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Calculus of finite differences: Operators, forward difference operator, back-
ward difference operator, E-operator, relation between them, difference of a
polynomial, factorial polynomial, Inverse operator, forward difference table,
Backward difference table.

Calculus of finite differences

Finite Differences. In theoretical science most of the functions and relations are
in explicit and continuous form. Practical problems leads us to situations when
the value of function y = f(x) is known not in form of an explicit formula, but
value of y are known only at some points. In such cases we cannot calculate the
value of y at any arbitrary given point. Similarly, in such cases it is not possible
to find derivatives or integral of the function, and so, it is difficult to analyze
the behaviour of function in its domain. To overcome this problem, we need the
techniques of finite differences and approximation.

Let y = f(z) be any function of the independent variable x. Suppose the
explicit values of y in form of z is not known, but only a finite number of values
of y at points zy, z1, 2 ..., %, are known and given by the following table:

X | Xg | X1 | X | | Tp

Y1Y [ Y1 1Y | Yn
where y; = f(x;), 1 = 0,1,2,...,n. Then, the values of z, i.e., zg, 1, Z2,..., %y
are called the argument of function and the corresponding values yo, y1,¥2,. .., ¥n
of y are called the entries. We assume that the arguments are equally spaced
with space h, i.e., xt1 = 2o+ h, ro = 1 + h,..., x, = Tp—1 + h. In general,

=%, 1+h=x9+1th,i=1,2,...,n.
The forward difference operator A. It is denoted by A and defined by:

Af(z) = f@+h) — f(2).

By definition of A, it is clear that the forward difference operator finds the dif-
ference of the values of function y = f(x) on two consecutive values  + h and z
of argument. Also:

Ayo = Af(xo) = f(zo + h) — f(m0) = f(z1) — f(Z0) = y1 — Yo.

Similarly, Ay1 = y2 —v1, ..., AYn_1 = Yo — Yn_1. The higher order differences are
defined as follows:

A’f(z) = A(Af(x)) = Alf(z+h) — f(z)] = Af(z+h) — Af(z)
= f(z+2h)— f(z+h)—[f(z+h)— f(z)]
= f(z+2h)—2f(x+h)+ f(x).

Similarly, A3f(zx) and other higher order differences can be obtain.
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The differences of y = f(x) for tabular values of y can be obtained by the
following forward difference table.

T|y Ay AQy A3y A4y

Lo| Yo
= Ayo = y1 — Yo

T4 = A%y, = Ay, — Ay [
= Ay; =y2 — = Alyy = A’y — A%y,

T2 (Y2 = A’y = Ay, — Ay, [ = Aty = A’y — Ay,
= Ays = y3 — Y2 = A’y = APy, — A%y,

T3|¥s = Ay, = Ays — Ay,

= Ays = ys — Y3

Tyl Ya

The backward difference operator V. The backward difference operator is de-
noted by V and defined by:

Vf(z) = f(z) - f(x —h).
It is clear that
Vi =V f(z1) — f(@1 — k) = f(z1) — f(z0) =11 — %0
Similarly, Vys = y2 — 1, . - ., VUn = Yn — Yn—1. Also, it is obvious that:
Vyn = AYp-1.

The higher order backward differences can be obtained similarly. The various
higher order differences can be obtained by the following backward difference

table:

T|y vy va v3y V4y

Zol Yo
= Vy1 =41 — Yo

1|4 => V2y, = Vi — Vi

= Vys = y2 — 41 => Viy; = Viy; — Vs

T2 (Y2 = V2y; = Vys — Vi = Viy, = Ay, —Viy;
= Vys = y3 —¥2 = Viy, = Viy, — Viy;

T3 Y3 = V2ys = Vys— Vys

= Vy, = ys— Y3

Tyl Ys

The shifting operator E. It is denoted by E and defined by:
Ef(x) = f(z + ).
The higher order shifting is defined by:
E?f(z) = Ef(z + h) = f(z + 2h).

Similarly, we define:
E"f(z) = f(z + nh).
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The negative powers of F is defined in similar way:

E7'f(x) = f(x —h) and E"f(z) = f(z — nh).

