0\(AP‘;E: TH l/
@ai g @ i

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

o

%
zzma‘})

&
3 Z
= 9
<

p-
s
_‘Z

st dy

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Architectural Design”

J

J

Architectural Design

The software needs the architectural design to
represents the design of software.

IEEE defines architectural design as “the process of
defining a collection of hardware and software
components and their iInterfaces to establish the
framework for the development of a computer
system.”

The software that is built for computer-based systems
can exhibit many architectural styles.

o

Architectural Design

Objectives:
To introduce architectural design and to discuss its
Importance

To explain why multiple models are required to
document software architecture to describe types of
architectural model that may be used.

Allow evaluation of the thing’s properties before it Is
built

Provides well understood tools and techniques for
constructing the thing from its blueprint.

Architectural Design

d The objective of using architectural styles is to
establish a structure for all the components present
In a system.

d The software that is built for computer-based systems
also exhibits one of many architectural styles.

Architectural Style

A set of components (e.g: a database, computational
modules) that will perform a function required by the
system.

The set of connectors will help In coordination,
communication, and cooperation between the
components.

Conditions that how components can be integrated to
form the system.

Semantic models that help the designer to understand
the overall properties of the system

D O

L

L

Architectural Style

The commonly used architectural styles are:

Data-centered Architectures: A data store (e.g., a file
or database) resides at the center of this architecture
and 1s accessed frequently by other components that
update, add, delete, or otherwise modify data within
the store.

A typical Data-centered style.
Clients of this are accesses a central repository.

Architectural Style

1 Data-centered architectures promote integrity.

 That is, existing components can be changed and
new client components can be added to the
architecture without concern about other clients
(because the client components operate
Independently).

 Client components independently execute processes.

Architectural Style

Client Client
Software Sofiware
Client
Chent Software
Software
Data Store
(Repository) .
Lot Client
Chent Software
Software

Client Chient
Software Software

Architectural Style

d Data-flow Architectures: This architecture is applied
when input data are to be transformed through a
series of computational or manipulative components
Into output data.

d A pipe and filter pattern has a set of components,
called filters, connected by pipes that transmit data
from one component to the next.

d Components, called filters, connected by pipes that
transmit data from one component to the next.

Architectural Style

d Each filter works independently of those components
upstream and downstream, is designed to expect data
Input of a certain form, and produces data output of a
specified form.

d However, the filter does not require knowledge of the
working of its neighboring filters.

4 If the data flow degenerates into a single line of
transforms, it is termed batch sequential. This pattern
accepts a batch of data and then applies a series of
sequential components (filters) to transform it.

Piper

Architectural Style

» Filter I / Filter

—.[Filter

— Filler

(b) Batch Sequential

\ Filter |
—ﬂtl Filter
[Filter
—*| Filter Filter —»{ Filter
Filter
(a) Pipes and Filters
— Filter Filter » Filter

o

AN

Architectural Style

Call and return Architectures:

The program structure can be easily modified or
scaled.

The program structure Is organized into modules
within the program.

In this architecture how modules call each other.

The program structure decomposes the function into
control hierarchy where a main program invokes
number of program components.

Architectural Style

/

AN

AN

n \Fan_om
¢

m

h

j

AN
£

n\\

X/

S

Architectural Style

d Object-oriented Architecture:

v" The components of a system encapsulate data and the
operations that must be applied to manipulate the
data.

v Communication and coordination between
components Is accomplished via message passing

Architectural Style

Messages

Class Name A Class Name A
Messages
Attributes Attributes
Operations Operations
1 l Messages
Class Name A Messages Class Name A

Attributes

Operations

Attributes

Operations

0\(AP‘;E: TH l/
@ai g @ i

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

&mﬁ‘}y

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Architectural Views”

Architectural Views

d Architecture views are representations of the overall
architecture that are meaningful to one or more
stakeholders in the system.

d The architect chooses and develops a set of views
that will enable the architecture to be communicated
to, and understood by, all the stakeholders, and
enable them to verify that the system will address
their concerns

J

J

Architectural Views

Each architectural model only shows one view or
perspective of the system.

