UNIT 3

Probabilistic reasoning:

Probabilistic reasoning is a way of knowledge representation where we apply the concept
of probability to indicate the uncertainty in knowledge. In probabilistic reasoning, we
combine probability theory with logic to handle the uncertainty.

We use probability in probabilistic reasoning because it provides a way to handle the
uncertainty that is the result of someone's laziness and ignorance.

In the real world, there are lots of scenarios, where the certainty of something is not
confirmed, such as "It will rain today," "behavior of someone for some situations," "A match
between two teams or two players." These are probable sentences for which we can
assume that it will happen but not sure about it, so here we use probabilistic reasoning.

Need for Probabilistic Reasoning in Al

Probabilistic reasoning with artificial intelligence is important to different tasks such as:
o When there are unpredictable outcomes.
o When specifications or possibilities of predicates becomes too large to handle.
o When an unknown error occurs during an experiment.

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge:
o Bayes'rule
o Bayesian Statistics

Key Concepts in Probabilistic Reasoning

1. Bayesian Networks

¢ Imagine a kind of spider web cluttered with factors—one might say, a type of
detective board associating suspects, motives, and evidence. This, in a nutshell, is
your basic intuition behind a Bayesian network: a graphical model showing the
relationships between variables and their conditional probabilities.

o Advantages: Bayesian Networks are very effective to express cause and effect and
reasoning about missing information. They have found wide applications in medical



diagnosis where symptoms are considered variables which have different grades of
association with diseases considered other variables.

2. Markov Models

e Consider a weather forecast. A Markov model predicts the future state of a system
from its current state and its past history. For instance, according to a simple
Markov model of weather, the probability that a sunny day will be followed by
another sunny day is greater than the probability that a sunny day will be followed by
a rainy day.

¢ Advantages: Markov models are effective and easy to implement. They are widely
used, such as in speech recognition, and they can also be used for prediction,
depending on the choice of the previous words, as in the probability of the next
word.

3. Hidden Markov Models (HMMs)

e Consider, for example, a weather-predicting scenario that includes states of some
kind and yet also includes invisible states, such as humidity. HMMs are a
generalization of Markov models in which states are hidden.

e Advantages: HMMs are found to be very powerful in cases where hidden variables
are taken into account. Such tasks usually involve stock market prediction, where
the factors that govern prices are not fully transparent.

4. Probabilistic Graphical Models

e Probabilistic Graphical Models give a broader framework encompassing both
Bayesian networks and HMMs. In general, PGMs are an approach for representation
and reasoning in a framework of uncertain information, given in graphical structure.

e Advantages: PGMs offer a powerful, flexible, and expressive language for doing
probabilistic reasoning, which is well suited for complex relationships that may
capture many different types of uncertainty.

Probability: Probability can be defined as a chance that an uncertain event will occur. It
is the numerical measure of the likelihood that an event will occur. The value of

probability always remains between 0 and 1 that represent ideal uncertainties.
1. 0= P(A)<1, where P(A) is the probability of an event A.

1. P(A)=0, indicates total uncertainty in an event A.



1. P(A) =1, indicates total certainty in an event A.

We can find the probability of an uncertain event by using the below formula.

Number of desired outcomes

Probability of occurrence =
Total number of outcomes

o P(~A) = probability of a not happening event.

o P(~A)+P(A)=1.
Event: Each possible outcome of a variable is called an event.
Sample space: The collection of all possible events is called sample space.

Random variables: Random variables are used to represent the events and objects
in the real world.

Prior probability: The prior probability of an event is probability computed before
observing new information.

Posterior Probability: The probability that is calculated after all evidence or
information has taken into account. It is a combination of prior probability and new
information.

Conditional probability

Conditional probability is the probability that depends on a previous result or event. Due
to this fact, they help us understand how events are related to each other. Simply put,
conditional probability tells us the likelihood of the occurrence of an event based on the
occurrence of some previous outcome.

Conditional probability is a probability of occurring an event when another event has
already happened.

