
UNIT 3 

 

 Probabilistic reasoning: 

Probabilistic reasoning is a way of knowledge representation where we apply the concept 
of probability to indicate the uncertainty in knowledge. In probabilistic reasoning, we 
combine probability theory with logic to handle the uncertainty. 

We use probability in probabilistic reasoning because it provides a way to handle the 
uncertainty that is the result of someone's laziness and ignorance. 

In the real world, there are lots of scenarios, where the certainty of something is not 
confirmed, such as "It will rain today," "behavior of someone for some situations," "A match 
between two teams or two players." These are probable sentences for which we can 
assume that it will happen but not sure about it, so here we use probabilistic reasoning. 

Need for Probabilistic Reasoning in AI 

Probabilistic reasoning with artificial intelligence is important to diƯerent tasks such as: 

o When there are unpredictable outcomes. 

o When specifications or possibilities of predicates becomes too large to handle. 

o When an unknown error occurs during an experiment. 

In probabilistic reasoning, there are two ways to solve problems with uncertain knowledge: 

o Bayes' rule 

o Bayesian Statistics 

Key Concepts in Probabilistic Reasoning 

1. Bayesian Networks 

 Imagine a kind of spider web cluttered with factors—one might say, a type of 
detective board associating suspects, motives, and evidence. This, in a nutshell, is 
your basic intuition behind a Bayesian network: a graphical model showing the 
relationships between variables and their conditional probabilities. 

 Advantages: Bayesian Networks are very eƯective to express cause and eƯect and 
reasoning about missing information. They have found wide applications in medical 



diagnosis where symptoms are considered variables which have diƯerent grades of 
association with diseases considered other variables. 

2. Markov Models 

 Consider a weather forecast. A Markov model predicts the future state of a system 
from its current state and its past history. For instance, according to a simple 
Markov model of weather, the probability that a sunny day will be followed by 
another sunny day is greater than the probability that a sunny day will be followed by 
a rainy day. 

 Advantages: Markov models are eƯective and easy to implement. They are widely 
used, such as in speech recognition, and they can also be used for prediction, 
depending on the choice of the previous words, as in the probability of the next 
word. 

3. Hidden Markov Models (HMMs) 

 Consider, for example, a weather-predicting scenario that includes states of some 
kind and yet also includes invisible states, such as humidity. HMMs are a 
generalization of Markov models in which states are hidden. 

 Advantages: HMMs are found to be very powerful in cases where hidden variables 
are taken into account. Such tasks usually involve stock market prediction, where 
the factors that govern prices are not fully transparent. 

4. Probabilistic Graphical Models 

 Probabilistic Graphical Models give a broader framework encompassing both 
Bayesian networks and HMMs. In general, PGMs are an approach for representation 
and reasoning in a framework of uncertain information, given in graphical structure. 

 Advantages: PGMs oƯer a powerful, flexible, and expressive language for doing 
probabilistic reasoning, which is well suited for complex relationships that may 
capture many diƯerent types of uncertainty. 

 

Probability: Probability can be defined as a chance that an uncertain event will occur. It 
is the numerical measure of the likelihood that an event will occur. The value of 
probability always remains between 0 and 1 that represent ideal uncertainties. 

1. 0 ≤ P(A) ≤ 1,   where P(A) is the probability of an event A.   

1. P(A) = 0,  indicates total uncertainty in an event A.    



1. P(A) =1, indicates total certainty in an event A.     

We can find the probability of an uncertain event by using the below formula. 

 

o P(~A) = probability of a not happening event. 

o P(~A) + P(A) = 1. 

Event: Each possible outcome of a variable is called an event. 

Sample space: The collection of all possible events is called sample space. 

Random variables: Random variables are used to represent the events and objects 
in the real world. 

Prior probability: The prior probability of an event is probability computed before 
observing new information. 

Posterior Probability: The probability that is calculated after all evidence or 
information has taken into account. It is a combination of prior probability and new 
information. 

Conditional probability  

Conditional probability is the probability that depends on a previous result or event. Due 
to this fact, they help us understand how events are related to each other. Simply put, 
conditional probability tells us the likelihood of the occurrence of an event based on the 
occurrence of some previous outcome.  

