
Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Architectural Design”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Architectural Design

 The software needs the architectural design to

represents the design of software.

 IEEE defines architectural design as “the process of

defining a collection of hardware and software

components and their interfaces to establish the

framework for the development of a computer

system.”

 The software that is built for computer-based systems

can exhibit many architectural styles.

Architectural Design

 Objectives:

 To introduce architectural design and to discuss its

importance

 To explain why multiple models are required to

document software architecture to describe types of

architectural model that may be used.

 Allow evaluation of the thing’s properties before it is

built

 Provides well understood tools and techniques for

constructing the thing from its blueprint.

Architectural Design

 The objective of using architectural styles is to

establish a structure for all the components present

in a system.

 The software that is built for computer-based systems

also exhibits one of many architectural styles.

Architectural Style

 A set of components (e.g: a database, computational

modules) that will perform a function required by the

system.

 The set of connectors will help in coordination,

communication, and cooperation between the

components.

 Conditions that how components can be integrated to

form the system.

 Semantic models that help the designer to understand

the overall properties of the system

Architectural Style

 The commonly used architectural styles are:

 Data-centered Architectures: A data store (e.g., a file

or database) resides at the center of this architecture

and is accessed frequently by other components that

update, add, delete, or otherwise modify data within

the store.

 A typical Data-centered style.

 Clients of this are accesses a central repository.

Architectural Style

 Data-centered architectures promote integrity.

 That is, existing components can be changed and

new client components can be added to the

architecture without concern about other clients

(because the client components operate

independently).

 Client components independently execute processes.

Architectural Style

Architectural Style

 Data-flow Architectures: This architecture is applied

when input data are to be transformed through a

series of computational or manipulative components

into output data.

 A pipe and filter pattern has a set of components,

called filters, connected by pipes that transmit data

from one component to the next.

 Components, called filters, connected by pipes that

transmit data from one component to the next.

Architectural Style

 Each filter works independently of those components

upstream and downstream, is designed to expect data

input of a certain form, and produces data output of a

specified form.

 However, the filter does not require knowledge of the

working of its neighboring filters.

 If the data flow degenerates into a single line of

transforms, it is termed batch sequential. This pattern

accepts a batch of data and then applies a series of

sequential components (filters) to transform it.

Architectural Style

Architectural Style

 Call and return Architectures:

 The program structure can be easily modified or

scaled.

 The program structure is organized into modules

within the program.

 In this architecture how modules call each other.

 The program structure decomposes the function into

control hierarchy where a main program invokes

number of program components.

Architectural Style

Architectural Style

 Object-oriented Architecture:

 The components of a system encapsulate data and the

operations that must be applied to manipulate the

data.

 Communication and coordination between

components is accomplished via message passing

Architectural Style

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Architectural Views”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Architectural Views

 Architecture views are representations of the overall

architecture that are meaningful to one or more

stakeholders in the system.

 The architect chooses and develops a set of views

that will enable the architecture to be communicated

to, and understood by, all the stakeholders, and

enable them to verify that the system will address

their concerns

Architectural Views

 Each architectural model only shows one view or

perspective of the system.

 It might show how a system is decomposed into

modules, how the run-time processes interact or the

different ways in which system components are

distributed across a network.

 The views are used to describe the system how the

viewpoint of different stakeholders, such as end-

users, developers and project managers.

Architectural Views

 The four views of the model are logical,

development, process and physical view

 In addition, selected use cases or scenarios are used

to illustrate the architecture serving as the 'plus one'

view. Hence the model contains 4+1 views:

Architectural Views

 Logical View:

 The logical view is concerned with the functionality

that the system provides to end-users.

 UML diagrams used to represent the logical view

include, class diagrams, and state diagrams.

Architectural Views

 Development View:

 The development view illustrates a system from a

programmer's perspective and is concerned with

software management.

 This view is also known as the implementation view.