Conditional Probability Formula

two events A and B, then the formula for conditional probability of A when B has already
occurred is given by:

P(A|B)=P (AnB)/P(B)
Where,

e P (An B)represents the probability of both events A and B occurring simultaneously.



e P(B) represents the probability of event B occurring.

o If the probability of A is given and we need to find the probability of B, then it will
be given as:
P(AAB)

PEBIAI= =2

e It can be explained by using the below Venn diagram, where B is occurred event,
so sample space will be reduced to set B, and now we can only calculate event A
when event B is already occurred by dividing the probability of P(AAB) by P( B )

Example: consider the case of rolling two dice, sample space of this event is as follows:

{(1,1),(1,2),(1,3),(1,4),(1,5), (1, 6),
(2,1),(2,2),(2,3),(2, 4), (2, 5), (2, 6),
(3,1),(3,2),(3,3), (3, 4), (3, 5), (3, 6),
(4,1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),
(5,1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

Now, consider an event A = getting 3 on the first die and B = getting a sum of 9.
Then the probability of getting 9 when on the first die it’s already 3is P(B | A),
which can be calculated as follows:

All the cases for the first die as 3 are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6).

In all of these cases, only one case has a sum of 9.

Thus, P (B | A)=1/36.

In case, we have to find P (A | B),



All cases where the sum is 9 are (3, 6), (4, 5), (5, 4), and (6, 3).
In all of these cases, only one case has 3 on the first die i.e., (3, 6)

Thus, P(A | B) = 1/36.

Bayesian Network

Bayesian belief network is key computer technology for dealing with probabilistic events
and to solve a problem which has uncertainty. We can define a Bayesian network as:

"A Bayesian network is a probabilistic graphical model which represents a set of variables
and their conditional dependencies using a directed acyclic graph."

Itis also called a Bayes network, belief network, decision network, or Bayesian model.

Bayesian networks are probabilistic, because these networks are built from a probability
distribution, and also use probability theory for prediction and anomaly detection.

Bayesian Network can be used for building models from data and experts opinions, and it
consists of two parts:

o Directed Acyclic Graph
o Table of conditional probabilities.

The Bayesian network has mainly two components:
o Causal Component

o Actual numbers

Consider this example:



BURGLARY

P1 CALLS P2 CALLS

P1 P2

Q) Find the probability that ‘P1’ is true (P1 has called ‘gfg’), ‘P2’ is
true (P2 has called ‘gfg’) when the alarm ‘A’ rang, but no burglary ‘B’
and fire ‘F’ has occurred.

=> P (P1, P2, A, ~B, ~F) [ where- P1, P2 & A are ‘true’ events and ‘~B’
& ‘~F’ are ‘false’ events]

[ Note: The values mentioned below are neither calculated nor
computed. They have observed values ]

Burglary ‘B’ -

« P (B=T)=0.001 (‘B’ is true i.e burglary has occurred)

« P (B=F) =0.999 (‘B’is false i.e burglary has not occurred)

Fire ‘F’ -

« P (F=T) =0.002 (‘F is true i.e fire has occurred)

« P (F=F) =0.998 (‘F’ is false i.e fire has not occurred)

Alarm ‘A’ -

B F  P(A=T) P (A=F)

T T 0.95 0.05

T F 0.94 0.06



F T 0.29 0.71

F F 0.001 0.999

« The alarm ‘A’ node can be ‘true’ or ‘false’ (i.e may have rung or
may not have rung). It has two parent nodes burglary ‘B’ and fire ‘F’
which can be ‘true’ or ‘false’ (i.e may have occurred or may not have
occurred) depending upon different conditions.

Person ‘P1’°-

A P(P1=T) P(P1=F)

T 0.95 0.05

F 0.05 0.95
e The person ‘P1’ node can be ‘true’ or ‘false’ (i.e may have called the person ‘gfg’ or

not) . It has a parent node, the alarm ‘A’, which can be ‘true’ or ‘false’ (i.e may have
rung or may not have rung ,upon burglary ‘B’ or fire ‘F’).