Conditional probability is a probability of occurring an event when another event has 
already happened. 

Conditional Probability Formula 

 two events A and B, then the formula for conditional probability of A when B has already 
occurred is given by: 

P(A|B) = P (A ∩ B) / P(B) 

Where, 

 P (A ∩ B) represents the probability of both events A and B occurring simultaneously. 



 P(B) represents the probability of event B occurring. 

 If the probability of A is given and we need to find the probability of B, then it will 
be given as: 

  
 It can be explained by using the below Venn diagram, where B is occurred event, 

so sample space will be reduced to set B, and now we can only calculate event A 
when event B is already occurred by dividing the probability of P(A⋀B) by P( B ) 

 

 

 Example: consider the case of rolling two dice, sample space of this event is as follows: 

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), 
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), 
(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), 
(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), 
(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), 
(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} 

Now, consider an event A = getting 3 on the first die and B = getting a sum of 9. 

Then the probability of getting 9 when on the first die it’s already 3 is P(B | A), 

which can be calculated as follows: 

All the cases for the first die as 3 are (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6). 

In all of these cases, only one case has a sum of 9. 

Thus, P (B | A) = 1/36. 

In case, we have to find P (A | B), 



All cases where the sum is 9 are (3, 6), (4, 5), (5, 4), and (6, 3). 

In all of these cases, only one case has 3 on the first die i.e., (3, 6) 

Thus, P(A | B) = 1/36. 

 

Bayesian Network 

Bayesian belief network is key computer technology for dealing with probabilistic events 
and to solve a problem which has uncertainty. We can define a Bayesian network as: 

"A Bayesian network is a probabilistic graphical model which represents a set of variables 
and their conditional dependencies using a directed acyclic graph." 

It is also called a Bayes network, belief network, decision network, or Bayesian model. 

Bayesian networks are probabilistic, because these networks are built from a probability 
distribution, and also use probability theory for prediction and anomaly detection. 

Bayesian Network can be used for building models from data and experts opinions, and it 
consists of two parts: 

o Directed Acyclic Graph 

o Table of conditional probabilities. 

The Bayesian network has mainly two components: 

o Causal Component 

o Actual numbers 

 
 
 
 
 
 
 
 
 
Consider this example: 
 



 
 
Q) Find the probability that ‘P1’ is true (P1 has called ‘gfg’), ‘P2’ is 
true (P2 has called ‘gfg’) when the alarm ‘A’ rang, but no burglary ‘B’ 
and fire ‘F’ has occurred.   
=> P ( P1, P2, A, ~B, ~F) [ where- P1, P2 & A are ‘true’ events and ‘~B’ 
& ‘~F’ are ‘false’ events] 
[ Note: The values mentioned below are neither calculated nor 
computed. They have observed values ] 
Burglary ‘B’ – 
 P (B=T) = 0.001 (‘B’ is true i.e burglary has occurred) 
 P (B=F) = 0.999  (‘B’ is false i.e burglary has not occurred) 
Fire ‘F’ – 
 P (F=T) = 0.002 (‘F’ is true i.e fire has occurred) 
 P (F=F) = 0.998 (‘F’ is false i.e fire has not occurred) 
 
Alarm ‘A’ – 

B F P (A=T) P (A=F) 

T T 0.95 0.05 

T F 0.94 0.06 



F T 0.29 0.71 

F F 0.001 0.999 

 The alarm ‘A’ node can be ‘true’ or ‘false’ ( i.e may have rung or 
may not have rung). It has two parent nodes burglary ‘B’ and fire ‘F’ 
which can be ‘true’ or ‘false’ (i.e may have occurred or may not have 
occurred) depending upon different conditions. 

 
Person ‘P1’ – 

A P (P1=T) P (P1=F) 

T 0.95 0.05 

F 0.05 0.95 

 The person ‘P1’ node can be ‘true’ or ‘false’ (i.e may have called the person ‘gfg’ or 
not) . It has a parent node, the alarm ‘A’, which can be ‘true’ or ‘false’ (i.e may have 
rung or may not have rung ,upon burglary ‘B’ or fire ‘F’). 