It might show how a system is decomposed into
modules, how the run-time processes interact or the
different ways In which system components are
distributed across a network.

The views are used to describe the system how the
viewpoint of different stakeholders, such as end-
users, developers and project managers.

Architectural Views

d The four views of the model are logical,
development, process and physical view

1 In addition, selected use cases or scenarios are used
to illustrate the architecture serving as the 'plus one'
view. Hence the model contains 4+1 views:

o

Architectural Views

Logical View:

The logical view is concerned with the functionality
that the system provides to end-users.

UML diagrams used to represent the logical view
Include, class diagrams, and state diagrams.

o

AN

Architectural Views

Development View:

The development view illustrates a system from a
programmer's perspective and s concerned with
software management.

This view is also known as the implementation view.

It uses the UML Component diagram to describe
system components.

UML Diagrams used to represent the development
view Include the Package diagram

o

AN

Architectural Views

Physical View:

The physical view depicts the system from a system
engineer's point of view.

It shows the system hardware and how software
components are distributed across the processors In
the system.

This view is also known as the deployment view.

UML diagrams used to represent the physical view
Include the deployment diagram.

o

Architectural Views

Process View:

t

"he process view deals with the dynamic aspects of
ne system, explains the system processes and how

t

ney communicate, and focuses on the runtime

behavior of the system.

The process view addresses concurrency,
distribution, integrators, performance, and scalability,
etc.

UML diagrams to represent process view include the
activity diagram

N O

Architectural Views

Scenarios:

The description of architecture is illustrated using a
small set of use cases, or scenarios, which become a
fifth view.

The scenarios describe sequences of interactions
between objects and between processes.

ney are used to identify architectural elements and to
ustrate and validate the architecture design.

ney also serve as a starting point for tests of an

architecture prototype.
This view Is also known as the use case view

Architectural Views

Logical view » Development
view
........ i
‘
\ 4 R N v
Process view Physical view

0\(AP‘;E:TH l/
@SR

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

o

%
zzma‘})

é
£ %
2 S
<

e
-
_‘Z

st dy

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Design Metrics”

Design Metrics

d A software metric 1S a measure of software
characteristics which are measurable or countable.

d Software metrics are valuable for many reasons,
Including measuring software performance, planning

work items, measuring productivity, and many other
uses.

Design Metrics

(] Software metrics can be classified Into three
categories —

1) Product metrics — Describes the characteristics of the
product such as size, complexity, design features,
nerformance, and quality level.

2) Process metrics — These characteristics can be used
to Improve the development and maintenance
activities of the software.

Design Metrics

3) Project metrics — This metrics describe the project
characteristics and execution.

v Note that as the project proceeds, the project manager
will check its progress from time-to-time and will
compare the effort, cost, and time with the original
effort, cost and time.

v Examples include the number of software developers,
the staffing pattern over the life cycle of the software,
cost, schedule, and productivity.

N X

AR

Process Metrics

To measure the efficiency and effectiveness of the
software process, a set of metrics Is formulated based
on the outcomes derived from the process. These
outcomes are listed below

Number of errors found before the software release

Defect detected and reported by the user after
delivery of the software

Time spent In fixing errors

Work products delivered

Human effort used

Estimated cost compared to actual cost.

Product Metrics

In software development process, a working product
IS developed at the end of each successful phase.

Each product can be measured at any stage of its
development.

Metrics are developed for these products so that they
can Indicate whether a product Is developed
according to the user requirements.

If a product does not meet user requirements, then
the necessary actions are taken in the respective

phase.

AN

Design Metrics

In addition, product metrics assess the internal
product attributes in order to know the efficiency of
the following.