 It uses the UML Component diagram to describe

system components.

 UML Diagrams used to represent the development

view include the Package diagram

Architectural Views

 Physical View:

 The physical view depicts the system from a system

engineer's point of view.

 It shows the system hardware and how software

components are distributed across the processors in

the system.

 This view is also known as the deployment view.

 UML diagrams used to represent the physical view

include the deployment diagram.

Architectural Views

 Process View:

 The process view deals with the dynamic aspects of

the system, explains the system processes and how

they communicate, and focuses on the runtime

behavior of the system.

 The process view addresses concurrency,

distribution, integrators, performance, and scalability,

etc.

 UML diagrams to represent process view include the

activity diagram

Architectural Views

 Scenarios:

 The description of architecture is illustrated using a

small set of use cases, or scenarios, which become a

fifth view.

 The scenarios describe sequences of interactions

between objects and between processes.

 They are used to identify architectural elements and to

illustrate and validate the architecture design.

 They also serve as a starting point for tests of an

architecture prototype.

 This view is also known as the use case view

Architectural Views

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Design Metrics”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Design Metrics

 A software metric is a measure of software

characteristics which are measurable or countable.

 Software metrics are valuable for many reasons,

including measuring software performance, planning

work items, measuring productivity, and many other

uses.

Design Metrics

 Software metrics can be classified into three

categories −

1) Product metrics − Describes the characteristics of the

product such as size, complexity, design features,

performance, and quality level.

2) Process metrics − These characteristics can be used

to improve the development and maintenance

activities of the software.

Design Metrics

3) Project metrics − This metrics describe the project

characteristics and execution.

 Note that as the project proceeds, the project manager

will check its progress from time-to-time and will

compare the effort, cost, and time with the original

effort, cost and time.

 Examples include the number of software developers,

the staffing pattern over the life cycle of the software,

cost, schedule, and productivity.

Process Metrics

 To measure the efficiency and effectiveness of the

software process, a set of metrics is formulated based

on the outcomes derived from the process. These

outcomes are listed below

 Number of errors found before the software release

 Defect detected and reported by the user after

delivery of the software

 Time spent in fixing errors

 Work products delivered

 Human effort used

 Estimated cost compared to actual cost.

Product Metrics

 In software development process, a working product

is developed at the end of each successful phase.

 Each product can be measured at any stage of its

development.

 Metrics are developed for these products so that they

can indicate whether a product is developed

according to the user requirements.

 If a product does not meet user requirements, then

the necessary actions are taken in the respective

phase.

Design Metrics

 In addition, product metrics assess the internal

product attributes in order to know the efficiency of

the following.

 Analysis, design, and code model

 Potency of test cases

 Overall quality of the software under development.

Project Metrics

 Project metrics enable the project managers to assess

current projects, track potential risks, identify

problem areas, adjust workflow, and evaluate the

project team’s ability to control the quality of work

products.

 Project metrics serve two purposes. One, they help to

minimize the development schedule by making

necessary adjustments in order to avoid delays and

alleviate potential risks and problems.

 Two, these metrics are used to assess the product

quality on a regular basis-and modify the technical

issues if required

Cyclomatic Complexity

 Cyclomatic complexity is a software metric used to

measure the complexity of a program.

 Thomas J. McCabe developed this metric in 1976.

 McCabe interprets a computer program as a set of a

strongly connected directed graph.

 Nodes represent parts of the source code having no

branches and arcs represent possible control flow

transfers during program execution

Cyclomatic Complexity

 It is a software metric used to indicate the complexity

of a program.

 It is computed using the Control Flow Graph of the

programCyclomatic

 Finally, Complexity may be defined as-

 It is a software metric that measures the logical

complexity of the program code.

 It counts the number of decisions in the given

program code.

 It measures the number of linearly independent paths

through the program code.