Person ‘P2’ – 

A P (P2=T) P (P2=F) 

T 0.80 0.20 

F 0.01 0.99 

 The person ‘P2’ node can be ‘true’ or false’ (i.e may have called the person ‘gfg’ or 
not). It has a parent node, the alarm ‘A’, which can be ‘true’ or ‘false’ (i.e may have 
rung or may not have rung, upon burglary ‘B’ or fire ‘F’). 

Solution: Considering the observed probabilistic scan – 



With respect to the question —  P ( P1, P2, A, ~B, ~F) , we need to get the probability of ‘P1’. 
We find it with regard to its parent node – alarm ‘A’. To get the probability of ‘P2’, we find it 
with regard to its parent node — alarm ‘A’. 

We find the probability of alarm ‘A’ node with regard to ‘~B’ & ‘~F’ since burglary ‘B’ and fire 
‘F’ are parent nodes of alarm ‘A’.  

From the observed probabilistic scan, we can deduce –  

 P ( P1, P2, A, ~B, ~F) 

= P (P1/A) * P (P2/A) * P (A/~B~F) * P (~B) * P (~F) 

= 0.95 * 0.80 * 0.001 * 0.999 * 0.998 

= 0.00075 

AI Inference 

AI inference involves applying a trained machine learning model to make predictions or 
decisions based on new, unseen data. This phase contrasts with the training period, where 
a model learns from a dataset by adjusting its parameters (weights and biases) to minimize 
errors, preparing it for real-world applications. 

In artificial intelligence, we need intelligent computers which can create new logic from old 
logic or by evidence, so generating the conclusions from evidence and facts is termed as 
Inference. 

Inference Rules and Terminologies 

In AI, inference rules serve as guiding principles for deriving valid conclusions from 
existing data. These rules underpin the construction of proofs, which constitute 
chains of reasoning leading to desired outcomes. Within these rules lie key 
terminologies that delineate relationships between propositions connected by 
various logical connectives: 

 Implication: Symbolized by A → B, implication denotes that proposition A implies 
proposition B, suggesting a cause-and-eƯect relationship. 

 Converse: Flipping the implication, placing B on the left and A on the right (B → A), 
though the converse doesn’t ensure the original implication’s validity. 

 Contrapositive: The negation of the converse (¬B → ¬A), oƯering an equivalent 
implication with both propositions negated. 



 Inverse: Symbolized by ¬A → ¬B, the inverse represents the negation of the original 
implication, albeit not guaranteeing its truth. 

Types of Inference Rules 

1. Modus Ponens: This rule dictates that if “A implies B” and “A” is true, then “B” must 
also be true, exemplifying a crucial rule of inference. 

2. Modus Tollens: Stating that if “A implies B” and “B” is false, then “A” must be false, 
illustrating the negation of the consequent. 

3. Hypothetical Syllogism: Involving reasoning from one conditional statement to 
another, this rule leverages the first statement to infer conclusions about the 
second, showcasing a chain of logical deductions. 

4. Disjunctive Syllogism: Dealing with “or” statements, this method infers the truth of 
one proposition by negating the other, revealing a logical disjunction. 

5. Constructive Dilemma: Entailing two conditional statements and a statement 
about their alternatives, this rule enables the inference of logical conclusions based 
on potential scenarios. 

6. Destructive Dilemma: Addressing “if-then” statements and their negations, this 
method identifies flaws by showcasing that if an outcome isn’t true, then one of the 
initial assumptions must be flawed. 

Applications of Inference in AI 

1. Medical Research and Diagnoses: AI aids in medical research and diagnoses by 
analyzing patient data to provide optimized treatment plans and prognoses. 

2. Recommendation Systems and Personalized Advertisements: E-commerce 
platforms utilize inference to suggest products based on user preferences, 
enhancing user experience and engagement. 

3. Self-Driving Vehicles: Inference enables self-driving cars to interpret sensor data 
and navigate through dynamic environments safely and eƯiciently. 

 

Temporal Models 

Temporal models are used to represent probabilistic relationships between sequences of 
random variables that change over time. These models capture the dynamics and 



dependencies of data points within a sequence, allowing for the prediction and analysis of 
future states based on past and present observations. 

Key Components of Temporal Models: 

 States: These represent the possible conditions of the system at diƯerent times. 

 Observations: These are the data points that are directly measured or perceived. 