Analysis, design, and code model
Potency of test cases
Overall quality of the software under development.

Project Metrics

d Project metrics enable the project managers to assess

current projects, track potential risks, identify
problem areas, adjust workflow, and evaluate the
oroject team’s ability to control the quality of work

oroducts.

J Project metrics serve two purposes. One, they help to
minimize the development schedule by making
necessary adjustments in order to avoid delays and
alleviate potential risks and problems.

d Two, these metrics are used to assess the product
quality on a regular basis-and modify the technical

Issues If required

i

Cyclomatic Complexity

Cyclomatic complexity is a software metric used to
measure the complexity of a program.

Thomas J. McCabe developed this metric in 1976.

McCabe interprets a computer program as a set of a
strongly connected directed graph.

Nodes represent parts of the source code having no
branches and arcs represent possible control flow
transfers during program execution

Cyclomatic Complexity

It Is a software metric used to indicate the complexity
of a program.

It Is computed using the Control Flow Graph of the
programCyclomatic

Finally, Complexity may be defined as-

It I1s a software metric that measures the logical
complexity of the program code.

t counts the number of decisions In the given
program code.

t measures the number of linearly independent paths
through the program code.

Cyclomatic Complexity

Cyclomatic Complexity Meaning

e Structured and Well Written Code
1:—10 « High Testability

e Less Cost and Effort

« Complex Code
10-20 « Medium Testability
« Medium Cost and Effort

« Very Complex Code
20 — 40 o Low Testability
« High Cost and Effort

¢ Highly Complex Code
> 40 « Not at all Testable
« Very High Cost and Effort

L

AN

Cyclomatic Complexity

Calculating Cyclomatic Complexity-

Cyclomatic complexity is calculated using the
control flow representation of the program code.

In control flow representation of the program code,

Nodes represent parts of the code having no
branches.

Edges represent possible control flow transfers
during program execution

Cyclomatic Complexity

J There are three methods of computing Cyclomatic
complexities.

[Method 1: Total number of regions in the flow graph
Is a Cyclomatic complexity.

d Method 2: The Cyclomatic complexity, V (G) for a
flow graph G can be definedas V(G)=E-N + 2

E Is total number of edges in the flow graph.,
N is the total number of nodes in the flow graph.

d Method 3: The Cyclomatic complexity V (G) for a
flow graph G can be definedas V(G)=P+1

P Is the total number of predicate nodes contained in the
flow G

Cyclomatic Complexity

d Example:

{
1. If (a<b)

IR
else{

3. If (a<c)
4. F2();
else
5.F3();

}
¥

Cyclomatic Complexity

A=10

IF B>C THEN
A=B

ELSE

A=C

ENDIF

Print A

Print B

Print C

Cyclomatic Complexity

:, A %% ShriVaishnav Vidyapeeth
% & ¥ Vishwavidyalaya, Indore (M.P.)

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Function Oriented Design”

L

L

Function Oriented Design

In function-oriented design, the system is comprised
of many smaller sub-systems known as functions.

These functions can perform significant task in the
system.

The system Is considered as top view of all functions.

Function oriented design inherits some properties of
structured design where divide and conquer
methodology Is used.

Function Oriented Design

 This design mechanism divides the whole system
Into smaller functions, which provides means of
abstraction by hiding the information and their
operation.

d These functional modules can share information
among themselves by means of information passing
and using information available globally.

Function Oriented Design

[Another characteristic of functions is that when a
program calls a function, the function changes the
state of the program.

d Function oriented design works well where the
system state does not matter and program/functions
work on input rather than on a state.

L

Function Oriented Design

Functional design process:

data-flow design: Model the data processing in the
system using data-flow diagrams.

Structural decomposition: Model how functions are
decomposed to sub-functions using graphical
structure charts.

Detailed design: The entities In the design and their
Interfaces are described in detail. These may be
recorded in a data dictionary and the design.

