1. Control Unit:-

The control unit (CU) is a component of a computer's central processing unit (CPU) that

directs the operation of the processor. It tells the computer's memory, arithmetic/logic

unit and input and output devices how to respond to a program's instructions.

It directs the operation of the other units by providing timing and control signals. Most

computer resources are managed by the CU. It directs the flow of data between the CPU

and the other devices. John von Neumann included the control unit as part of the von

Neumann architecture in modern computer designs; the control unit is typically an

internal part of the CPU with its overall role and operation unchanged since its

introduction

The block diagram of the control unit is shows. It consists of two decoders, a sequence

counter, and a number of control logic gates. An instruction read from memory is placed

in the instruction register (IR). The position of this register in the common bus system is

indicated. The instruction register is divided into three parts: the I bit, the operation code,

and bits 0 through 11. The operation code in bits 12 through 14 are decoded with a 3 x 8

decoder. The eight outputs of the decoder are designated by the symbols D0 through D7.

The subscripted decimal number is equivalent to the binary value of the corresponding

operation code. Bit 15 of the instruction is transferred to a flip-flop designated by the

symbol I. Bits 0 through 11 are applied to the control logic gates. The 4-bit sequence

counter can count in binary from 0 through 15. The outputs of the counter are decoded

into 16 timing signals T0 through T15.

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Central_processing_unit

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e3
9

2. Hardwired control unit:

Hardwired and Microprogrammed Control For each instruction, the control unit causes

the CPU to execute a sequence of steps correctly. In reality, there must be control signals

to assert lines on various digital components to make things happen. For example, when

we perform an Add instruction in assembly language, we assume the addition takes place

because the control signals for the ALU are set to "add" and the result is put into the AC.

The ALU has various control lines that determine which operation to perform. The

question we need to answer is, "How do these control lines actually become asserted?"

We can take one of two approaches to ensure control lines are set properly. The first

approach is to physically connect all of the control lines to the actual machine

instructions. The instructions are divided up into fields, and different bits in the

instruction are combined through various digital logic components to drive the control

lines. This is called hardwired control, and is illustrated in figure

The control unit is implemented using hardware (for example: NAND gates, flip-flops,

and counters).We need a special digital circuit that uses , as inputs, the bits from the

Opcode field in our instructions, bits from the flag (or status) register, signals from the

bus, and signals from the clock. It should produce, as outputs, the control signals to drive

the various components in the computer.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
0

3. Microprogramming control unit:

Microprogramming is a second alternative for designing control unit of digital computer

(uses software for control). A control unit whose binary control variables are stored in

memory is called a microprogrammed control unit. The control variables at any given

time can be represented by a string of 1's and 0's called a control word (which can be

programmed to perform various operations on the component of the system). Each word

in control memory contains within it a microinstruction. The microinstruction specifies

one or more microoperatiotins for the system. A sequence of microinstructions

constitutes a microprogram. A memory that is part of a control unit is referred to as a

control memory.

The general configuration of a microprogrammed control unit is demonstrated in the

block diagram of Figure . The control memory is assumed to be a ROM, within which all

control information is permanently stored.

Sequencer : Used to generate the address of the next microinstruction to be retrieved

from the control memory.

Control Address Register : (CAR) Holds the address generated by the sequence;

provides address inputs to the control memory

Control Memory : (CM) Usually a ROM; holds the control words which make up the

microprogram for the MCU

Control Data Register : (CDR) Holds the control word being retrieved; used to

generate/propogate control function values to the MCU

The ―starting address generator ― block is responsible for loading the starting address of

the microprogram into the PC everytime a new instruction is loaded in the IR.

Each microinstruction basically provides the required control signal at that time step. The

microprogram counter ensures that the control signal will be delivered to the various

parts of the CPU in correct sequence.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
1

 4. Difference Between Hardwired control unit & Microprogrammed control unit

Hardwired control unit Microprogrammed control unit

1) Speed is fast. 1) Speed is slow.

2) More costlier. 2) Cheaper.

3) Occurrence of error is more 3) Occurrence of error is less

4) Control functions implemented in

hardware

4) Control functions implemented in

software

5) Not flexible to accommodate new system

specification or new instruction redesign is

required.

5) More flexible to accommodate new

system specification or new instructions.

6) Difficult to handle complex instruction

sets.

6) Easier to handle complex instruction sets

7) Complicated design process. 7) Orderly, systematic and simple design

process.

8) Complex decoding and sequencing logic. 8) Easier decoding and sequencing logic

9) More chip area. 9) Less chip area.

10) Application:

Mostly RISC microprocessor.

10) Application:

Mainframes some microprocessors

5. Advantage and disadvantage of Hardwired & Microprogrammed control unit

Advantages of hardwired control unit

1. Faster than micro- programmed control unit.

2. Can be optimized to produce fast mode of operation.

Disadvantages of hardwired control

1. Instruction set control logic are directly

 2. Require change in wiring if designed has to be controlled.

Advantages of micro-programmed control unit

1. Simplifies design of CU.

2. Cheaper

3. Less error prone to implement.

Disadvantage of micro-programmed control unit

1. Slower compared to hardwired control unit.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
2

6. Control Memory,

A control memory is part of a control unit:

Computer Memory (employs a microprogrammed control unit)

• Main Memory : for storing user program (Machine instruction/data)

• Control Memory : for storing microprogram (Microinstruction)

• Read-only memory (ROM)

• Content of word in ROM at given address specifies microinstruction

• Each computer instruction initiates series of microinstructions (microprogram) in

control memory

• These microinstructions generate microoperations to

– Fetch instruction from main memory

– Evaluate effective address

– Execute operation specified by instruction

– Return control to fetch phase for next instruction

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
3

7. Address Sequencing,

Each machine instruction is executed through the application of a sequence of

microinstructions. Clearly, we must be able to sequence these; the collection of

microinstructions which implements a particular machine instruction is called a routine.

The MCU typically determines the address of the first microinstruction which implements a

machine instruction based on that instruction's opcode. Upon machine power-up, the CAR

should contain the address of the first microinstruction to be executed.

The MCU must be able to execute microinstructions sequentially (e.g., within routines), but

must also be able to ``branch'' to other microinstructions as required; hence, the need for a

sequencer.

The microinstructions executed in sequence can be found sequentially in the CM, or can be

found by branching to another location within the CM. Sequential retrieval of

microinstructions can be done by simply incrementing the current CAR contents; branching

requires determining the desired CW address, and loading that into the CAR.

 CAR: Control Address Register

 Control ROM: Control memory (CM); holds CWs

 Opcode: Opcode field from machine instruction

 Mapping Logic: hardware which maps opcode into microinstruction address

 branch logic: Determines how the next CAR value will be determined from all the

various possibilities

 Multiplexors: implements choice of branch logic for next CAR value

 Incrementer: generates CAR + 1 as a possible next CAR value

 SBR: used to hold return address for subroutine-call branch operations

Conditional branches are necessary in the microprogram. We must be able to perform some

sequences of micro-ops only when certain situations or conditions exist (e.g., for conditional

branching at the machine instruction level); to implement these, we need to be able to

conditional execute or avoid certain microinstructions within routines.

Subroutine branches are helpful to have at the microprogram level. Many routines contain

identical sequences of microinstructions; putting them into subroutines allows those routines

to be shorter, thus saving memory.

Mapping of opcodes to microinstruction addresses can be done very simply. When the CM

is designed, a ``required'' length is determine for the machine instruction routines (i.e., the

length of the longest one). This is rounded up to the next power of 2, yielding a value k such

that 2 k microinstructions will be sufficient to implement any routine.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
4

The first instruction of each routine will be located in the CM at multiples of this ``required''

length. Say this is N. The first routine is at 0; the next, at N; the next, at 2*N; etc. This can

be accomplished very easily. For instance, with a four-bit opcode and routine length of four

microinstructions, k is two; generate the microinstruction address by appending two zero

bits to the opcode:

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
5

8. Micro-instruction Format

For the control memory, the microinstruction format is as shown:

Fig: Microinstruction Fields

The micro-instruction is divided into four parts:

The three fields are microoperation field (F1, F2, and F3).