Person ‘P2’ -

A P(P2=T) P(P2=F)

T 0.80 0.20

F 0.01 0.99

e The person ‘P2’ node can be ‘true’ or false’ (i.e may have called the person ‘gfg’ or
not). It has a parent node, the alarm ‘A’, which can be ‘true’ or ‘false’ (i.e may have
rung or may not have rung, upon burglary ‘B’ or fire ‘F’).

Solution: Considering the observed probabilistic scan -



With respect to the question — P ( P1, P2, A, ~B, ~F) , we need to get the probability of ‘P1’.
We find it with regard to its parent node — alarm ‘A’. To get the probability of ‘P2’, we find it
with regard to its parent node — alarm ‘A’

We find the probability of alarm ‘A’ node with regard to ‘~B’ & ‘~F’ since burglary ‘B’ and fire
‘F’ are parent nodes of alarm ‘A’

From the observed probabilistic scan, we can deduce -
P(P1,P2, A, ~B, ~F)

=P (P1/A) * P (P2/A) * P (A/~B~F) * P (~B) * P (~F)
=0.95*0.80*0.001 * 0.999 * 0.998

=0.00075
Al Inference

Al inference involves applying a trained machine learning model to make predictions or
decisions based on new, unseen data. This phase contrasts with the training period, where
a model learns from a dataset by adjusting its parameters (weights and biases) to minimize
errors, preparing it for real-world applications.

In artificial intelligence, we need intelligent computers which can create new logic from old
logic or by evidence, so generating the conclusions from evidence and facts is termed as
Inference.

Inference Rules and Terminologies

In Al, inference rules serve as guiding principles for deriving valid conclusions from
existing data. These rules underpin the construction of proofs, which constitute
chains of reasoning leading to desired outcomes. Within these rules lie key
terminologies that delineate relationships between propositions connected by
various logical connectives:

¢ Implication: Symbolized by A > B, implication denotes that proposition Aimplies
proposition B, suggesting a cause-and-effect relationship.

e Converse: Flipping the implication, placing B on the left and A on the right (B > A),
though the converse doesn’t ensure the original implication’s validity.

e Contrapositive: The negation of the converse (7B > 7A), offering an equivalent
implication with both propositions negated.



¢ Inverse: Symbolized by 7A > 7B, the inverse represents the negation of the original
implication, albeit not guaranteeing its truth.

Types of Inference Rules

1. Modus Ponens: This rule dictates that if “A implies B” and “A” is true, then “B” must
also be true, exemplifying a crucial rule of inference.

2. Modus Tollens: Stating that if “Aimplies B” and “B” is false, then “A” must be false,
illustrating the negation of the consequent.

3. Hypothetical Syllogism: Involving reasoning from one conditional statement to
another, this rule leverages the first statement to infer conclusions about the
second, showcasing a chain of logical deductions.

4. Disjunctive Syllogism: Dealing with “or” statements, this method infers the truth of
one proposition by negating the other, revealing a logical disjunction.

5. Constructive Dilemma: Entailing two conditional statements and a statement
about their alternatives, this rule enables the inference of logical conclusions based
on potential scenarios.

6. Destructive Dilemma: Addressing “if-then” statements and their negations, this
method identifies flaws by showcasing that if an outcome isn’t true, then one of the
initial assumptions must be flawed.

Applications of Inference in Al

1. Medical Research and Diagnhoses: Al aids in medical research and diagnoses by
analyzing patient data to provide optimized treatment plans and prognoses.

2. Recommendation Systems and Personalized Advertisements: E-commerce
platforms utilize inference to suggest products based on user preferences,
enhancing user experience and engagement.

3. Self-Driving Vehicles: Inference enables self-driving cars to interpret sensor data
and navigate through dynamic environments safely and efficiently.

Temporal Models

Temporal models are used to represent probabilistic relationships between sequences of
random variables that change over time. These models capture the dynamics and



dependencies of data points within a sequence, allowing for the prediction and analysis of
future states based on past and present observations.