:, A %% ShriVaishnav Vidyapeeth
% & ¥ Vishwavidyalaya, Indore (M.P.)

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“SA/SD Component Based Design”

AN

SA/SD Component Based Design,

As the name itself implies, SA/SD methodology
Involves carrying out two distinct activities:

Structured analysis (SA)
Structured design (SD).

The roles of structured analysis (SA) and structured
design (SD) have been shown schematically in below
figure.

SA/SD Component Based Design,

\J

Q /—()‘/
’ (\\j:f> \ : o~

Structured N
SRS document analysis }

DFD model

SA/SD Component Based Design,

Structured Analysis and Structured Design (SA/SD)
IS a diagrammatic notation that Is designed to help
people understand the system.

The basic goal of SA/SD is to improve quality and
reduce the risk of system failure.

It establishes real management specifications and
documentation.

It focuses on the hardness, flexibility, and
maintainability of the system.

SA/SD Component Based Design,

d The structured analysis activity transforms the SRS
document into a graphic model called the DFD
model.

1 During structured analysis, functional decomposition
of the system is achieved.

1 The purpose of structured analysis Is to capture the
detailed structure of the system as supposed by the
user

L

L

SA/SD Component Based Design,

During structured design, all functions identified
during structured analysis are mapped to a module
structure.

This module structure is also called the high level
design or the software architecture for the given
problem.

This is represented using a structure chart.

The purpose of structured design Is to define the
structure of the solution that Is suitable for
Implementation

o

SA/SD Component Based Design,

Goals of SA/SD
Improve Quality and reduce the risk of system failure

Establish concrete requirements specifications and
complete requirements documentation

Focus on Reliability, Flexibility, and Maintainability
of system

SA/SD Component Based Design,

d SA/SD is combined known as SAD and it mainly
focuses on the following 3 points:

v’ System
v Process
v" Technology

L

SA/SD Component Based Design

SA/SD involves 2 phases:

Analysis Phase: It uses Data Flow Diagram, Data
Dictionary, State Transition diagram and ER
diagram.

Design Phase: It uses Structure Chart and Pseudo
Code.

SA/SD Component Based Design

1 Structure analysis/ structure design recursively divide
complex processes into sub diagrams until many
small processes are left that are easy to implement.

d When the resulting processes are simple enough, the
decomposition stops, and a process specification
IS written for each lowest level process

d Process specification may be expressed with
decision tables, pseudo code or other techniques.

o

L

SA/SD Component Based Design

Analysis Phase:

Analysis Phase involves data flow diagram, data
dictionary, state transition diagram, and entity-
relationship diagram

Design Phase:

Design Phase involves structure chart and
pseudocode.

o

SA/SD Component Based Design

Data Flow Diagram:

A DFD model only represents the data flow aspects
and does not show the sequence of execution of the
different functions and the conditions based on which
a function may or may not be executed.

In the data flow diagram, the model describes how
the data flows through the system.

We can Incorporate the Boolean operators and & or
link data flow when more than one data flow may be
Input or output from a process.

SA/SD Component Based Design

Q Data Flow Diagram:

v" In the DFD terminology, each function is called a
nrocess or a bubble.

v Each function as a processing station that consumes
some Input data and produces some output data

SA/SD Component Based Design

 Primitive symbols used for constructing DFDs

Data store

External entity Process

-
Data flow

SA/SD Component Based Design

d Function symbeol: A function is represented using a
circle. This symbol is called a process or a bubble.
Bubbles are annotated with the names of the
corresponding functions

d External entity symbol: represented by a rectangle.
The external entities are essentially those physical
entities external to the software system which
Interact with the system by Inputting data to the
system or by consuming the data produced by the
system.

SA/SD Component Based Design

d Data flow symbol: A directed arc (or an arrow) Is
used as a data flow symbol.

d A data flow symbol represents the data flow
occurring between two processes or between an
external entity and a process in the direction of the
data flow arrow.

d Output symbol: The output symbol is used when a
hard copy Is produced.