Cyclomatic Complexity

Cyclomatic Complexity

 Calculating Cyclomatic Complexity-

 Cyclomatic complexity is calculated using the

control flow representation of the program code.

 In control flow representation of the program code,

 Nodes represent parts of the code having no

branches.

 Edges represent possible control flow transfers

during program execution

Cyclomatic Complexity

 There are three methods of computing Cyclomatic

complexities.

 Method 1: Total number of regions in the flow graph

is a Cyclomatic complexity.

 Method 2: The Cyclomatic complexity, V (G) for a

flow graph G can be defined as V (G) = E - N + 2

E is total number of edges in the flow graph.,

N is the total number of nodes in the flow graph.

 Method 3: The Cyclomatic complexity V (G) for a

flow graph G can be defined as V (G) = P + 1

P is the total number of predicate nodes contained in the

flow G

Cyclomatic Complexity

 Example:

{

1. If (a<b)

2. F1 () ;

else{

3. If (a<c)

4. F2 () ;

else

5. F3 () ;

}

}

Cyclomatic Complexity

A = 10

IF B > C THEN

A = B

ELSE

A = C

ENDIF

Print A

Print B

Print C

Cyclomatic Complexity

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Function Oriented Design”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Function Oriented Design

 In function-oriented design, the system is comprised

of many smaller sub-systems known as functions.

 These functions can perform significant task in the

system.

 The system is considered as top view of all functions.

 Function oriented design inherits some properties of

structured design where divide and conquer

methodology is used.

Function Oriented Design

 This design mechanism divides the whole system

into smaller functions, which provides means of

abstraction by hiding the information and their

operation.

 These functional modules can share information

among themselves by means of information passing

and using information available globally.

Function Oriented Design

 Another characteristic of functions is that when a

program calls a function, the function changes the

state of the program.

 Function oriented design works well where the

system state does not matter and program/functions

work on input rather than on a state.

Function Oriented Design

 Functional design process:

 data-flow design: Model the data processing in the

system using data-flow diagrams.

 Structural decomposition: Model how functions are

decomposed to sub-functions using graphical

structure charts.

 Detailed design: The entities in the design and their

interfaces are described in detail. These may be

recorded in a data dictionary and the design.

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“SA/SD Component Based Design”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

SA/SD Component Based Design,

 As the name itself implies, SA/SD methodology

involves carrying out two distinct activities:

 Structured analysis (SA)

 Structured design (SD).

 The roles of structured analysis (SA) and structured

design (SD) have been shown schematically in below

figure.

SA/SD Component Based Design,

SA/SD Component Based Design,

 Structured Analysis and Structured Design (SA/SD)

is a diagrammatic notation that is designed to help

people understand the system.

 The basic goal of SA/SD is to improve quality and

reduce the risk of system failure.

 It establishes real management specifications and

documentation.

 It focuses on the hardness, flexibility, and

maintainability of the system.

SA/SD Component Based Design,

 The structured analysis activity transforms the SRS

document into a graphic model called the DFD

model.

 During structured analysis, functional decomposition

of the system is achieved.

 The purpose of structured analysis is to capture the

detailed structure of the system as supposed by the

user

SA/SD Component Based Design,

 During structured design, all functions identified

during structured analysis are mapped to a module

structure.

 This module structure is also called the high level

design or the software architecture for the given

problem.

 This is represented using a structure chart.

 The purpose of structured design is to define the

structure of the solution that is suitable for

implementation

SA/SD Component Based Design,

 Goals of SA/SD

 Improve Quality and reduce the risk of system failure

 Establish concrete requirements specifications and

complete requirements documentation

 Focus on Reliability, Flexibility, and Maintainability

of system

SA/SD Component Based Design,

 SA/SD is combined known as SAD and it mainly

focuses on the following 3 points:

 System

 Process

 Technology

SA/SD Component Based Design

 SA/SD involves 2 phases:

 Analysis Phase: It uses Data Flow Diagram, Data

Dictionary, State Transition diagram and ER

diagram.