The CD field selects status bit conditions which are condition for branching

The BR field specifies the type of branch which is branch field

The AD field contains a branch address which is address field

9. Micro operations:

For specification of seven different micro operations, the three bits in each field are

encoded.

We cannot specify two or more micro-operations that get conflicted

e.g. 010 001 000

Each micro-operation is defined with a register transfer statement and is assigned a

symbol for use in a symbolic micro program.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
6

The following table shows Symbols and Binary code for Micro-instruction Fields:

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
7

10. Micro program sequencer,

Basic components of a microprogrammed control unit are control memory and the

circuits that select the next address. This address selection part is called a microprogram

sequencer. The purpose of microprogram sequencer is to load CAR so that

microinstruction may be read and executed. Commercial sequencers include within the

unit an internal register stack to store addresses during microprogram looping and

subroutine calls.

Internal structure of a typical microprogram sequencer is shown below in the diagram. It

consists of input logic circuit having following truth table:

Fig: Input logic truth for microprogram sequencer

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
8

Fig. microprogram sequencer for control memory

 MUX1 selects address from one of four sources of and routes it into CAR.

 MUX2 tests the value of selected status bit and result is applied to input logic

circuit.

 Output of CAR provides the address for the control memory.

 Input logic circuit has 3 inputs I0, I1 and T and 3 outputs S0, S1 and L. Variables

S0 and S1 select one of the source address for CAR. L enables load input of SBR.

 e.g: when S1S0=10, MUX input number 2 is selected and establishes a transfer

path from SBR to CAR.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e4
9

11. Microprogramming,

Microprogramming is a technique to implement the control logic necessary to execute

instructions within a processor. It is based on the general idea of fetching low-level

microinstructions from a control store and deriving the appropriate control signals to be

active for a single clock cycle, as well as microprogram sequencing information, from

each microinstruction. Although hybrid techniques exist, microprogramming is generally

contrasted with hardwired implementation techniques.

or

Microprogramming is a systematic technique for implementing the control logic of a

computer's central processing unit. It is a form of stored-program logic that substitutes

for hardwired control circuitry. The central processing unit in a computer system is

composed of a data path and a control unit.

13. Arithmetic and Logic Unit:

Short for Arithmetic Logic Unit, the ALU is a complex digital circuit; one of many

components within a computer's central processing unit. It performs both bitwise and

mathematical operations on binary numbers and is the last component to perform

calculations in the processor. The ALU uses to operands and code that tells it which

operations to perform for input data. After the information has been processed by the

ALU, it is sent to the computer's memory.

Multiple Arithmetic Logic Units can be found in CPUs, GPUs and FPUs. In some

computer processors, the ALU is divided into an AU and LU. The AU performs the

arithmetic operations, and the LU performs the logical operations.

Fig: ALU is responsible to perform the operation in the computer.

http://www.computerhope.com/jargon/c/cpu.htm
http://www.computerhope.com/jargon/b/bitwoper.htm
http://www.computerhope.com/jargon/b/binary.htm
http://www.computerhope.com/jargon/o/operand.htm
http://www.computerhope.com/jargon/m/memory.htm
http://www.computerhope.com/jargon/c/cpu.htm
http://www.computerhope.com/jargon/g/gpu.htm
http://www.computerhope.com/jargon/f/fpu.htm

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
0

The basic operations are implemented in hardware level. ALU is having collection of two

types of operations:

 Arithmetic operations

 Logical operations

Consider an ALU having 4 arithmetic operations and 4 logical operations.

To identify any one of these four logical operations or four arithmetic operations, two

control lines are needed. Also to identify the any one of these two groups- arithmetic or

logical, another control line is needed. So, with the help of three control lines, any one of

these eight operations can be identified.

Consider an ALU is having four arithmetic operations. Addition, subtraction,

multiplication and division. Also consider that the ALU is having four logical operations:

OR, AND, NOT & EX-OR.

We need three control lines to identify any one of these operations. The input

combination of these control lines are shown below:

Control line 2C is used to identify the group: logical or arithmetic, ie

2 0C  : Arithmetic operation 2 1C  : logical operation.

Control lines 0C and 1C are used to identify any one of the four operations in a group.

One possible combination is given here.

1C 0C Arithmetic  2 0C  Logical  2 1C 

0 0 Addition OR

0 1 Subtraction AND

1 0 Multiplication NOT

1 1 Division EX-OR

A 3 8 decode is used is used to decode the instruction. The block diagram of the ALU is

shown in the figure.

The ALU has got two input registers named as A and B and one output storage register,

named as C. If performs the operation as:

orC A B

The input data are stored in A and B, and according to the operation specified in the

control lines, the ALU perform the operation and put the result in register C.

As for example, if the contents of controls lines are, 000, then the operation decoder

enables the addition operation and in terms it activates the adder circuit and the addition

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
1

operation is performed on the data that are available in storage register A and B. After the

completion of the operation, the result is stored in register C.

We should have some hardware implementations for basic operations. These basic

operations can be used to implement some complicated operations which are not feasible

to implement directly in hardware.

These are several logic gates exists in digital logic circuit. These logic gates can be used

to implement the logical operation. Some of the common logic gates are mentioned here.

 AND gate: The output is high if both the 0-inputs are high.

 OR gate: The output is high if any one of the input is high.

 EX-OR gate: The output is high if either of the input is high.

If we want to construct a circuit which will perform the AND operation on two 4-bit

number, the implementation of the 4-bit AND operation is shown in the figure.

Design of ALU:

ALU or Arithmetic Logical Unit is a digital circuit to do arithmetic operations like

addition, subtraction, division, multiplication and logical operations like and, or, xor,

nand, nor etc. A simple block diagram of a 4 bit ALU for operations and, or, xor and Add

is shown here:

The 4-bit ALU block is combined using 4 1-bit ALU block

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
2

Design Issues:

The circuit functionality of a 1 bit ALU is shown here, depending upon the control signal

S1 and S0 the circuit operates as follows:

for Control signal S1 = 0 , S0 = 0, the output is A And B,

for Control signal S1 = 0 , S0 = 1, the output is A Or B,

for Control signal S1 = 1 , S0 = 0, the output is A Xor B,

for Control signal S1 = 1 , S0 = 1, the output is A Add B.

The truth table for 16-bit ALU with capabilities similar to 74181 is shown here:

Required functionality of ALU (inputs and outputs are active high)

Mode Select Fn for active HIGH operands

Inputs Logic Arithmetic (note 2)

S3 S2 S1 S0 (M = H) (M = L) (Cn=L)

L L L L A' A

L L L H A'+B' A+B

L L H L A'B A+B'

L L H H Logic 0 minus 1

L H L L (AB)' A plus AB'

L H L H B' (A + B) plus AB'

L H H L A ⊕ B A minus B minus 1

L H H H AB' AB minus 1

H L L L A'+B A plus AB

H L L H (A ⊕ B)' A plus B

H L H L B (A + B') plus AB

H L H H AB AB minus 1

H H L L Logic 1 A plus A (Note 1)

H H L H A+B' (A + B) plus A

H H H L A+B (A + B') plus A

H H H H A A minus 1

=======================

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
3

Unit-III

Input Output Organization

1. I/O Subsystem:

Data transfer to and from peripherals may be handled in one of three possible modes:

a) Programmed I/O

b) Interrupt-initiated I/O

c) Direct memory access (DMA)

a) Programmed I/O

Programmed I/O (PIO) refers to data transfers initiated by a CPU under driver software

control to access registers or memory on a device.