Example 1. Calculate the values of backward differences of f(4) from the
data below:

z: 0 1 2 3 4
f(z) : 1.0 1.5 2.2 3.1 46

Solution: The difference table for the given data is as follows:

z | f(z) V f(z) V2f(z) V3 f(z) V4 f(z)
0 [1.0
= Vf(1) =0.5
1115 = V2£(2) = 0.2
= Vf(2) =0.7 = V3f(3) =0
2122 = V2f(3) = 0.2 = V4f(4) =04
= Vf(3) =09 = V3f(4) = 0.4
3131 = V2f(4) = 0.6
= Vf(4) =15
4 4.6

Hence, from the above table we have Vf(4) = 1.5, V2f(4) = 0.6,V3f(4) = 0.4
and V4f(4) = 0.4. O

Relations between A, V, F and D.

Example 2. Prove the following relations:

(a) A=E-1 (Bb)V=1-E! ()A=VE @@ (1+A)(1-V)=1

() AV=VA () D= %ln(l +A) (g) D= —%ln(l — V).

Solution: (a) By definition we have:

Af(z) = f(z+h) = f(z) = Ef(z) - f(z) = (B - 1)f ().

(b)By definition we have:
Vi(@) = f(z) = f(z —h) = f(z) - E7 f(z) = (1 - E7)f(2).

Therefore:
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Therefore:

V=1-E! o E'=1-V,
(c) By (a) and (b) we have:

A=E—-1=E-FE'=Q1-EYE=VE.
(d) By (a) and (b) we have:
(1+A)(1-V)=EE'=1.
(e) By (a) and (b) we have:
AV=(E-1)(1-EY=E-EE'-14+E'=E-24+E.

Similarly, we have VA = E — 2 + E~!. Therefore, AV = VA.
(f) By Taylor’s series we know that:

f@+h) = f@)+hf@)+ o)+ h—3f”’(w)
— Ef(@) = f(2)+hD[f()] + oD (f(@)] + 2 D f(@)] +

91
h2 2 h’ 3
= Ef(z) = 1+hD+ 5D+ 57 D°+ f(m)

= Ef(z) = "’f(a).
Therefore, E = e, ie., 1+ A =e"P or

D=-In(1+A)|

S

(g) Again, since E = e"P and E~! =1 — V we have

1 hD

v °©
— 1-V=e"
—> In(1-V)=-hD

— D= _l_lzln(l - V).

This proves the result.

A? Ee*
Example 3. Prove that: e* = (f) e’ - A;em'
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Solution: We have:

R.HS. =

|
&
&
—_
N—r
Q)
N——
D
)
&
| =
— %
5
[§y)
8

E?-2E+1\ , Ee”
e .
(B? —2E + 1)e=
Ee*
(B? —2E + 1)et
— (ew-l—h —2e% + eac—h) . esth
T (ex+2h — Qerth 4 eac)
et (e$+2h . zew—i—h + ew)
(e:v-I-Zh _ 26$+h + ea:)
== 6117
= L.H.S.

= (E-2+E)¢

This proves the result.

Example 4. Prove that: Aln f(z) =In (1 + Asz.’ia):)) :

Solution: We have

LHS. = Aln f(x)
= (B- 1D f()
= Inf(z+h) —In f(z)

o (f(a:—l—h))

Ef (x))

= In

= In

5
(£31e)
(152
(v

=1

=

1+
S.

_ I )

= R.

This proves the result.
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Example 5. Evaluate: A [e** In(bz)] .

Solution: We know that:
Ale*In(bz)] = (E—1)[e* In(bzx)]
E[e* In(bx)] — €% In(bx)
= @ n[b(z + h)] — e** In(bx)

This is the required value.

Example 6. Find the value of: (i) (—) 3 (ii)) A" (—)

Solution:

0 (5)7 - [45]
= (E-2+E)7°

= (x+h)? =22+ (z —h)®
= (2% + 32°h + 3zh® + h3) — 22° + (23 — 32%h + 3zh? — BP)
= 6zh’.