 Design Phase: It uses Structure Chart and Pseudo

Code.

SA/SD Component Based Design

 Structure analysis/ structure design recursively divide

complex processes into sub diagrams until many

small processes are left that are easy to implement.

 When the resulting processes are simple enough, the

decomposition stops, and a process specification

is written for each lowest level process

 Process specification may be expressed with

decision tables, pseudo code or other techniques.

SA/SD Component Based Design

 Analysis Phase:

 Analysis Phase involves data flow diagram, data

dictionary, state transition diagram, and entity-

relationship diagram

 Design Phase:

 Design Phase involves structure chart and

pseudocode.

SA/SD Component Based Design

 Data Flow Diagram:

 A DFD model only represents the data flow aspects

and does not show the sequence of execution of the

different functions and the conditions based on which

a function may or may not be executed.

 In the data flow diagram, the model describes how

the data flows through the system.

 We can incorporate the Boolean operators and & or

link data flow when more than one data flow may be

input or output from a process.

SA/SD Component Based Design

 Data Flow Diagram:

 In the DFD terminology, each function is called a

process or a bubble.

 Each function as a processing station that consumes

some input data and produces some output data

SA/SD Component Based Design

 Primitive symbols used for constructing DFDs

SA/SD Component Based Design

 Function symbol: A function is represented using a

circle. This symbol is called a process or a bubble.

Bubbles are annotated with the names of the

corresponding functions

 External entity symbol: represented by a rectangle.

The external entities are essentially those physical

entities external to the software system which

interact with the system by inputting data to the

system or by consuming the data produced by the

system.

SA/SD Component Based Design

 Data flow symbol: A directed arc (or an arrow) is

used as a data flow symbol.

 A data flow symbol represents the data flow

occurring between two processes or between an

external entity and a process in the direction of the

data flow arrow.

 Output symbol: The output symbol is used when a

hard copy is produced.

SA/SD Component Based Design

 Data store symbol: A data store is represented using

two parallel lines.

 It represents a logical file. That is, a data store

symbol can represent either a data structure or a

physical file on disk.

 Connected to a process by means of a data flow

symbol.

 The direction of the data flow arrow shows whether

data is being read from or written into a data store.

SA/SD Component Based Design

 Data Dictionary:

 The content that is not described in the DFD is

described in the data dictionary.

 Every DFD model of a system must be accompanied

by a data dictionary. A data dictionary lists all data

items that appear in a DFD model

 It defines the data store and relevant meaning. A

logical data dictionary may also be included for each

such data element. All system names, whether they are

names of entities, types, relations, attributes, or

services, should be entered in the dictionary.

SA/SD Component Based Design

 State Transition Diagram:

 State transition diagram is like the dynamic model.

 It specifies how much time the function will take to

execute, and data access triggered by events.

 It also describes all the states that an object can have,

the events under which an object changes state and

the activities were undertaken during the life of an

object

SA/SD Component Based Design

 ER Diagram:

 ER diagram specifies the relationship between data

store.

 It is basically used in database design.

 It basically describes the relationship between

different entities.

SA/SD Component Based Design

 Design Phase:

 Structure Chart:

 The aim of structured design is to transform the

results of the structured analysis into a structure

chart.

 A structure chart represents the software architecture.

 The structured chart does not show the working and

internal structure of the processes or modules and

does not show the relationship between data or data-

flows.

SA/SD Component Based Design

 Pseudo Code:

 It is the actual implementation of the system.

 It is an informal way of programming that doesn’t

require any specific programming language or

technology.

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Software Design and UML”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Software Modeling

 Software models are ways of expressing a software

design. Usually some sort of abstract language or

pictures are used to express the software design.

 For object-oriented software, an object modeling

language such as UML is used to develop and

express the software design.