SA/SD Component Based Design

Data store symbol: A data store Is represented using
two parallel lines.

It represents a logical file. That is, a data store
symbol can represent either a data structure or a
physical file on disk.

Connected to a process by means of a data flow
symbol.

The direction of the data flow arrow shows whether
data Is being read from or written into a data store.

U O

SA/SD Component Based Design

Data Dictionary:

The content that I1s not described Iin the DFD is
described In the data dictionary.

Every DFD model of a system must be accompanied
by a data dictionary. A data dictionary lists all data
items that appear in a DFD model

It defines the data store and relevant meaning. A
logical data dictionary may also be included for each
such data element. All system names, whether they are
names of entities, types, relations, attributes, or
services, should be entered in the dictionary.

o

SA/SD Component Based Design

State Transition Diagram:
State transition diagram is like the dynamic model.

It specifies how much time the function will take to
execute, and data access triggered by events.

It also describes all the states that an object can have,
the events under which an object changes state and
the activities were undertaken during the life of an
object

SA/SD Component Based Design

d ER Diagram:

v' ER diagram specifies the relationship between data
store.

v It is basically used in database design.

v It basically describes the relationship between
different entities.

J

d
v

AN

SA/SD Component Based Design

Design Phase:
Structure Chart:

The aim of structured design is to transform the
results of the structured analysis into a structure
chart.

A structure chart represents the software architecture.

The structured chart does not show the working and
Internal structure of the processes or modules and
does not show the relationship between data or data-
flows.

o

SA/SD Component Based Design

Pseudo Code:
It is the actual implementation of the system.

It i1s an informal way of programming that doesn’t
require any specific programming language or
technology.

0\(AP‘;E: TH l/
@ai g @ i

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

zzma@?

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Software Design and UML”

Software Modeling

d Software models are ways of expressing a software
design. Usually some sort of abstract language or
nictures are used to express the software design.

1 For object-oriented software, an object modeling
anguage such as UML Is used to develop and
express the software design.

Unified Modeling Language (UML)

d Over the past decade, Grady Booch, James
Rumbaugh, and lvar Jacobson have collaborated to
combine the best features of their individual object-
oriented analysis and design methods Into a unified
method.

d The result, called the Unified Modeling Language
(UML), has become widely used throughout the
Industry.

Software Modeling

d UML allows a software engineer to express an
analysis model using a modeling notation that iIs
governed by a set of syntactic, semantic, and
programmatic rules. In UML, a system Is represented
using five different “views” describe the system from
distinctly different perspectives.

d Each view is defined by a set of diagrams.

D O

Software Modeling

The following views are present in UML.:

User model view. This view represents (product)
from the user’s (called actors in UML) perspective.

The use-case is the modeling approach of choice for
the user model view.

This important analysis representation describes a
usage scenario from the end-user's perspective.

Software Modeling

Struectural model view. Data and functionality are
viewed from inside the system.

That 1s, static structure (classes, objects, and
relationships) is modeled.

Behavioral model view. This part of the analysis
model represents the dynamic or behavioral aspects
of the system.

It also depicts the iInter actions or collaborations
between various structural elements described In the
user model and structural model views.

Software Modeling

Q Implementation meodel view. The structural and
behavioral aspects of the system are represented as
they are to be built.

d Environment wmeodel view. The structural and
behavioral aspects of the environment in which the
system Is to be Implemented are represented.

L

L

UML Diagram Types

User model view represent through:

Use-case Diagram: Shows actors, use-cases, and the
relationships between them.

Structural model view represents through

Class Diagram: Shows relationships between
classes and pertinent Information about -classes
themselves.

Object Diagram: Shows a configuration of objects
at an instant in time

L

Software Modeling

Behavioral model view represents through

Interaction Diagrams: Show an interaction between
groups of collaborating objects. Two types:
Collaboration diagram and sequence diagram

Package Diagrams: Shows system structure at the
library/package level.