(i) A(E): L 1_ -h

T z+h x:x(x—l—h)'

#(;) = 220)) =2 e

1 1
—h [(x—l— h)(z +2h) a:(a:—l—h)]
_ (-1)22!R?
— x(z+h)(x+2h)

Similarly:

In general, we have:

(1 (—1)7n! A7
A (x)_x(x+h)(x+2h)---(x+nh)°

This is the required value.
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Example 7. Find the value of: (i) Atan~lx (i) A2cos2z.

Solution: (i) By the definition of forward difference operator, we know that:

Atan'z = tan"'(z +h) —tan"'z
r+h—2
— tan~!
- {1+(x+h)w}
e P
B 1+ hzx+22]"

(ii) By the definition of forward difference operator, we know that:

A?cos2z = A{Acos2z}

A{cos2(z + h) — cos 2z}

Acos2(xz + h) — Acos2z

cos2(z + 2h) — cos 2(x + h) — {cos 2(z + h) — cos 2z}
—2sin(2x 4+ 3h) sin h + 2sin(2z + h)sinh

—2sin h [sin(2z + 3h) — sin(2z + h)]

—2sin h [2 cos(2x + 2h) sin h]

= —4sin? hcos(2x + 2h).

This is the required value. O

Example 8. If f(x) = e**?, then show that the leading difference from a
geometric progression.

Solution: Given that f(z) = e®**%. Hence, by the definition of forward difference
we have:

Af(z) = A[e™*t] = ebA[e]
_ [ea(m+h ]

ah 1) a.'L'—I—b

Again, the second difference:

AQf(w) - A [Aeaw+b] — A [(eah _ 1) eaw+b]

Q)
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Similarly, we can obtain that A" f(z) = (e“h — 1)” e?tt for all natural numbers
n. Hence for any natural number r we have:

r—1

A" f(z) = (eah _ 1)7‘ @ +b (eah _ 1) (eah _ 1) @ +b (eah _ 1) A"_lf(x).

This show that the every two successive terms are in a common ratio (e“h — 1),
and so, the differences are in a geometric progression.

[

Example 9. Find the value of: (i) A2 ( or + 12 )

22+ 5z +6
with interval of difference h = 1.

Solution: (i) By the definition of forward difference operator, we know that:
A2 5z + 12 _ A oz + 12
22+ 5246 (z +2)(z + 3)

2 3
= A?
<x+2+x+3)

1 1
+4 x+3

- {(x+2)1(x+3)}_3A{($+3)1(“’+4)}

1 1
_3{($+j)($+5) B (x+3)(x+g1)}
c+2)@+3)z+4)  (@+3)@+4)@+5)

2(5z + 16)
(z+2)(z+3)(z+4)(z+5)

(ii) By the definition of forward difference operator, we know that:
Ae® = T — e = (e —1)e".
Again, the second difference:

A%® = A{Ae} = A{(e—1)e"}
(e—1)Ae®* =(e—1)(e—1)e”
= (e—1)%"
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Again:

Ade® = A {Aze“’}
= A{(e—1)%"} = (e —1)*A¢”
= (e—1)%".

Similarly, A"e® = (e — 1)"e”.

Theorem 1. Prove that the n'* difference of a polynomial of degree n is
constant and all higher order differences are zero.

Proof. Let
f(@) = apr™ + a18" "t + agx™ 2 + - + ap_1T + ay.

By definition we have

Af(z) = flz+h)— f(=z)
= ag(z+h)"+a(z+h)" T +ayz+h)" 2+ +a,1(z+h)+ay
— [a0z™ + a1z" T 4+ a2z P 4 -+ + ap_1T + ay)
= ao[(z+h)" — 2" +a[(z +h)" T =2+ 4 ap[(z + k) — ]
+lan — an]
= agnhz™ 1+ biz" 2+ by 34 - 4 by (using binomial theorem).

Similarly, A%f(z) = A[Af(z)]
Alagnhz™ ! + 512" 2 + boz™ > + - - - + by
= aon(n — l)hzal:”_2 + ez 4™+ + .

Thus, we obtain:
A"f(x) = am(n—1)(n—2)---1-h" = aoyn!h™ = constant.

Therefore, A" f(z) = Alagn!h™] = A(constant) = 0.