Unified Modeling Language (UML)

 Over the past decade, Grady Booch, James

Rumbaugh, and Ivar Jacobson have collaborated to

combine the best features of their individual object-

oriented analysis and design methods into a unified

method.

 The result, called the Unified Modeling Language

(UML), has become widely used throughout the

industry.

Software Modeling

 UML allows a software engineer to express an

analysis model using a modeling notation that is

governed by a set of syntactic, semantic, and

programmatic rules. In UML, a system is represented

using five different “views” describe the system from

distinctly different perspectives.

 Each view is defined by a set of diagrams.

Software Modeling

 The following views are present in UML:

 User model view. This view represents (product)

from the user’s (called actors in UML) perspective.

 The use-case is the modeling approach of choice for

the user model view.

 This important analysis representation describes a

usage scenario from the end-user's perspective.

Software Modeling

 Structural model view. Data and functionality are

viewed from inside the system.

 That is, static structure (classes, objects, and

relationships) is modeled.

 Behavioral model view. This part of the analysis

model represents the dynamic or behavioral aspects

of the system.

 It also depicts the inter actions or collaborations

between various structural elements described in the

user model and structural model views.

Software Modeling

 Implementation model view. The structural and

behavioral aspects of the system are represented as

they are to be built.

 Environment model view. The structural and

behavioral aspects of the environment in which the

system is to be implemented are represented.

UML Diagram Types

 User model view represent through:

 Use-case Diagram: Shows actors, use-cases, and the

relationships between them.

 Structural model view represents through

 Class Diagram: Shows relationships between

classes and pertinent information about classes

themselves.

 Object Diagram: Shows a configuration of objects

at an instant in time

Software Modeling

 Behavioral model view represents through

 Interaction Diagrams: Show an interaction between

groups of collaborating objects. Two types:

Collaboration diagram and sequence diagram

 Package Diagrams: Shows system structure at the

library/package level.

 State Diagram: Describes behavior of instances of a

class in terms of states, stimuli, and transitions.

 Activity Diagram: Very similar to a flowchart—

shows actions and decision points, but with the

ability to accommodate concurrency.

Software Modeling

 Environment model view represent through

 Deployment Diagram: Shows configuration of

hardware and software in a distributed system.

 Implementation model view represent through

 Component Diagram: It shows code modules of a

system. This code module includes application

program, ActiveX control, Java beans and back end

databases. It representing interfaces and

dependencies among software architect.

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“The Software Design Process: Design Concepts and
Principles”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

Software Design Process

 Software design is a process to transform user

requirements into some suitable form, which helps

the programmer in software coding and

implementation.

 The design phase of software development deals with

transforming the customer requirements as described

in the SRS documents into a form implementable

using a programming language.

Software Design Process

 Software design is the third step in SDLC, which

moves the concentration from problem domain to

solution domain.

 It tries to specify how to fulfill the requirements

mentioned in SRS.

Software Design Process

 Software design is an iterative process through which

requirements are translated into a “blueprint” for

constructing the software.

 Initially, the blueprint depicts a holistic view of

software.

 That is, the design is represented at a high level of

abstraction at level that can be directly traced to the

specific system objective and more detailed data,

functional, and behavioral requirements

Software Design Levels

 The software design process can be divided into the

following three levels of phases of design:

1. Interface Design

2. Architectural Design

3. Detailed Design

Software Design Level

1. Interface Design

 Interface design is the specification of the interaction

between a system and its environment.

 This phase proceeds at a high level of abstraction

with respect to the inner workings of the system i.e.,

during interface design, the internal of the systems

are completely ignored and the system is treated as a

black box.

Software Design Level

2. Architectural Design

 Architectural design is the specification of the major

components of a system, their responsibilities,

properties, interfaces, and the relationships and

interactions between them.

 In architectural design, the overall structure of the

system is chosen, but the internal details of major

components are ignored

Software Design Level

3. Detailed Design

 Detailed Design is the specification of the internal

elements of all major system components, their

properties, relationships, processing, and often their

algorithms and the data structures.