The CPU issues a command then waits for I/O operations to be complete. As the CPU is

faster than the I/O module, the problem with programmed I/O is that the CPU has to wait

a long time for the I/O module of concern to be ready for either reception or transmission

of data. The CPU, while waiting, must repeatedly check the status of the I/O module, and

this process is known as Polling. As a result, the level of the performance of the entire

system is severely degraded.

Programmed I/O basically works in these ways:

 CPU requests I/O operation

 I/O module performs operation

 I/O module sets status bits

 CPU checks status bits periodically

 I/O module does not inform CPU directly

 I/O module does not interrupt CPU

 CPU may wait or come back later

Programmed I/O operations are the result of I/O instructions written in the computer

program. Each data item transfer is initiated by an instruction in the program. Usually,

the transfer is to and from a CPU register and peripheral. Other instructions are needed to

transfer the data to and from CPU and memory. Once a data transfer is initiated, the CPU

is required to monitor the interface to see when a transfer can again be made.

If the speed of an I/O device is in the right range, neither too fast for the processor to read

and write the signalling bits nor too slow for the processor to wait for its activity, this

form of signalling may be sufficient.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
4

An example of data transfer from an I/O device through an interface into the CPU is

shown in Figure bellow.

Fig. (1) Data transfer from I/O to CPU

By device

When a byte of data is available, the device places it in the I/O bus and enables its data

valid line.

By interface

Accepts the byte into its data register and enables the data accepted line. Sets F.

By device

Can now disable the data valid line, but it will not transfer another byte until the data

accepted line is disabled by the interface. This is according to the handshaking procedure

established

By program

1. Read the status register.

2. Check the status of the flag bit and branch to step 1 if not set or to step 3 if set.

3. Read the data register.

The flag bit is then cleared to 0 by either the CPU or the interface, depending on how the

interface circuits are designed.

By interface

Once the flag is cleared, the interface disables the data accepted line and the device can

then transfer the Next data byte.

Each byte is read into a CPU register and then transferred to memory with a store

instruction. The programmed I/O method is particularly useful in small low-speed

computers or in systems that are dedicated to monitor a device continuously .The

difference in information transfer rate between the CPU and the I/O device makes this

type of transfer inefficient.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
5

b) Interrupt-Initiated I/O

An alternative to the CPU constantly monitoring the flag is to let the interface inform the

computer when it is ready to transfer data. This mode of transfer uses the interrupt

facility. While the CPU is running a program it does not check the flag. However, when

the flag is set, the computer is momentarily interrupted from proceeding with the current

program and is informed of the fact that the

flag has been set. The CPU deviates from what it is doing to take care of the input or

output transfer. After the transfer is completed, the computer returns to the previous

program to continue what it was doing before the interrupt.

For each interrupt there is service routine, service routine address must be known by

CPU to branch to it.

The CPU issues commands to the I/O module then proceeds with its normal work until

interrupted by I/O device on completion of its work.

For input, the device interrupts the CPU when new data has arrived and is ready to be

retrieved by the system processor. The actual actions to perform depend on whether the

device uses I/O ports, memory mapping.

For output, the device delivers an interrupt either when it is ready to accept new data or

to acknowledge a successful data transfer. Memory-mapped and DMA-capable devices

usually generate interrupts to tell the system they are done with the buffer.

Although Interrupt relieves the CPU of having to wait for the devices, but it is still

inefficient in data transfer of large amount because the CPU has to transfer the data word

by word between I/O module and memory.

Below are the basic operations of Interrupt:

 CPU issues read command

 I/O module gets data from peripheral whilst CPU does other work

 I/O module interrupts CPU

 CPU requests data

 I/O module transfers data

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
6

c) Direct Memory Access (DMA)

The transfer of data between a fast storage device such as magnetic disk and memory is

often limited by the speed of the CPU. Removing the CPU from the path and letting the

peripheral device manage the memory buses directly would improve the speed of

transfer. This transfer technique is called direct memory access (DMA). During DMA

transfer, the CPU is idle and has no control of the memory buses. A DMA controller

takes over the buses to manage the transfer directly between the I/O device and memory.

The CPU may be placed in an idle state in a variety of ways. One common method

extensively used in microprocessors is to disable the buses through special control

signals. Figure (1) shows two control signals in the CPU that facilitate the DMA transfer.

The bus request (BR) input is used by the DMA controller to request the CPU to

relinquish control of the buses. The CPU activates the bus grant (BG) output to inform

the external DMA that the buses are in the high-impedance state. The DMA that

originated the bus request can now take control of the buses to conduct memory transfers

without processor intervention. When the DMA terminates the transfer, it disables the

bus request line. The CPU disables the bus grant, takes control of the buses, and returns

to its normal operation. When the DMA takes control of the bus system, it communicates

directly with the memory. The transfer can be made in several ways.

*In DMA burst transfer, a block sequence consisting of a number of memory words is

transferred in a continuous burst while the DMA controller is master of the memory

buses. This mode of transfer is needed for fast devices such as magnetic disks, where

data transmission cannot be stopped or slowed down until an entire block is transferred.

*An alternative technique called cycle stealing allows the DMA controller to transfer

one data word at a time, after which it must return control of the buses to the CPU. The

CPU merely delays its operation for one memory cycle to allow the direct memory I/O

transfer to "steal" one memory cycle.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
7

The DMA controller needs the usual circuits of an interface to communicate with the

CPU and I/O device. In addition, it needs an address register (contains an address to

specify the desired location in memory, the address register is incremented after each

word that is transferred to memory), a word count register (specifies the number of

words that must be transferred), a set of address lines, and control register. The address

register and address lines are used for direct communication with the memory.

The position of the DMA controller among the other components in a computer system is

illustrated in Figure (1). The CPU communicates with the DMA through the address and

data buses as with any interface unit. The DMA has its own address, which activates the

DS (DMA select) and RS (register select) lines.

When the peripheral device sends a DMA request, the DMA controller activates the BR

line, informing the CPU to relinquish the buses. The CPU responds with its BG line,

informing the DMA that its buses are disabled. The CPU initializes the DMA by sending

the following information through the data bus:

1. The starting address of the memory block where data are available (for read) or where

data are to be stored (for write)

2. The word count, which is the number of words in the memory block

3. Control to specify the mode of transfer such as read or write

4. A control to start the DMA transfer

The DMA then puts the current value of its address register into the address bus, initiates

the RD or WR Signal, and sends a DMA acknowledge to the peripheral device. Note the

RD and WR lines in the DMA Controllers are bidirectional. The direction of transfer

depends on the status of the BG line. When BG = 0, the RD and WR are input lines

allowing the CPU to communicate with the internal DMA registers. When BG = 1, the

RD and WR are output lines from the DMA controller to the random-access memory to

specify the read or write operation for the data.

When the peripheral device receives a DMA acknowledge, it puts a word in the data bus

(for write) or receives a word from the data bus (for read). Thus the DMA controls the

read or write operations and supplies the address for the memory. The peripheral unit can

then communicate with memory through the data bus for direct transfer between the two

units while the CPU is momentarily disabled.

For each word that is transferred, the DMA increments its address registers and

decrements its word count register. If the word count does not reach zero, the DMA

checks the request line coming from the peripheral. For a high-speed device, the line will

be active, as soon as the previous transfer is completed. A second transfer is then

initiated, and the process continues until the entire block is transferred. If the peripheral

speed is slower, the DMA request line may come somewhat later. In this case the DMA

disable the bus request line so that the CPU can continue to execute its program. When

the peripheral requests a transfer, the DMA requests the buses again.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
8

If the word count register reaches zero, the DMA stops any further transfer and removes

its bus request. It also informs the CPU of the termination by means of an interrupt.