Example 10. Find the value of A [(1 — az)(1 — bz?)(1 — cz®)(1 — dz*)].

Solution: We know that:

(1—az)(1 —b2?)(1 — cz®)(1 — dz?)
= abedz!® + terms containing z° and lower degree of z.
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Hence:

A [(1—az)(1 — bz®)(1 — cz®)(1 — dz*)]
= AW [abcdxlo + terms containing z° and lower degree of x]
= abedAVz10 + A0 [ terms containing z° and lower degree of CL']

= abedAYz° + 0
= abcd - 1-(10)!A".

Thus, A" [(1 — az)(1 — ba?)(1 — cz®)(1 — dz*)] = abed - (10)!A™. ]
Example 11. Show that: V2yg = ys — 2y + 6.

Solution: We know that V =1 — E~!, hence:

V=(1-EY' =1-2B"+E2

Therefore:
Viyg = (1-2E'+E?)ys
= ys—2E 'ys + E%ys
= Ys — 2y7 + Ye.
This proves the required result. 0

Motivation for the calculus of finite differences

b

How can we evaluate f f(z)dz, where f is continuous in its domain? The

a
answer is given by the the fundamental theorem of calculus. It says that if g(z)
is the anti-derivative of f(x), i.e., f(z) = ¢'(x) then:

b
f f(z)dz = g(a) — g(b).

Obviously, the above problem is meaningful when the function f is continuous in
its domain (in general). For a function f(z), where the value of function is known

only at some finite number of values of z in the interval [a, b], an analogue of the
b

above problem can be stated as: how can we evaluate Z f(z) ? Such problems

Ir=qa

occurs frequently in practical and theoretical calculations.
To answer this question, we need a result similar to the fundamental theorem
of calculus which works for )" instead “[”.
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Definition 1 (Anti-difference operator). A function g(z) is called anti-
difference of the function f(z) if Ag(z) = f(x).

Theorem 2 (Fundamental theorem of finite difference calculus). Let g(z) be
an anti-difference of f(z). Then, Zzza f(z) = g(b+h)—g(a), b = a+(n—1)h.

Proof. By definition we have:

b b b b b
Y fl@ = Y Agle)=) lglz+h) —g(@)] =) g@+h) - g(z)

= gla+h)+gla+2h)+---+g(b+h)—[g(a) +gla+h)+---+ g(b)]
= gla+h)+gla+2h)+---+g(a+nh)

—lg(a) +gla+h)+---+ gla+n — 1h)]
= g(b+h)—g(a)

which proves the theorem. ]

Next, we collect some tools for finding anti-difference of a function.

Factorial notation or falling powers: Suppose n be any integer, then the factorial
power of z is denoted by z(™ and it is defined by:

™ = z(z — h)(x — 2h)--- (& —n — 1h).
If the length of interval is assumed h = 1, then
™ =gz —-1)(z-2) - (x—n—1).

Example 12. Prove that: Az™ = nz™Y where h = 1.

Solution: By definition, we have:

Az®™ = (z+1)™ — g
= (x—l—l)(:l:)(x—l)ﬂ—m)—x(x—ﬂx—Q)---(x—n—l)
= z(z—1)---(z—n=-2)[(z+1)— (z —n—1)]
= nz(x—1)---(z—n—2)
= nz,
This proves the result. O]

Example 13. Express y = 223 — 322 + 3z — 10 in a factorial notation and
hence show that A3y = 12.
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Solution: Suppose
y = 22% — 327 + 3z — 10 = Az® + Bz®@ + 0z® + D.

To find the constants A, B, C, D, we use the synthetic division as follows:

||||||||||||||||||

= o 22 z constant
: X - 10=D
+0 +2 -1 T
2 _
2 1 5O
+0 +4
3 2 a_ B
+0
2=A
Therefore
y = 223 — 322 4 3z — 10 = 22 + 32® 4 22 — 10,
Also,
APy = AP2z0® 4 3¢@ 4 220 — 10]
= A26z® + 62V + 2]
= A12zY 4 6]
= 12.
Hence, A3y = 12. O

Example 14. Find the function whose first forward difference is 622 + 2.