State Diagram: Describes behavior of instances of a
class In terms of states, stimuli, and transitions.

Activity Diagram: Very similar to a flowchart—
shows actions and decision points, but with the
ability to accommodate concurrency.

L

L

Software Modeling

Environment model view represent through

Deployment Diagram: Shows configuration of
nardware and software in a distributed system.

mplementation model view represent through

Component Diagram: It shows code modules of a
system. This code module includes application
program, ActiveX control, Java beans and back end
databases. It representing interfaces and
dependencies among software architect.

0\(APEETH |
@aﬂﬁa @_

A Shri Vaishnav Vidyapeeth
mgzjm Vishwavidyalaya, Indore (M.P.)

Shr1 Vaishnav Institute of Information Technology

H
N 1/
%y 4

VAIS
st dy

lzmﬁ@?

Vwm\r\‘1

5*?‘\

Department of Computer Science and Engineering

Lecture

on

“The Software Design Process: Design Concepts and
Principles”

Software Design Process

1 Software design Is a process to transform user
requirements into some suitable form, which helps
the programmer in software coding and
Implementation.

[The design phase of software development deals with
transforming the customer requirements as described
In the SRS documents into a form implementable
using a programming language.

Software Design Process

1 Software design is the third step in SDLC, which
moves the concentration from problem domain to
solution domain.

It tries to specify how to fulfill the requirements
mentioned in SRS.

Software Design Process

1 Software design is an iterative process through which
requirements are translated into a “blueprint” for
constructing the software.

 Initially, the blueprint depicts a holistic view of
software.

d That Is, the design Is represented at a high level of
abstraction at level that can be directly traced to the
specific system objective and more detailed data,
functional, and behavioral requirements

Software Design Levels

The software design process can be divided into the
following three levels of phases of design:

Interface Design
. Architectural Design
. Detailed Design

Software Design Level

e

nterface Design

 Interface design Is the specification of the interaction
petween a system and its environment.

d This phase proceeds at a high level of abstraction
with respect to the inner workings of the system lI.e.,
during Interface design, the internal of the systems

are completely ignored and the system is treated as a
black box.

Software Design Level

2. Architectural Design

 Architectural design is the specification of the major
components of a system, their responsibilities,

properties, iInterfaces, and the relationships and
Interactions between them.

 In architectural design, the overall structure of the

system Is chosen, but the internal details of major
components are ignored

(o2

Software Design Level

Detailed Design

Detailed Design is the specification of the internal
elements of all major system components, their
properties, relationships, processing, and often their
algorithms and the data structures.

Detailed design deals with the implementation part of
what Is seen as a system and its sub-systems in the
previous two designs.

It 1S more detalled towards modules and their

Imp
Mmoo

MOQC

ementations. It defines logical structure of each
ule and their interfaces to communicate with other
ules

Software Design Level

d The detailed design may include:

= Decomposition of major system components into
program units.

= Allocation of functional responsibilities to units.
= Unit states and state changes

= Data and control interaction between units

= Algorithms and data structures

Design Principles

d Software design iIs both a process and a model. The
design process Is a sequence of steps that enable the
designer to describe all aspects of the software to be
built.

d The design model is equivalent of an architect’s
nlans for a house.

1 It begin by representing the totality of the thing to be
oullt and slowly refines the thing to provide guidance
for constructing each detail

Design Principles

A Similarly, the design model that is created for
software provides a variety of different views of the
computer software.

[Basic design principles enable the software engineer
to navigate the design process.

Design Concepts and Principles

d Should not suffer from “Tunnel Vision” —

d While designing the process, it should not suffer
from “tunnel vision” which means that is should not
only focus on completing or achieving the aim but on
other effects also.

Design Concepts and Principles

d Should not “Reinvent The Wheel ” —

[The design process should not reinvent the wheel that
means it should not waste time or effort in creating
things that already exist. Due to this, the overall
development will get increased.