When the CPU responds to the interrupt, it reads the content of the word count register.

The zero value of this register indicates that all the words were transferred successfully.

DMA transfer is very useful in many applications. It is used for fast transfer of

information between magnetic disks and memory.

2. Interrupt structures,

 Interrupt is signals send by an external device to the processor, to request the

processor to perform a particular task or work.

 Mainly in the microprocessor based system the interrupts are used for data transfer

between the Peripheral and the microprocessor.

 If there is any interrupt it accept the interrupt and send the INTA (active low) signal to

the peripheral.

 The vectored address of particular interrupt is stored in program counter.

 The processor executes an interrupt service routine (ISR) addressed in program

counter.

 It returned to main program by RET instruction.

2.1 Types of Interrupts

2.1.1 Hardware Interrupts: If the signal for the processor is from external device or

hardware is called hardware interrupts. Example: from keyboard we will press the key to

do some action this pressing of key in keyboard will generate a signal which is given to

the processor to do action, such interrupts are called hardware interrupts. Hardware

interrupts can be classified into two types they are

1. Maskable Interrupt: Interrupt signals which can be ignored by processor, while

processor doing crucial job it will ignore these kind of interrupts and continue in its

state

2. Non Maskable Interrupt: These Interrupt signals will be not ignored and given

attention all the time

2.1.2 Software Interrupts: Software interrupt can also divided in to two types. They are

1. Normal Interrupts: the interrupts which are caused by the software instructions are

called software instructions.

2. Exception: unplanned interrupts while executing a program is called Exception. For

example: while executing a program if we got a value which should be divided by

zero is called an exception.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e5
9

3. I/O Interface,

 The I/O system provides an efficient mode of communication between the central

system and the outside environment.

 Programs and data must be entered into computer memory for processing end

results obtained from computations must be displayed for the user. The most

familiar means of entering information into a computer is through a type writer-

like keyboard. On the other hand the central processing unit is an extremely fast

device capable of performing operations at very high speed.

 To use a computer efficiently, a large amount of programs and data must be

prepared in advance and transmitted into a storage medium such as magnetic tapes

or disks. The information in the disk is then transferred into a high-speed storage,

such as disks.

 Input or output devices attached to the computer are called the peripheral devices.

The most common peripherals are keyboards, display units and printers.

Peripherals that provide auxiliary storage for the system are magnetic disks and

tapes.

4. Asynchronous Data Transfer

The two units such as CPU and I/O interface are designed independently of each other. If

the registers in the interface does not have a common clock (global clock) with the CPU

registers, then the transfer between the two units is said to be asynchronous.

 The asynchronous data transfer requires the control signals that are being

transmitted between the communicating units to indicate the time at which data is

being transmitted.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
0

a) Strobe Control

 Strobe is a pulse signal supplied by one unit to another unit to indicate the time at

which data is being transmitted.

Strobe may be activated by either the source or the destination unit.

 The strobe pulse is controlled by the clock pulses in the CPU. The data bus carries the

binary information from source unit to the destination unit. In source initiated strobe for

data transfer, the strobe is a single line that informs the destination unit when a valid data

word is available in the bus.

 But in destination initiated for data transfer it informs the source to provide the data.

Then source unit places the data on the data bus.

b) Handshaking

 The disadvantage of the strobe method is that the source unit has no information

whether the destination unit has actually received the data item, if the source unit initiates

the transfer. But if the destination unit initiates the transfer it has no way of knowing

whether the source unit has actually placed the data on the bus. The handshake method

solves this problem.

 The basic approach of handshaking is as follows. In handshaking method, there are

two control signals unlike strobe control method. One control signal is in the same

direction as the data flow in the bus from the source to the destination. This signal is used

to inform the destination unit whether there are valid data in the bus. The second control

signal is in the other direction from the destination to the source. It is used to inform the

source whether it can accept data.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
1

4.1 Synchronous Data Transfer

In synchronous data transfer a global or shared clock is provided to both sender and

receiver. The sender and receiver work simultaneously.

5. I/O processor

The input/output processor or I/O processor is a processor that is separate from the main

processor or CPU designed to handle only input/output processes for a device or the

computer.

The concept of I/O processor is an extension of the concept of DMA. The I/O processor

can execute specialised I/O program residing in the memory without intervention of the

CPU. Thus, CPU only needs to specify a sequence of I/O activity to I/O processor. The

I/O processor then executes the necessary I/O instructions which are required for the

task; and interrupts the CPU only after the entire sequence of I/O activity as specified by

CPU have been completed. An advanced I/O processor can have its own memory,

enabling a large set of I/O devices to be controlled without much involvement from the

CPU. Thus, an I/O processor has the additional ability to execute I/O instructions which

provide it a complete control on I/O operations. Thus, I/O processors are much more

powerful than DMA which provides only a limited control of I/O device. For example, if

an I/O device is busy then DMA will only interrupt the CPU and will inform the CPU

again when the device is free while I/O device and once it has found to be free go ahead

with I/O and when I/O finishes, communicate it to the CPU. The I/O processor is termed

as channel in IMB machines.

In computer systems which have IOPs the CPU normally do not execute I/O data transfer

instructions. I/O instructions are stored in memory and are executed by IOPs. The IOP

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
2

can be provided with the direct access to the memory and can control the system bus. An

IOP can execute a sequence of data transfer instructions involving different memory

regions and different devices without intervention of the CPU.

6. 8085 I/O structure

The 8085 supports up to 256 input/output (I/O) ports, accessed via dedicated Input/output

instructions—taking port addresses as operands. This I/O mapping scheme is regarded as

an advantage, as it frees up the processor's limited address space. The IN and OUT

instructions are used to read and write I/O port data. In an I/O bus cycle, the 8-bit I/O

address is output by the CPU on both the lower and upper halves of the 16-bit address

bus

7. 8085 instruction set and basic programming.

7.1 8085 Instruction Format

8085 instructions are classified into following three groups of instructions:

• One-word or 1-byte instructions

• Two-word or 2-byte instructions

• Three-word or 3-byte instructions

Instruction: It is a command given to the microprocessor to perform given task on

specified data. Each instruction has two parts viz. task to be performed known as

operation code or opcode and second is the data to be operated upon known as operand.

The Operand can be used in many different ways e.g. 8 bit data or 16 bit data or internal

register or memory location or 8 bit or 16 bit address.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
3

If the data byte is stored in the 32H which need to be moved in the accumulator then the

instruction can be written as follows: MVI A, 32H Hex code is : 3E 32H

8. Data Transfer

8.1 Serial / parallel

Serial versus Parallel Data Transfer

Information flows through the computer in many ways. The CPU is the central point for

most information. When you start a program, the CPU instructs the storage device to load

the program into RAM. When you create data and print it, the CPU instructs the printer

to output the data.

Because of the different types of devices that send and receive information, two major

types of data transfers take place within a computer: parallel and serial. These terms are

used frequently, but if you're not familiar with the differences between them, check out

Figure: Parallel data transfers move data 8 bits at a time, whereas serial data

transfers move 1 bit at a time.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
4

8.1.1 Parallel Data Transfer

Parallel transfers use multiple "lanes" for data and programs, and in keeping with the 8

bits = 1 byte nature of computer information, most parallel transfers use multiples of 8.

Parallel transfers take place between the following devices:

 CPU and RAM

 CPU and interface cards (see Chapter 8)

 LPT (printer) port and parallel printer

 SCSI port and SCSI devices

 ATA/IDE host adapter and ATA/IDE drives

 RAM and interface cards (either via the CPU or directly with DMA)

Why are parallel transfers so popular?

 Multiple bits of information are sent at the same time.

 At identical clock speeds, parallel transfers are faster than serial transfers because

more data is being transferred.