Solution: Suppose f(z) is the function whose first forward difference is 6z% + 2,
ie.,
Af(z) = 622 +2 = Az® + Bz® 4+ C.

To find the constants A, B, C, we use the synthetic division as follows:

x2 T constant
0 0 2=C
+0 +6
2 6 6= R
+0
3 6=A
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Therefore
Af(z) = 6z® +62Y 42,

Integrating the above we obtain:,
f@) = 26® +32® £ 2:0 4 ¢

This is the required function. O

Exercise (Assignment)

(Q.1) Prove that A3y; = y;13 — 3yiya + 3yir1 — ¥i-
Hint: Use the relation A = F — 1 and E™y; = Yiyn, n =1,2,3.

LY __ Af)
(Q.2) Prove that A (f(m)) = @)@t D
Hint: Think.

, assume h = 1.

12
(Q.3) Evaluate A [%] , assume h = 1.
. 10z-+32
ABS: o e 8 (e )
(Q.4) Evaluate A%[(1 — z)(1 — 2x)(1 — 3z)], assume h = 2.
Ans: —288.
AV
b)) P that A == ——.
(Q.5) Prove that A+ V v A

Hint: Use the relations between A,V and E.
(Q.6) Construct the table of differences for the data below:

T 01234
Flz):| 1.0 15[22[31[46

(Q.7) Express z3—2x2+z—1 into factorial polynomial hence show that A*f(z) =
0.

Ans: f(z) =2® + 2 —1.

(Q.8) Represent the function f(z) = z*—1223+242%—302+9 and all its successive
differences into factorial notation. Hence show that A®f(z) = 0.

Ans: f(z) = 2@ — 62®) +132@ 4z 49,

(Q.9) Find the function whose first forward difference is 223 + 32% — 5z + 4.
Ans: f(z) = 12® + 320 + 420 + ¢,

(Q.10) Find the function whose first forward difference is 922 + 11z + 5.
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Finding the missing terms in a given series

In this section, we deal with the data in which few terms are missing and we
have to recover those missing values. We know that to fit a straight line we must
have two points i.e., two points known means we can assume that a first degree
curve can be fitted. Generally, n points known means a (n — 1) degree curve
can be fitted with the given data. Then we apply the theorem that says the nt®
difference of a (n — 1)™ degree polynomial is zero.

Example 15. Find the missing value in table given below:

e 0 1 2 3 4
Y 1 3 9 ? 81

Explain why the value differ from 32 or 27.

Solution: In the above data, there are 4 points are known (as their both z and y
co-ordinates are known). So, we can assume that y is a third degree polynomial.
Hence all the fourth differences must be zero. Let a be the unknown value of y.
Then the difference table will be as follows:

x|y Ay Ay A3y Aty
011
= 2
113 => 4
=> 6 = a—19
219 = a—15 = 124 —4aq
= a—9 = 105 — 3a
3 |a = 90— 2a
= &l —a
4 |81

Since the fourth difference must be zero, we have 124 —4a = 0 = a = 31.
This value is not 3% = 27, because we assume y a polynomial of degree three in
x, while the function is actually y = 3%, an exponential function. O

Example 16. Find the missing values in table given below:

455 0 1 2 3 4 9 6 7
1 -1 1 -1 1 ? ? ?

Solution: In the above data, there are total 8 points are given. But, only for 5
points the value of y are known for given values of . So, we can assume that y is
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a fourth degree polynomial. Hence, its fourth difference will be constant and the
fifth differences must be zero. Let corresponding to x = 5, 6, 7 the values of y are
a, b, c respectively. Then, the difference table for the given data is as follows:

Ty Ay AQy ASy A4y A5y
011

= —2
1 = 4

= 2 = —8
20 = = 16

= —2 = 8 = a—31
3 I = 4 = a—15

= 2 = a—"T = b— 5a + 26
411 = a—3 = b—4a+11

= a—1 = b—3a+4 = c¢—5b+10a — 16
51|a = b—2a+1 => c—4b+6a—5

= b—a = c—3b+3a—1
6|0 = ¢c—2b+a

= c—b

Since the fifth difference must be zero, we have:

a—31 = 0
b—5a+26 = O0;
c—5+10a—-16 = 0.