 Detailed design deals with the implementation part of

what is seen as a system and its sub-systems in the

previous two designs.

 It is more detailed towards modules and their

implementations. It defines logical structure of each

module and their interfaces to communicate with other

modules

Software Design Level

 The detailed design may include:

 Decomposition of major system components into

program units.

 Allocation of functional responsibilities to units.

 Unit states and state changes

 Data and control interaction between units

 Algorithms and data structures

Design Principles

 Software design is both a process and a model. The

design process is a sequence of steps that enable the

designer to describe all aspects of the software to be

built.

 The design model is equivalent of an architect’s

plans for a house.

 It begin by representing the totality of the thing to be

built and slowly refines the thing to provide guidance

for constructing each detail

Design Principles

 Similarly, the design model that is created for

software provides a variety of different views of the

computer software.

 Basic design principles enable the software engineer

to navigate the design process.

Design Concepts and Principles

 Should not suffer from “Tunnel Vision” –

 While designing the process, it should not suffer

from “tunnel vision” which means that is should not

only focus on completing or achieving the aim but on

other effects also.

Design Concepts and Principles

 Should not “Reinvent The Wheel” –

 The design process should not reinvent the wheel that

means it should not waste time or effort in creating

things that already exist. Due to this, the overall

development will get increased.

Design Concepts and Principles

 Minimize Intellectual distance –

 The design process should reduce the gap between

real-world problems and software solutions for that

problem meaning it should simply minimize

intellectual distance.

Design Concepts and Principles

 Exhibit uniformity and integration –

 The design should display uniformity which means it

should be uniform throughout the process without

any change. Integration means it should mix or

combine all parts of software i.e. subsystems into one

system.

Design Concepts and Principles

 Accommodate change –

 The software should be designed in such a way that it

accommodates the change implying that the software

should adjust to the change that is required to be

done as per the user’s need.

Design Concepts and Principles

 Degrade gently –

 The software should be designed in such a way that it

degrades gracefully which means it should work

properly even if an error occurs during the execution.

Design Concepts and Principles

 Assessed or quality –

 The design should be assessed or evaluated for the

quality meaning that during the evaluation, the

quality of the design needs to be checked and

focused on.

Design Concepts and Principles

 Design is not coding and coding is not design –

 Design means describing the logic of the program to

solve any problem and coding is a type of language

that is used for the implementation of a design.

Design Concepts

 The following brief overview of important software

design concepts that span both traditional and object-

oriented software development.

 Abstraction is the act of representing essential

features without including the background details or

explanations. The abstraction is used to reduce

complexity and allow efficient design and

implementation of complex software systems.

Design Concepts

 Many levels of abstraction can be posed.

 At the highest level of abstraction, a solution is stated

in broad terms using the language of the problem

environment.

 At lower levels of abstraction, a more detailed

description of the solution is provided.

Design Concepts

 Here, there are two common abstraction mechanisms

 Functional Abstraction

 Data Abstraction

 Functional Abstraction

 A module is specified by the method it performs.

 The details of the algorithm to accomplish the

functions are not visible to the user of the function.

 Data Abstraction

 Details of the data elements are not visible to the

users of data. Data Abstraction forms the basis for
Object Oriented design approaches.

Design Concepts

 Modularity

 Modularity specifies to the division of software into

separate modules which are differently named and

addressed and are integrated later on in to obtain the

completely functional software.

 It is the only property that allows a program to be

intellectually manageable.

 Single large programs are difficult to understand and

read due to a large number of reference variables,

control paths, global variables, etc.

Design Concepts

 Refinement

 Refinement is a top-down design strategy originally

proposed by Niklaus Wirth.

 Refinement is actually a process of elaboration.

 You begin with a statement of function that is

defined at a high level of abstraction.