However, parallel transfers also have problems:

 Many wires or traces (wire-like connections on the motherboard or expansion

cards) are needed, leading to interference concerns and thick, expensive cables.

 Excessively long parallel cables or traces can cause data to arrive at different

times. This is referred to as signal skew.

Figure : Parallel cables that are too long can cause signal skew, allowing the parallel signals to become "out

of step" with each other.

 Differences in voltage between wires or traces can cause jitter.

As a result of these problems some compromises have had to be included in computer

and system design:

 Short maximum lengths for parallel, ATA/IDE, and SCSI cables

 Dual-speed motherboards (running the CPU internally at much faster speeds than the

motherboard or memory)

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
5

Fortunately, there is a second way to transmit information: serial transfers.

8.1.2 Serial Data Transfer

A serial transfer uses a single "lane" in the computer for information transfers. This

sounds like a recipe for slowdowns, but it all depends on how fast the speed limit is on

the "data highway."

The following ports and devices in the computer use serial transfers:

 Serial (also called RS-232 or COM) ports and devices

 USB (Universal Serial Bus) 1.1 and 2.0 ports and devices

 Modems (which can be internal devices or can connect to serial or USB ports)

 IEEE-1394 (FireWire, i.Link) ports and devices

 Serial ATA (SATA) host adapters and drives

Serial transfers have the following characteristics:

 One bit at a time is transferred to the device.

 Transmission speeds can vary greatly, depending on the sender and receiver.

 Very few connections are needed in the cable and ports (one transmit, one receive,

and a few control and ground wires).

 Cable lengths can be longer with serial devices. For example, an UltraDMA/66

ATA/IDE cable can be only 18 inches long for reliable data transmission, whereas

a Serial ATA cable can be almost twice as long.

Although RS-232 serial ports are slow, newer types of serial devices are as fast or faster

than parallel devices. The extra speed is possible because serial transfers don't have to

worry about interference or other problems caused by running so many data lines

together.

For more information about serial, parallel, USB, and IEEE-1394 ports, see Chapter 8,

"Input/Output Devices and Cables." For more information about RAM, see Chapter 7,

"RAM." For more information about ATA/IDE, Serial ATA, and SCSI,

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
6

8.2 Synchronous & Asynchronous Transmission

8.2.1 Synchronous Transmission

In Synchronous Transmission, data flows in a full duplex mode in the form of blocks or

frames. Synchronization between the sender and receiver is necessary so that the sender

know where the new byte starts (since there is no gap between the data).

Synchronous Transmission is efficient, reliable and is used for transferring a large

amount of data. It provides real-time communication between connected devices. Chat

Rooms, Video Conferencing, telephonic conversations, as well as face to face

interactions, are some of the examples of Synchronous Transmission.

8.2.2 Asynchronous Transmission

In Asynchronous Transmission data flows in a half duplex mode, 1 byte or a character at

a time. It transmits the data in a continuous stream of bytes. In general, the size of a

character sent is 8 bits to which a parity bit is added i.e. a start and a stop bit that gives

the total of 10 bits. It does not require a clock for synchronization; rather it uses the

parity bits to tell the receiver how to interpret the data.

It is simple, fast, and economical and does not require a 2-way communication. Letters,

emails, forums, televisions and radios are some of the examples of Asynchronous

Transmission.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
7

Key Differences between Synchronous and Asynchronous Transmission

1. In Synchronous Transmission data is transferred in the form of frames on the other

hand in Asynchronous Transmission data is transmitted 1 byte at a time.

2. Synchronous Transmission requires a clock signal between the sender and receiver

so as to inform the receiver about the new byte. Whereas, in Asynchronous

Transmission sender and receiver does not require a clock signal as the data sent

here has a parity bit attached to it which indicates the start of the new byte.

3. Data transfer rate of Asynchronous Transmission is slower than that of

Synchronous Transmission.

4. Asynchronous Transmission is simple and economic whereas, Synchronous

Transmission is complex and expensive.

5. Synchronous Transmission is efficient and has lower overhead as compared to the

Asynchronous Transmission.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
8

8.3 Simplex Half Duplex Full Duplex Data Transfer

8.3.1 Simplex

In a simplex transmission mode, the communication between sender and receiver occur

only in one direction. That means only the sender can transmit the data, and receiver can

only receive the data. The receiver cannot reply in reverse to the sender. Simplex is like a

one-way road in which the traffic travels only in one direction, no vehicle from opposite

direction is allowed to enter. The entire channel capacity is only utilized by the sender.

You can better understand the simplex transmission mode with an example of keyboard

and monitor. The Keyboard can only transmit the input to the monitor, and the monitor

can only receive the input and display it on the screen. The monitor cannot transmit any

information back to the keyboard.

8.3.2 Definition of Half Duplex

In a half-duplex transmission mode, the communication between sender and receiver

occurs in both the directions but, one at a time. The sender and receiver both can transmit

and receive the information but, only one is allowed to transmit at a time. Half duplex is

still a one way road, in which a vehicle traveling in opposite direction of the traffic has to

wait till the road is empty. The entire channel capacity is utilized by the transmitter,

transmitting at that particular time.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e6
9

Half duplex can be understood with an example of walkie-talkies. As the speaker at both

the end of walkie-talkies can speak but they have to speak one by one. Both cannot speak

simultaneously.

8.3.3 Definition of Full Duplex

In a full duplex transmission mode, the communication between sender and receiver

can occur simultaneously. Sender and receiver both can transmit and receive

simultaneously at the same time. The full duplex transmission mode is like a two way

road in which traffic can flow in both the direction at the same time. The entire capacity

of the channel is shared by both the transmitted signal traveling in opposite direction.

Sharing of the channel capacity can be achieved in two different ways. First, either you

physically separate the link in two parts one for sending and other for receiving. Second,

or you let the capacity of a channel to be shared by the two signals traveling in opposite

direction.

Full duplex can be understood best, with an example of a telephone. When two people

communicate over a telephone both are free to speak and listen at the same time.

Key Differences Between Simplex, Half Duplex and Full Duplex

1. In a Simplex mode of transmission, the signal can be sent only in one direction;

hence, it is unidirectional. On the other hand, in half duplex, both the sender and

receiver can transmit the signal but, only one at a time, whereas, in full duplex, the

sender and receiver can transmit the signal simultaneously at the same time.

2. In a simplex mode of transmission, only one of the two devices on the link can

transmit the signal, and the other can only receive but cannot send back the signal

in reverse. In a half-duplex mode, both the devices connected on the link can

transmit the signal but only one device can transmit at a time. In a full-duplex

mode, both the device on the link can transmit simultaneously.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
0

3. The performance of full duplex is better than half duplex and simplex because it

better utilizes the bandwidth, as compared to half duplex and simplex.

4. If we take the example of keyboard and monitor, it is observed that keyboard

inputs the command and monitor displays it, monitor never replies back to the

keyboard; hence, it is an example of the simplex transmission mode. In a walkie-

talkie, only one person can communicate at a time so; it represents an example of

half duplex mode of transmission. In a telephone, both the person on the either side

of a telephone can communicate parallelly at the same time; hence, it represents an

example of a full-duplex mode of transmission.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
1

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
2

Unit-IV

Memory organization

1. Memory Maps

A memory map is a massive table, in effect a database that comprises complete

information about how the memory is structured in a computer system. A memory map

works something like a gigantic office organizer. In the map, each computer file has a

unique memory address reserved especially for it, so that no other data can inadvertently

overwrite or corrupt it.

In order for a computer to function properly, its OS (operating system) must always be

able to access the right parts of its memory at the right times. When a computer first

boots up (starts), the memory map tells the OS how much memory is available. As the

computer runs, the memory map ensures that data is always written to, and read from, the

proper places. The memory map also ensures that the computer's debuggers can resolve

memory addresses to actual stored data.