The first equation of the above gives a = 31. Putting this value in the second
equation we get:

b—155+26=0
= b=129.

Putting the values of a and b in the third equation we get

c—645+310—-16=0
— b= 351.

Hence, the required values are:
a=31, b=129, c¢=351. H

Example 17. If y, is a polynomial for which fifth difference is constant and
y1 + yr = —7845, ys + yg = 686, y3 + y5 = 1088, find y4.
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Solution:

Pl

l

Since the A%y; =constant, therefore we must have Afy; =0, i.e.,

Ay =0
(E — 1)6y1 = 0
(E® —6FE® + 15E* — 20E® 4+ 15E? —6E + 1)y; = 0
y7 — 6ys + 15ys — 20y4 + 15y3 — 6y2 + 31 =0
(yr +y1) — 6(ys + y2) + 15(ys + y3) — 20y, =0
1
=55 [(y7 +11) — 6(ys + y2) + 15(ys + y3)]
1
Yy = 2—0[—7845 — 6 x 686 + 15 x 1088] = 571.

Hence, the required value is y4 = 571.

Example 18. If Y10 = 3, Y11 = 6, Y12 = 11, Y13 = 18, Y14 = 27, then find Ya.

Solution: For the given values the backward difference table is as follows:
|y Vy v2y V3y v4y
10| Y10 =3
=> Vyn =5
11{ynn =6 = V2y15 =2
= Vyip =9 = Vy13 =0
12| Y12 = 11 = Viy;3 =2 => Viy; =0
= Vyi3 =17 = V3y, =0
13| y13 = 18 = V2yyy = 2
=> vy14 =9
14| Y14 = 27
Now we know that:
_ _1\10
v = yu-10=Eyu=(E") yu
= (1- V)m Y14
10-(10—1 10-(10—1) - (10 —2
= |1-10V + (2' Jyz _ 10-( 3') ( )V3+--- Y14
10-9 10-9-8
= Y1a — 10Vys + Tvzyu S Vg + -+

27—10-94+45-2—-120-0+4 .- = 27.

Hence, y4 = 27.
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Exercise (Assignment)

(Q.1) From the following table find the missing value:

x: 2 3 4 9 6
45.0 49.2 54.1 ? 67.4

Ans: 60.05.
(Q.2) From the following table find the missing value:

x: 1 2 3 4 ) 6 7
2 4 8 ? 32 64 128

Ans: 16.1.
(Q.3) From the following table find the missing values:

x: 0 0.1 0.2 0.3 0.4 0.5 0.6
Y 0.135 ? 0.111 0.100 ? 0.082 0.074

Ans: y(0.1) = 0.123,y(0.4) = 0.090.

LI )
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Interpolation: Introduction to interpolation; Interpolation with equally
spaced interval, forward and backward interpolation formula, Interpolation
with unequally spaced intervals, Newton divided difference interpolation,
Lagrange’s formula for interpolation and inverse interpolation.

Interpolation

The interpolation is a technique with the help of which we can construct the
new data points within the range of given discrete data points. In other words,
if a function f(x) is unknown, but the values of this function at some discrete
points, say o, x1,. .., L are known, then we can find the value of f(x) at a point
x € [xg, ). For this, we approximate the function f(z) by a polynomial of degree
maximum 7 (since the value of function is known at n + 1 points). This process
is called the polynomial interpolation.

According to the nature of points xg, x1, ..., 2, the process of interpolation is
divided into the following;:
(I) Interpolation for equally spaced intervals. In this case, the values xg, z1, ..., z,
are equally spaced, i.e., z; = x¢;_1+hfort=1,2,...,n and h is the space or length
of the interval. For such case, we will use Newton’s forward interpolation formula
or Newton’s backward interpolation formula. If the point at which the value is
to interpolated lies in the upper half of the difference table then we use Newton’s
Forward interpolation formula. Newton’s backward interpolation formula is used
when the point at which the value is to interpolated lies in the lower half of the
difference table.

(ITI) Interpolation for unequally spaced intervals. In this case, the values x, x1,
..., Zn are not equally spaced. For such cases Newton’s divided difference formula
or Lagrange’s interpolation formula is used.