Key Components of Temporal Models:

States: These represent the possible conditions of the system at different times.
Observations: These are the data points that are directly measured or perceived.
Transitions: These are the probabilities from one state to another over time.

Emissions: These are the probabilities of observing certain data given the system’s
state.

Hidden Markov Model

Hidden Markov Models (HMMs) are a type of probabilistic model that are commonly
used in machine learning for tasks such as speech recognition, natural language
processing, and bioinformatics. They are a popular choice for modelling sequences
of data because they can effectively capture the underlying structure of the data,
even when the data is noisy orincomplete.

A Hidden Markov Model (HMM) is a probabilistic model that consists of a
sequence of hidden states, each of which generates an observation. The hidden
states are usually not directly observable, and the goal of HMM is to estimate the
sequence of hidden states based on a sequence of observations. An HMM is
defined by the following components:

A set of N hidden states, S ={s1, s2, ..., sN}.

A set of M observations, O ={o01, 02, ..., oM}

An initial state probability distribution, ? ={?1, 72, ..., ?N}, which specifies the
probability of starting in each hidden state.

A transition probability matrix, A = [aij], defines the probability of moving from one
hidden state to another.

An emission probability matrix, B = [bjk], defines the probability of emitting an
observation from a given hidden state.

The basic idea behind an HMM is that the hidden states generate the observations,
and the observed data is used to estimate the hidden state sequence. This is often
referred to as the forward-backwards algorithm.

Applications of HMM

Speech Recognition

One of the most well-known applications of HMMs is speech recognition. In this
field, HMMs are used to model the different sounds and phones that makeup
speech. The hidden states, in this case, correspond to the different sounds or



phones, and the observations are the acoustic signals that are generated by the
speech. The goalis to estimate the hidden state sequence, which corresponds to
the transcription of the speech, based on the observed acoustic signals. HMMs are
particularly well-suited for speech recognition because they can effectively capture
00the underlying structure of the speech, even when the data is noisy or
incomplete. In speech recognition systems, the HMMs are usually trained on large
datasets of speech signals, and the estimated parameters of the HMMs are used to
transcribe speech in real time.

Natural Language Processing

Another important application of HMMs is natural language processing. In this field,
HMMs are used for tasks such as part-of-speech tagging, named entity
recognition, and text classification. In these applications, the hidden states are
typically associated with the underlying grammar or structure of the text, while the
observations are the words in the text. The goal s to estimate the hidden state
sequence, which corresponds to the structure or meaning of the text, based on the
observed words. HMMs are useful in natural language processing because they can
effectively capture the underlying structure of the text, even when the data is noisy
or ambiguous. In natural language processing systems, the HMMs are usually
trained on large datasets of text, and the estimated parameters of the HMMs are
used to perform various NLP tasks, such as text classification, part-of-speech
tagging, and named entity recognition.

Bioinformatics

HMMs are also widely used in bioinformatics, where they are used to model
sequences of DNA, RNA, and proteins. The hidden states, in this case, correspond
to the different types of residues, while the observations are the sequences of
residues. The goalis to estimate the hidden state sequence, which corresponds to
the underlying structure of the molecule, based on the observed sequences of
residues. HMMs are useful in bioinformatics because they can effectively capture
the underlying structure of the molecule, even when the data is noisy or incomplete.
In bioinformatics systems, the HMMs are usually trained on large datasets of
molecular sequences, and the estimated parameters of the HMMs are used to
predict the structure or function of new molecular sequences.

Finance

Finally, HMMs have also been used in finance, where they are used to model stock
prices, interest rates, and currency exchange rates. In these applications, the
hidden states correspond to different economic states, such as bull and bear
markets, while the observations are the stock prices, interest rates, or exchange
rates. The goalis to estimate the hidden state sequence, which corresponds to the



underlying economic state, based on the observed prices, rates, or exchange rates.
HMMs are useful in finance because they can effectively capture the underlying
economic state, even when the data is noisy or incomplete. In finance systems, the
HMMs are usually trained on large datasets of financial data, and the estimated
parameters of the HMMs are used to make predictions about future market trends
or to develop investment strategies.