If there were no memory map, or if an existing memory map got corrupted, the OS might

(and probably would) write data to, and read data from, the wrong places. As a result,

when data was read, it would not always pertain to the appropriate files or application

programs. The problem would likely start out small and unnoticeable, worsen with time,

and become apparent only after considerable damage had been done to stored data and

programs. In the end, some or all of the applications would fail to run, and many critical

data files would be ruined.

2. Memory Hierarchy

In computer architecture the memory hierarchy is a concept used to discuss performance

issues in computer architectural design, algorithm predictions, and lower level

programming constructs involving locality of reference. The memory hierarchy in

computer storage separates each of its levels based on response time. Since response

time, complexity, and capacity are related, the levels may also be distinguished by their

performance and controlling technologies.

Designing for high performance requires considering the restrictions of the memory

hierarchy, i.e. the size and capabilities of each component. Each of the various

components can be viewed as part of a hierarchy of memories (m1,m2,...,mn) in which

each member mi is typically smaller and faster than the next highest member mi+1 of the

hierarchy. To limit waiting by higher levels, a lower level will respond by filling a buffer

and then signalling to activate the transfer.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
3

There are four major storage levels.

1. Internal – Processor registers and cache.

2. Main – the system RAM and controller cards.

3. On-line mass storage – Secondary storage.

4. Off-line bulk storage – Tertiary and Off-line storage.

This is a general memory hierarchy structuring. Many other structures are useful. For example, a paging

algorithm may be considered as a level for virtual memory when designing a computer architecture, and

one can include a level of near line storage between online and offline storage

3. Cache Memory

A Cache (Pronounced as ―cash‖) is a small and very fast temporary storage memory. It is

designed to speed up the transfer of data and instructions. It is located inside or close to

the CPU chip. It is faster than RAM and the data/instructions that are most recently or

most frequently used by CPU are stored in cache.

The data and instructions are retrieved from RAM when CPU uses them for the first

time. A copy of that data or instructions is stored in cache. The next time the CPU needs

that data or instructions, it first looks in cache. If the required data is found there, it is

retrieved from cache memory instead of main memory. It speeds up the working of CPU.

https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Nearline_storage

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
4

3.1 Types/Levels of Cache Memory

The following are the deferent levels of Cache Memory.

A CPU cache is a smaller faster memory used by the central processing unit (CPU) of a computer to

reduce the average time to access memory. L1 (Level 1), L2 (Level 2), cache are some specialized

memory which work hand in hand to improve computer performance.

When a request is made to the system, CPU has some set of instructions to execute, which it fetches

from the RAM. Thus to cut down delay, CPU maintains a cache with some data which it anticipates it

will be needed.

 L1 Cache

L1 cache (also known as primary cache or Level 1 cache) is the top most cache in the hierarchy of cache

levels of a CPU. It is the fastest cache in the hierarchy. It has a smaller size and a smaller delay (zero

wait-state) because it is usually built in to the chip. SRAM (Static Random Access Memory) is used for

the implementation of L1.

 L2 Cache

L2 cache (also known as secondary cache or Level 2 cache) is the cache that is next to L1 in the cache

hierarchy. L2 is usually accessed only if the data looking for is not found in L1. L2 is usually used to

bridge the gap between the performance of the processor and the memory. L2 is typically implemented

using a DRAM (Dynamic Random Access Memory). Most times, L2 is soldered on to the motherboard

very close to the chip (but not on the chip itself), but some processors like Pentium Pro deviated from

this standard.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
5

4. Cache memory organization and mappings

The three different types of mapping used for the purpose of cache memory are as

follow, Associative mapping, Direct mapping and Set-Associative mapping.

 Associative mapping: In this type of mapping the associative memory is used to

store content and addresses both of the memory word. This enables the placement

of the any word at any place in the cache memory. It is considered to be the fastest

and the most flexible mapping form.

 Direct mapping: In direct mapping the RAM is made use of to store data and some is

stored in the cache. An address space is split into two parts index field and tag field.

The cache is used to store the tag field whereas the rest is stored in the main memory.

Direct mapping`s performance is directly proportional to the Hit ratio.

 Set-associative mapping: This form of mapping is a modified form of the direct

mapping where the disadvantage of direct mapping is removed. Set-associative

mapping allows that each word that is present in the cache can have two or more

words in the main memory for the same index address.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
6

4.1 Associative mapping

With the associative mapping of the contents of cache memory, the address of a word in

the main memory is divided into two parts: the tag and the byte index (offset).

Information is fetched into the cache in blocks. The byte index determines the location of

the byte in the block whose address is generated from the tag bits, which are extended by

zeros in the index part (it corresponds to the address of the first byte in the block. In the

number of bits in the byte index is n then the size of the block is a power of 2 with the

exponent n. The cache is divided into lines. In each line one block can be written together

with its tag and usually some control bits. It is shown in the figure below.

When a block is fetched into the cache (on miss), the block is written in an arbitrary free

line. If there is no free line, one block of information is removed from the cache to

liberate one line. The block to be removed is determined according to a selected strategy,

for example the least used block can be selected. To support the block selection, each

access to a block residing in the cache, is registered by changing the control bits in the

line the block occupies.

Information organization in cache with associative mapping

The principle of the read operation in cache memory is shown below. The requested

address contains the tag (bbbbb) and the byte index in the block (X). The tag is compared

in parallel with all tags written down in all lines. If a tag match is found in a line, we

have a hit and the line contains the requested information block. Then, based on the byte

index, the requested byte is selected in the block and read out into the processor. If none

of the lines contains the requested tag, the requested block does not reside in the cache.

The missing block is next fetched from the main memory or an upper level cache

memory.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
7

Read of a byte on hit in a cache with associative mapping

The functioning of a cache with associative mapping is based on the associative access to

memory. The requested data are found by a parallel comparison of the requested tag with

tags registered in cache lines. For a big number of lines, the comparator unit is very large

and costly. Therefore, the associative mapping is applied in cache memories of a limited

sizes (i.e. containing not too many lines).

4.2. Cache memory with direct mapping

The name of this mapping comes from the direct mapping of data blocks into cache lines.

With the direct mapping, the main memory address is divided into three parts: a tag, a

block index and a byte index. In a given cache line, only such blocks can be written,

whose block indices are equal to the line number. Together with a block, the tag of its

address is stored. It is easy to see that each block number matches only one line in the

cache.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
8

The readout principle in cache with direct mapping is shown below. The block index

(middle part of the address) is decoded in a decoder, which selects lines in the cache. In a

selected line, the tag is compared with the requested one. If a match is found, the block

residing in the line is exactly that which has been requested, since in the main memory

there are no two blocks with the same block indices and tags.

We have a hit in this case and the requested byte is read in the block. If there was no tag

match, it means that either there is no block yet in the line or the residing block is

different to the requested one. In both cases, the requested block is fetched from the main

memory or the upper level cache. Together with the fetched block, its tag is stored in the

cache line.

Read of a byte in a cache with direct mapping

With direct mapping, all blocks with the same index have to be written into the same

cache line. It can cause frequent block swapping in cache lines, since only one block can

reside in a line at a time. It is called block thrashing in the cache. For large data structures

used in programs, this phenomenon can substantially decrease the efficiency of cache

space use. The solution shown in next section eliminates this drawback.

4.3. Cache memory with set associative mapping

With this mapping, the main memory address is structured as in the previous case. We

have there a tag, a block index and a byte index. The block into line mapping is the same

as for the direct mapping. But in a set associative mapping many blocks with different

tags can be written down into the same line (a set of blocks). Access to blocks written

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e7
9

down in a line is done using the associative access principle, i.e. by comparing the

requested tag with all tags stored in the selected line. From both mentioned features, the

name of this mapping is derived. The figure below shows operations during a read from a

cache of this type.