Newton’s forward interpolation formula. Suppose the value of function y = f(z)

is given at n+1 equally spaced points xy, z1 = xo+h,x2 = z1+h,..., 2, = x,_1+h,
and we have to find the value of function at an intermediate point x € [z, Z,].
T — Xy

. Then we know that

Suppose x = xg + rh, i.e., r =

y = f(z) = f(zo+rh)

E" f(z0) = E"yo

(1+A)y

[1+7 C1A 47 CoA? 47 C3A% + -+ +7 C.A] yo.

Therefore:

(r — 1)A2y0 N r(r—1)(r— 2)A

"
Y =yo+ Ay + =, 31 Syo + -+ + ATy,
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Newton’s backward interpolation formula. Suppose the value of function y =
f(z) is given at n+ 1 equally spaced points zg, 1 = zg+h, 2o =21+ h,...,Tp =
Zn_1 + h, and we have to find the value of function at an intermediate point

Tn — x. Then we know that

x € [z, Tp|. Suppose x = x, —rh, ie., r =

y = f(z)=f(zn—rh)

E7" f(zn) = (E_l)ryn

(1 - v)Tyo

= [1-"C\V+ CoV?—"Cs5V3 + -+ + (=1)" "C, V"] yy..

Therefore:

r(r—1)
2!

r—1)(r—2)
3!

Tr
Y=Yn—TrVyp+ W%—( VYn + o+ (=1)"V'y,.

Example 19. The area A of a circle of diameter d is given by the following
table:

d: 80 85 90 95 100
A: 5026 5674 6362 7088 7854
Find the area of circle of diameter 82.
Solution: The forward difference table is as follows:
L () Ay AQy Agy A4y
80 | 5026
=> 648
85 | 5674 = 40
=> 688 = —2
90 | 6362 = 38 = 4
= 726 = 2
95 | 7088 = 40
=> 766
100 | 7854

We represent d by x and A by y. Since d = 82 is near the initial value 80 we will
use the forward interpolation formula. Then, for z = 82 we have r = T—%o _

h
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82 ; 80 = 0-4. Now by Newton’s forward interpolation formula we have:
y(82) = yo+rly+ T(Tm_ Dazy, 4 0= :1)))'(r —2) Aty -
= 5026 + (0 - 4)(648) + 0 4(054 —1) (40) + 0-4(0-4 _61)(0 4= 2)(—2)
_|_0 -4(0-4 — 1)(02-44 —2)(0-4-3) (4)
= 5280.1056 sq. units.
This is the required value. [l

Example 20. From the following table, estimate the number of students who
obtained marks between 40 and 45.

Marks: 30-40 40-50 50-60 60-70 70-80
No. of Students: 31 42 51 35 31

Solution: We construct the cumulative table which is as follows:

Marks(f)ss than y Ay A2y A3y A4y
40 31
= 42
20 73 =>
=> 51 = —25
60 124 = —16 = 37
=> 35 = 12
70 159 = —4
= 31
80 190

We have to find y(45) and 45 is near the initial value 40, therefore we will use the
Newton’s forward interpolation formula. Then, for £ = 45 we have

_x—m 45—40

r= N 10 0-5.
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Now by Newton’s forward interpolation formula we have:

y(45) = yo+rAyo+ %Azyo + r(r = ;)'(T —2) A3y0 T
= 314 (0-5)42) + = 5(055 —1 gy 4 2:5(0-5 —61)(0 5-2) o
L0505 1)(02-45 ~2)(0:5-3) 47y
= 47.87
~ 48.

Thus, the number of students obtained marks less than 45, i.e., y(45) = 48 and
from the table the number of students obtained marks less than 40 is y(40) = 31.
Therefore, the number of students obtaining the marks between 40 and 45 will
be:

y(45) — y(40) = 48 — 31 = 17.

This is the required value. O

Example 21. Find a polynomial which takes the following values:

xT: 0 1 2 3
y: 1 2 1 10

Hence or otherwise, evaluate f(4).