Design Concepts and Principles

d Minimize Intellectual distance —

d The design process should reduce the gap between
real-world problems and software solutions for that
problem meaning it should simply minimize
Intellectual distance.

Design Concepts and Principles

 Exhibit uniformity and integration —

1 The design should display uniformity which means it
should be uniform throughout the process without
any change. Integration means It should mix or
combine all parts of software i.e. subsystems into one

system.

Design Concepts and Principles

1 Accommodate change —

1 The software should be designed in such a way that it
accommodates the change implying that the software
should adjust to the change that Is required to be
done as per the user’s need.

Design Concepts and Principles

1 Degrade gently —

1 The software should be designed in such a way that it
degrades gracefully which means it should work
properly even If an error occurs during the execution.

Design Concepts and Principles

d Assessed or quality —

 The design should be assessed or evaluated for the
quality meaning that during the evaluation, the

quality of the design needs to be checked and
focused on.

Design Concepts and Principles

1 Design is not coding and coding Is not design —

d Design means describing the logic of the program to
solve any problem and coding iIs a type of language
that Is used for the implementation of a design.

Design Concepts

A The following brief overview of important software
design concepts that span both traditional and object-
oriented software development.

d Abstraction 1s the act of representing essential
features without including the background details or
explanations. The abstraction Is used to reduce
complexity and allow efficient design and
Implementation of complex software systems.

Design Concepts

d Many levels of abstraction can be posed.

At the highest level of abstraction, a solution is stated
In broad terms using the language of the problem
environment.

d At lower levels of abstraction, a more detailed
description of the solution is provided.

Design Concepts
J Here, there are two common abstraction mechanisms

v" Functional Abstraction
v' Data Abstraction

O Functional Abstraction

v" A module is specified by the method it performs.

v' The details of the algorithm to accomplish the
functions are not visible to the user of the function.

J Data Abstraction

v Details of the data elements are not visible to the

users of data. Data Abstraction forms the basis for
Object Oriented design approaches.

o

Design Concepts

Modularity

Modularity specifies to the division of software into
separate modules which are differently named and
addressed and are integrated later on In to obtain the
completely functional software.

It 1s the only property that allows a program to be
Intellectually manageable.

Single large programs are difficult to understand and
read due to a large number of reference variables,
control paths, global variables, etc.

o

AN

Design Concepts

Refinement

Refinement is a top-down design strategy originally
proposed by Niklaus Wirth.

Refinement Is actually a process of elaboration.

You begin with a statement of function that Is
defined at a high level of abstraction.

Design Concepts

J Separation of Concerns

v Separation of concerns is a design concept that
suggests that any complex problem can be more
easily handled if it is subdivided Into pieces that can
each be solved and/or optimized independently.

v A concern is a feature or behavior that is specified as
part of the requirements model for the software.

Shri Vaishnav Vidyapeeth
= & ¥ Vishwavidyalaya, Indore (M.P.)

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“User Interface Design”

J

J

J

User Interface Design

User interface Is the front-end application view to
which user interacts in order to use the software.

User can manipulate and control the software as well
as hardware by means of user interface.

Today, user interface iIs found at almost every place
where digital technology exists, right from
computers, mobile phones, cars, music players,
alrplanes, etc.

L

Sy S S9N

User Interface Design

The software becomes more popular If its user
Interface Is:

Attractive

Simple to use

Responsive in short time

Clear to understand

Consistent on all interface screens

User Interface Design

d There are two types of User Interface:

d Command Line Interface: Command Line Interface
provides a command prompt, where the user types
the command and feeds to the system. The user needs
to remember the syntax of the command and its use.

d Graphical User Interface: Graphical User Interface
provides the simple interactive Interface to interact
with the system. GUI can be a combination of both
hardware and software. Using GUI, user interprets
the software.