Read of a byte in a cache with set associative mapping

First, the block index of the requested address is used to select a line in a cache. Next,

comparator circuits compare the requested tag with all stored in the line. On match, the

requested byte is fetched from the selected block and sent to the processor. On miss (no

match), the requested block is fetched from the main memory or the upper level cache.

The new block is stored in a free block slot in the line or in the slot liberated by a block

sent back to the main memory (or the upper level cache). To select a block to be

removed, different strategies can be applied. The most popular is the LRU (least-recently

used) strategy, where the block not used for the longest time is removed. Other strategies

are: FIFO (first-in-first-out) strategy - the block that is stored during the longest time is

selected or LFU (least-frequently used) strategy where the least frequently modified

block is selected. To implement these strategies, some status fields are maintained

associated with the tags of blocks.

Due to the set associative mapping, block thrashing in cache is eliminated to the large

degree. The number of blocks written down in the same cache line is from 2 to 6 with the

block size of 8 to 64 bytes.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
0

5. Associative Memory

A type of computer memory from which items may be retrieved by matching some part

of their content, rather than by specifying their ADDRESS (hence also called associative

or content-addressable memory.) Associative memory is much slower than RAM, and is

rarely encountered in mainstream computer designs.

For example, that serves as an identifying tag. Associative memory is used in multilevel

memory systems, in which a small fast memory such as a cache may hold copies of some

blocks of a larger memory for rapid access.

To retrieve a word from associative memory, a search key (or descriptor) must be

presented that represents particular values of all or some of the bits of the word. This key

is compared in parallel with the corresponding lock or tag bits of all stored words, and all

words matching this key are signalled to be available.

Associative memory is expensive to implement as integrated circuitry.

6. Virtual Memory

Virtual memory acts as a cache between main memory and secondary memory. Data is

fetched in advance from the secondary memory (hard disk) into the main memory so that

data is already available in the main memory when needed. The benefit is that the large

access delays in reading data from hard disk are avoided. Pages are formulated in the

secondary memory and brought into the main memory. This process is managed both in

hardware (Memory Management Unit) and the software (The operating systems is

responsible for managing the memory resources).The block diagram shown (Book Ch.7,

Section 7.6, and figure 7.37) specifies how the data interchange takes place between

cache, main memory and the disk. The Memory Management unit (MMU) is located

between the CPU and the physical memory. Each memory reference issued by the CPU

is translated from the logical address space to the physical address space, guided by

operating system controlled mapping tables. As address translation is done for each

memory reference, it must be performed by the hardware to speed up the process. The

operating system is invoked to update the associated mapping tables

Memory Management and Address Translation the CPU generates the logical address.

During program execution, effective address is generated which is an input to the MMU,

which generates the virtual address. The virtual address is divided into two fields. First

field represents the page number and the second field is the word field. In the next step,

the MMU translates the virtual address into the physical address which indicates the

location in the physical memory.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
1

6.1 Advantages of Virtual Memory

 Simplified addressing scheme: the programmer does not need to bother about the

exact locations of variables/instructions in the physical memory. It is taken care of by

the operating system.

 For a programmer, a large virtual memory will be available, even for a limited

physical memory.

 Simplified access control

7. Memory Management Hardware

As a program runs, the memory addresses that it uses to reference its data are the logical

address. The real time translation to the physical address is performed in hardware by the

CPU‘s Memory Management Unit (MMU). The MMU has two special registers that are

accessed by the CPU‘s control unit. A data to be sent to main memory or retrieved from

memory is stored in the Memory Data Register (MDR). The desired logical memory

address is stored in the Memory Address Register (MAR). The address translation is also

called address binding and uses a memory map that is programmed by the operating

system.

Before memory addresses are loaded on to the system bus, they are translated to physical

addresses by the MMU.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
2

Unit-V

Multiprocessors

1. Multiprocessors:-

A multiprocessor is a computer system with two or more central processing units (CPUs), with each one

sharing the common main memory as well as the peripherals. This helps in simultaneous processing of

programs.

The key objective of using a multiprocessor is to boost the system‘s execution speed, with other

objectives being fault tolerance and application matching.

A good illustration of a multiprocessor is a single central tower attached to two computer systems. A

multiprocessor is regarded as a means to improve computing speeds, performance and cost-

effectiveness, as well as to provide enhanced availability and reliability.

Different ways of using a multiprocessor include:

 As a uniprocessor, such as single instruction, single data (SISD)

 Inside a single system for executing multiple, individual series of instructions in multiple

perspectives, such as multiple instruction, multiple data (MIMD)

 A single series of instructions in various perspectives, such as single instruction, multiple data

(SIMD), which is usually used for vector processing

 Multiple series of instructions in a single perspective, such as multiple instruction, single data

(MISD), which is used for redundancy in failsafe systems and, occasionally, for describing

hyper-threading or pipelined processors

Benefits of using a multiprocessor include:

 Enhanced performance

 Multiple applications

 Multiple users

 Multi-tasking inside an application

 High throughput and/or responsiveness

 Hardware sharing among CPUs

Communication architecture of a multiprocessor:

 Message Passing

o Independent address space for every processor

o Processor communication by means of message passing

o Processors include private memories

o Concentrates attention on high-priced, non-local operations

 Shared Memory

o Processor communication is done by means of a shared address space

o Processor communication is done by means of shared memory read/write

o Convenient on small-scale devices

o Lower latency

o Non-uniform memory access (NUMA) or symmetric multiprocessing (SMP)

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
3

2. Pipelining:

In order to increase the instruction throughput, high performance processors make extensive use of a

technique called pipelining. A pipelined processor doesn't wait until the result from a previous

operation has been written back into the register files or main memory - it fetches and starts to execute

the next instruction as soon as it has fetched the first one and dispatched it to the instruction register.

When the simple processor described on the previous pages is performing an add instruction, there is no

need for it to wait for the add operation to complete before it starts fetching the next instruction. So a

pipelined processor will start fetching the next instruction from memory as soon as it has latched the

current instruction in the instruction register.

Thus a pipelined processor has a pipeline containing a number of stages (4 or 5 was a common number

in early RISC processors) arranged so that a new instruction is latched into its input register as the

results calculated in this stage are latched into the input register of the following stage. This means that

there will be a number of instructions (equal to the number of pipeline stages in the best case) "active"

in the processor at any one time.

In a typical early RISC processor (eg MIPS R3000),

there would be four pipeline stages

IF
Instruction Fetch
Fetch the instruction from memory

DEC

Decode and Operand Fetch
Decode it and fetch operands from the register

file

EX
Execute
Execute the instruction in the ALU

WB
WriteBack
Write the result back in to a register

Population of the pipeline at each clock cycle:

i1, i2, ... are successive instructions in the instruction

stream.

With an n-stage pipeline, after n-1 clock cycles, the pipeline will become full and an instruction

completes on every clock cycle, instead of every n clock cycles. This effectively speeds up the

processor by a factor of n.

2.1 Advantages of Pipelining:

1. The cycle time of the processor is reduced; increasing the instruction throughput. Pipelining

doesn't reduce the time it takes to complete an instruction; instead it increases the number of

instructions that can be processed simultaneously ("at once") and reduces the delay between

completed instructions (called 'throughput').

2. The more pipeline stages a processor has, the more instructions it can process "at once" and the

less of a delay there is between completed instructions. Every predominant general purpose

microprocessor manufactured today uses at least 2 stages of pipeline up to 30 or 40 stages.

3. If pipelining is used, the CPU Arithmetic logic unit can be designed faster, but more complex.

4. Pipelining in theory increases performance over an un-pipelined core by a factor of the number

of stages (assuming the clock frequency also increases by the same factor) and the code is ideal

for pipeline execution.

https://simple.wikipedia.org/wiki/Arithmetic_logic_unit
https://simple.wikipedia.org/wiki/Design

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
4

5. Pipelined CPUs generally work at a higher clock frequency than the RAM clock frequency, (as

of 2008 technologies, RAMs work at a low frequencies compared to CPUs frequencies)

increasing computers overall performance.