Design Concepts

 Separation of Concerns

 Separation of concerns is a design concept that

suggests that any complex problem can be more

easily handled if it is subdivided into pieces that can

each be solved and/or optimized independently.

 A concern is a feature or behavior that is specified as

part of the requirements model for the software.

Thank -You

Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“User Interface Design”

.

Shri Vaishnav Vidyapeeth

Vishwavidyalaya, Indore (M.P.)

User Interface Design

 User interface is the front-end application view to

which user interacts in order to use the software.

 User can manipulate and control the software as well

as hardware by means of user interface.

 Today, user interface is found at almost every place

where digital technology exists, right from

computers, mobile phones, cars, music players,

airplanes, etc.

User Interface Design

 The software becomes more popular if its user

interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interface screens

User Interface Design

 There are two types of User Interface:

 Command Line Interface: Command Line Interface

provides a command prompt, where the user types

the command and feeds to the system. The user needs

to remember the syntax of the command and its use.

 Graphical User Interface: Graphical User Interface

provides the simple interactive interface to interact

with the system. GUI can be a combination of both

hardware and software. Using GUI, user interprets

the software.

User Interface Design Process

User Interface Design

 A command is a text-based reference to set of

instructions, which are expected to be executed by

the system.

 There are methods like macros, scripts that make it

easy for the user to operate.

 CLI uses less amount of computer resource as

compared to GUI.

Command Interface Example

User Interface Design

 Typically, GUI is more resource consuming than that

of CLI.

 With advancing technology, the programmers and

designers create complex GUI designs that work with

more efficiency, accuracy and speed.

User Interface Design

 GUI Elements

 GUI provides a set of components to interact with

software or hardware.

 Every graphical component provides a way to work

with the system. A GUI system has following

elements such as:

1. Window - An area where contents of application are

displayed. Contents in a window can be displayed in the

form of icons or lists. Windows can be minimized, resized

or maximized to the size of screen. They can be moved

anywhere on the screen

User Interface Design

2. Tabs- If an application allows executing multiple

instances of itself, they appear on the screen as

separate windows. This interface also helps in

viewing preference panel in application. All modern

web-browsers use this feature.

3. Menu- Menu is an array of standard commands,

grouped together and placed at a visible place

(usually top) inside the application window. The

menu can be programmed to appear or hide on

mouse clicks.

User Interface Design

4. Icon- An icon is small picture representing an

associated application. When these icons are clicked

or double clicked, the application window is opened.

5. Cursor- Interacting devices such as mouse, touch

pad, digital pen are represented in GUI as cursors.

On screen cursor follows the instructions from

hardware in almost real-time. They are used to select

menus, windows and other application features.

User Interface Design

Application specific GUI components

User Interface Design

 Features of GUIs include:

 They are much easier to use for beginners.

 They enable you to easily exchange information

between software using cut and paste or 'drag and

drop’.

 They use a lot of memory and processing power. It

can be slower to use than a command-line interface if

you are an expert user.

 They can be irritating to experienced users when

simple tasks require a number of operations.

User Interface Design Principles

 Structure:

 Design should organize the user interface

purposefully, in the meaningful and usual based on

precise, consistent models that are apparent and

recognizable to users, putting related things together

and separating unrelated things, differentiating

dissimilar things and making similar things resemble

one another.

 The structure principle is concerned with overall user

interface architecture.

User Interface Design Principles

 Simplicity:

 The design should make the simple, common task

easy, communicating clearly and directly in the user's

language, and providing good shortcuts that are

meaningfully related to longer procedures.

 Visibility:

 The design should make all required options and

materials for a given function visible without

distracting the user with unnecessary or redundant

data.

User Interface Design Principles

 Feedback:

 The design should keep users informed of actions or

interpretation, changes of state or condition, and bugs

or exceptions that are relevant and of interest to the

user through clear, brief, and unambiguous language

familiar to users

Thank -You