 Transitions: These are the probabilities from one state to another over time. 

 Emissions: These are the probabilities of observing certain data given the system’s 
state. 

Hidden Markov Model 
Hidden Markov Models (HMMs) are a type of probabilistic model that are commonly 
used in machine learning for tasks such as speech recognition, natural language 
processing, and bioinformatics. They are a popular choice for modelling sequences 
of data because they can effectively capture the underlying structure of the data, 
even when the data is noisy or incomplete.  
A Hidden Markov Model (HMM) is a probabilistic model that consists of a 
sequence of hidden states, each of which generates an observation. The hidden 
states are usually not directly observable, and the goal of HMM is to estimate the 
sequence of hidden states based on a sequence of observations. An HMM is 
defined by the following components: 

o A set of N hidden states, S = {s1, s2, ..., sN}. 
o A set of M observations, O = {o1, o2, ..., oM}. 
o An initial state probability distribution, ? = {?1, ?2, ..., ?N}, which specifies the 

probability of starting in each hidden state. 
o A transition probability matrix, A = [aij], defines the probability of moving from one 

hidden state to another. 
o An emission probability matrix, B = [bjk], defines the probability of emitting an 

observation from a given hidden state. 
The basic idea behind an HMM is that the hidden states generate the observations, 
and the observed data is used to estimate the hidden state sequence. This is often 
referred to as the forward-backwards algorithm. 
 

Applications of HMM 
o Speech Recognition 

One of the most well-known applications of HMMs is speech recognition. In this 
field, HMMs are used to model the different sounds and phones that makeup 
speech. The hidden states, in this case, correspond to the different sounds or 



phones, and the observations are the acoustic signals that are generated by the 
speech. The goal is to estimate the hidden state sequence, which corresponds to 
the transcription of the speech, based on the observed acoustic signals. HMMs are 
particularly well-suited for speech recognition because they can effectively capture 
00the underlying structure of the speech, even when the data is noisy or 
incomplete. In speech recognition systems, the HMMs are usually trained on large 
datasets of speech signals, and the estimated parameters of the HMMs are used to 
transcribe speech in real time. 

o Natural Language Processing 
Another important application of HMMs is natural language processing. In this field, 
HMMs are used for tasks such as part-of-speech tagging, named entity 
recognition, and text classification. In these applications, the hidden states are 
typically associated with the underlying grammar or structure of the text, while the 
observations are the words in the text. The goal is to estimate the hidden state 
sequence, which corresponds to the structure or meaning of the text, based on the 
observed words. HMMs are useful in natural language processing because they can 
effectively capture the underlying structure of the text, even when the data is noisy 
or ambiguous. In natural language processing systems, the HMMs are usually 
trained on large datasets of text, and the estimated parameters of the HMMs are 
used to perform various NLP tasks, such as text classification, part-of-speech 
tagging, and named entity recognition. 

o Bioinformatics 
HMMs are also widely used in bioinformatics, where they are used to model 
sequences of DNA, RNA, and proteins. The hidden states, in this case, correspond 
to the different types of residues, while the observations are the sequences of 
residues. The goal is to estimate the hidden state sequence, which corresponds to 
the underlying structure of the molecule, based on the observed sequences of 
residues. HMMs are useful in bioinformatics because they can effectively capture 
the underlying structure of the molecule, even when the data is noisy or incomplete. 
In bioinformatics systems, the HMMs are usually trained on large datasets of 
molecular sequences, and the estimated parameters of the HMMs are used to 
predict the structure or function of new molecular sequences. 

o Finance 
Finally, HMMs have also been used in finance, where they are used to model stock 
prices, interest rates, and currency exchange rates. In these applications, the 
hidden states correspond to different economic states, such as bull and bear 
markets, while the observations are the stock prices, interest rates, or exchange 
rates. The goal is to estimate the hidden state sequence, which corresponds to the 



underlying economic state, based on the observed prices, rates, or exchange rates. 
HMMs are useful in finance because they can effectively capture the underlying 
economic state, even when the data is noisy or incomplete. In finance systems, the 
HMMs are usually trained on large datasets of financial data, and the estimated 
parameters of the HMMs are used to make predictions about future market trends 
or to develop investment strategies. 
 

 