3. Vector Processing:

Normal computational systems are not enough in some special processing requirements. Such as, in

Special processing systems like artificial intelligence systems and some weather forecasting systems,

terrain analysis, the normal systems are not sufficient. In such systems the data processing will be

involving on very high amount of data; we can classify the large data as very big arrays. Now if we

want to process this data, naturally we will need new methods of data processing. The vectors are

considered as the large one dimensional array of data. The term vector processing involves the data

processing on the vectors of such large data.

4. Arithmetic Pipeline:

The above diagram represents the implementation of arithmetic pipeline in the area of floating point

Arithmetic operations. In the diagram, we can see that two numbers A and B are added together. Now

the values of A and B are not normalized, therefore we must normalize them before start to do any

operations. The first thing is we have to fetch the values of A and B into the registers. Here R denote a

set of registers. After that the values of A and B are normalized, therefore the values of the exponents

https://simple.wikipedia.org/wiki/RAM
https://simple.wikipedia.org/wiki/2008
https://simple.wikipedia.org/wiki/Computer

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
5

will be compared in the comparator. After that the alignment of mantissa will be taking place. Finally,

we will be performing addition, since an addition is happening in the adder circuit. The source registers

will be free and the second set of values can be brought. Likewise when the normalizing of the result is

taking place, addition of the new values will be added in the adder circuit and when addition is going

on, the new data values will be brought into the registers in the start of the implementation. We can see

how the addition is being performed in the diagram.

5. Instruction Pipeline:

Pipelining concept is not only limited to the data stream, but can also be applied on the instruction

stream. The instruction pipeline execution will be like the queue execution. In the queue the data that is

entered first, will be the data first retrieved. Therefore when an instruction is first coming, the

instruction will be placed in the queue and will be executed in the system. Finally the results will be

passing on to the next instruction in the queue. This scenario is called as Instruction pipelining. The

instruction cycle is given below

• Fetch the instruction from the memory

• Decode the instruction

• calculate the effective address

• Fetch the operands from the memory

• Execute the instruction

• Store the result in the proper place.

In a computer system each and every instruction need not necessary to execute all the above phases. In a

Register addressing mode, there is no need of the effective address calculation. Below is the example of

the four segment instruction pipeline.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
6

In the above diagram we can see that the instruction which is first executing has to be fetched from the

memory, there after we are decoding the instruction and we are calculating the effective address. Now

we have two ways to execute the instruction. Suppose we are using a normal instruction like ADD, then

the operands for that instruction will be fetched and the instruction will be executed. Suppose we are

executing an instruction such as Fetch command. The fetch command itself has internally three more

commands which are like ACTDR, ARTDR etc.., therefore we have to jump to that particular location

to execute the command, so we are using the branch operation. So in a branch operation, again other

instructions will be executed. That means we will be updating the PC value such that the instruction can

be executed. Suppose we are fetching the operands to perform the original operation such as ADD, we

need to fetch the data. The data can be fetched in two ways, either from the main memory or else from

an input output devices. Therefore in order to use the input output devices, the devices must generate the

interrupts which should be handled by the CPU. Therefore the handling of interrupts is also a kind of

program execution. Therefore we again have to start from the starting of the program and execute the

interrupt cycle.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
7

The different instruction cycles are given below:

• FI → FI is a segment that fetches an instruction

• DA → DA is a segment that decodes the instruction and identifies the effective address.

• FO → FO is a segment that fetches the operand.

• EX → EX is a segment that executes the instruction with the operand.

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
8

6. Interconnection Structures

 Various components of the multiprocessor system are CPU, IOP, and a memory unit.

 There are different physical configurations between interconnected components.

 The physical configuration depends on the number of transfer paths that are available.between

the processors & memory in a shared memory system and among the processing elements in a

loosely coupled system.

Various physical forms:

1. Time-shared common bus

2. Multiport memory

3. Crossbar switch

4. Multistage switching network

5. Hypercube system

6.1 Time-shared common bus

 Consists of a number of processors connected through a common path to a memory unit.

 Part of the local memory may be designed as a cache memory attached to the CPU

Disadvantages:

 Only one processor can communicate with the memory or another processor at any given time.

 The total transfer rate within the system is limited by the speed of the single path

Fig: Time shared common bus organization

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e8
9

6.2 Multiport memory

Fig: Multiport memory organization

 In the multiport memory system, different memory module and CPUs have separate buses.

 The module has internal control logic to determine port which will access to memory at any

given time.

 Priorities are assigned to each memory port to resolve memory access conflicts.

Advantages:

Because of the multiple paths high transfer rate can be achieved.

Disadvantages:

It requires expensive memory control logic and a large number of cables and connections.

6.3 Crossbar switch

Fig: Crossbar Switch

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e9
0

 Consists of a various number of crosspoints that are present at intersections between processor

buses and memory module paths.

 A switch determines the path from a processor to a memory module.

Advantages:

Supports simultaneous transfers from all memory modules

Disadvantages:

The hardware required to implement the switch can be very large and complex.

6.4 Multistage switching network

The basic components are a two-input, two-output interchange switch:

One topology is the omega switching network shown in fig:

Fig: 8 x 8 Omega Switching Network

 Some request patterns cannot be connected simultaneously. i.e., any two sources cannot be

connected simultaneously to destination 000 and 001

 The source is a processor and the destination is a memory module,in a tightly coupled

multiprocessor system,

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e9
1

 Set up the path à transfer the address into memory à transfer the data

 Both the source and destination are processing elements,in a loosely coupled multiprocessor

system,

6.5 Hypercube system

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system which is

composed of N=2
n
 processors interconnected in an n-dimensional binary cube.

 Routing messages through an n-cube structure may take from one to n links from a source to a

destination node.

 It consists of 128(heren=7) microcomputers, where each node consists of a CPU, a floating point

processor, local memory, and serial communication interface units.

Fig: Hypercube Structures for n=1,2,3

Prepared by: - Er. Gaurav Shrivastava, Asst. Professor (I.T. Dept.) SVIIT-SVVV, Indore

P
ag

e9
2

7. Inter-process communication.

Inter-process communication (IPC) is a mechanism that allows the exchange of data between processes.

By providing a user with a set of programming interfaces, IPC helps a programmer organize the

activities among different processes. IPC allows one application to control another application, thereby

enabling data sharing without interference.

IPC enables data communication by allowing processes to use segments, semaphores, and other

methods to share memory and information. IPC facilitates efficient message transfer between processes.

The idea of IPC is based on Task Control Architecture (TCA). It is a flexible technique that can send

and receive variable length arrays, data structures, and lists. It has the capability of using

publish/subscribe and client/server data-transfer paradigms while supporting a wide range of operating

systems and languages.

The IPC mechanism can be classified into pipes, first in, first out (FIFO), and shared memory. Pipes

were introduced in the UNIX operating system. In this mechanism, the data flow is unidirectional. A

pipe can be imagined as a hose pipe in which the data enters through one end and flows out from the

other end. A pipe is generally created by invoking the pipe system call, which in turn generates a pair of

file descriptors. Descriptors are usually created to point to a pipe node. One of the main features of pipes

is that the data flowing through a pipe is transient, which means data can be read from the read

descriptor only once. If the data is written into the write descriptor, the data can be read only in the order

in which the data was written.

The working principle of FIFO is very similar to that of pipes. The data flow in FIFO is unidirectional

and is identified by access points. The difference between the two is that FIFO is identified by an access

point, which is a file within the file system, whereas pipes are identified by an access point.

========================