User Interface Design Process

User, task,

Interface environmental analysis

Validation
Phase 1

Phase 4

Interface
Design

Phase 2

Implementation

Phase 3

User Interface Design

d A command Is a text-based reference to set of
Instructions, which are expected to be executed by
the system.

1 There are methods like macros, scripts that make it
easy for the user to operate.

d CLI uses less amount of computer resource as
compared to GUI.

Command Interface Exam

icrosoft Windows [Version 10.0.22000.856]
(c) Microsoft Corporation. All rights reserved.

C:\Users\svvv>ipconfig

Windows IP Configuration

Ethernet adapter Ethernet:

Media State : Media disconnected

Connection-specific DNS Sufflx

Ethernet adapter Ethernet 2:

Media State & Media disconnected
Connection-specific DNS Sufflx

Unknown adapter Local Area Connection:

Media State : Media disconnected
Connection-specific DNS Sufflx

ireless LAN adapter Local Area Connection* 1:

- B © c’?@ -~ E I; g & E::vG D) D ‘8—09-?2:;2

User Interface Design

A Typically, GUI is more resource consuming than that
of CLI.

d With advancing technology, the programmers and
designers create complex GUI designs that work with
more efficiency, accuracy and speed.

J
J

J

User Interface Design

GUI Elements

GUI provides a set of components to interact with
software or hardware.

Every graphical component provides a way to work
with the system. A GUI system has following
elements such as:

Window - An area where contents of application are
displayed. Contents in a window can be displayed in the
form of icons or lists. Windows can be minimized, resized
or maximized to the size of screen. They can be moved
anywhere on the screen

User Interface Design

2. Tabs- If an application allows executing multiple
Instances of itself, they appear on the screen as
separate windows. This interface also helps iIn
viewing preference panel in application. All modern
web-browsers use this feature.

3. Menu- Menu 1Is an array of standard commands,
grouped together and placed at a visible place
(usually top) Inside the application window. The
menu can be programmed to appear or hide on
mouse clicks.

4.

User Interface Design

lcon- An icon iIs small picture representing an
assoclated application. When these icons are clicked
or double clicked, the application window is opened.

Cursor- Interacting devices such as mouse, touch
pad, digital pen are represented in GUI as cursors.
On screen cursor follows the Instructions from
hardware In almost real-time. They are used to select
menus, windows and other application features.

User Interface Design

Application specific GUI components

Name Text ares a—— T ot hox

Email Text area Check

Age

Country india

Password

Resume | Choose File | No file chosen Check Box
Hobbies ¥ Cricket || Football /

Gender Female * Male =——_—_—_————s [edio Button
City = 05 iy - Y | — List Box
Address

| Submit I Reset |

L

User Interface Design

Features of GUIs include:
They are much easier to use for beginners.

They enable you to easily exchange information
between software using cut and paste or 'drag and
drop’.

They use a lot of memory and processing power. It
can be slower to use than a command-line interface if
you are an expert user.

They can be iIrritating to experienced users when
simple tasks require a number of operations.

User Interface Design Principles

J Structure:

v

Design should organize the wuser interface
ourposefully, in the meaningful and usual based on
orecise, consistent models that are apparent and
recognizable to users, putting related things together
and separating unrelated things, differentiating
dissimilar things and making similar things resemble

one another.

The structure principle iIs concerned with overall user
Interface architecture.

o

o

User Interface Design Principles

Simplicity:
The design should make the simple, common task
easy, communicating clearly and directly in the user's

language, and providing good shortcuts that are
meaningfully related to longer procedures.

Visibility:
The design should make all required options and
materials for a given function visible without

distracting the user with unnecessary or redundant
data.

User Interface Design Principles

1 Feedback:

v The design should keep users informed of actions or
Interpretation, changes of state or condition, and bugs
or exceptions that are relevant and of interest to the
user through clear, brief, and unambiguous language
familiar to users