Solution: The difference table for the given function is as follows:

Ty Ay Azy A3y

= (i
1 = => (|

= —1 = |12
2 = 10

= 9
3 (10

Here h =1, zp = 0, and so
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Now by forward interpolation formula we have:

fl) =y
= yo+ rlAyy + %Azyo + rlr = :1)))'(7' —2) Adyg + -
1)+ @(_2) N z(z — 1%(96 —2) (12)

= l4+z—z(x—1)+2z(z—1)(z —2)
= 22° — T’ + 62+ 1.

Now, putting z = 4 in the above formula for y = f(z) we obtain:

f@) = 243 —74%+6(4)+1
= 41.

Hence, f(4) = 41. O

Example 22. Evaluate f(3.75) from the table given below:

45 2.5 3 3.5 4 4.5 3
y: 24.145 22.043 22.225 18.644 17.262 16.047

Solution: Here h = 0.5. Since 3.75 is near to the final value z = 5 we will use the
Newton’s backward interpolation formula. Then,

Tpn—T 5—375

r= = 2.5.
h 0.5
The backward difference table is given as follows:
4 Y Vy V2y Viy Viy Vy
2.5| 24.145
= —2.102
3 |22.043 = 2284
e = (0.182 = —6.047
3.5| 22. = —3.763 => 12.009
= —3.581 => 5.962 => [—20.003
4 |18.644 = 2.199 =5 —7.994
= —1.382 = [—2.032
4.5 17.262 - => [0.167
= |—1.215
5 16.047
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Now by backward interpolation formula we have:

y = f(3.75)

= Y5 —TVys + %Vzm _rlr= :13)!(1" —2) Viys
+7‘(r — 1)(7“4!— 2)(r —3) Vys + r(r—1)(r — i)'(r —3)(r —4) Vous

— 16.047 — (2.5)(—1.215) + (25)2&(0.167) _ @25)(15)(05) _ a9,
+(2.5)(1.5)§2.5)(—0.5) (—7.994) + (2.5)(1.5)(0.15;(()—0.5)(—1.5) (—20.003)

= 16.047 4+ 3.037 + 0.313 + 0.635 + 0.312 — 0.2352

= 20.1088.

Hence, f(3.75) = 20.1088. O

Example 23. Find the values of f(1.5) and f(5.5) from the following table:

z:]0][1]2](3[4[5[6]7
y:|1]-1]1]2]12|30|45 |50

Solution: The difference table is given below:

a Ay A%y Ady Ay APy Ay ATy
0
=
1 |=1 =
= =
21 = -1 =
=> => il e
312 = 9 = —11 8
= = = 1 = |—14
412 = 8 = —10 =
= 18 => IS
5 (30 = -3 4
- i > i
6 |45 = |—10
=
7 |50

Now use the forward interpolation formula for f(1.5) and backward interpolation
formula for f(5.5). O

Exercise (Assignment)

(Q.1) Find the values of f(2.1) and f(2.4) from the following table:
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x: 2.0 2.1 2.2 2.3 24 2.5 2.6
y= f(z):| 0.135 - 0.111 0.100 - 0.082 0.074

Ans. f(2.1) =0.123 and f(2.4) = 0.0904.
(Q.2) Fit a polynomial to the given data:

x: 4 10
Y : 1 3 8 16

(=]
(0.0]

Hence find y at z = 5.
(Q.3) Given that sin(45°) = 0.7071, sin(50°) = 0.7660, sin(55°) = 0.8192, sin(60°) =
0.8660. Then find sin(52°).

Hint: Use Newton’s forward difference formula with £ = 52. Ans. 0.788.
(Q.4) Find the number of mens getting wages between Rs. 10 and Rs. 15 from

Wages 0-10 10-20 20-30 30-40
Frequency 9 30 35 42

the following data:

Ans. 15.
(Q.5) Find the cubic polynomial in z for the following polynomial:

x :| 0 1 2 3 4 5
y | -3 3 11 27 57 107

Ans. f(z) =2%— 222+ 72— 3.

(Q.6) The pressure p of wind corresponding to velocity v is given by the following
data. Estimate p when v = 15:

v 2] 10 | 20 | 30 | 40
p | 11 | 20 | 44 | 79

Ans. p(15) = 1.325.
(Q.7) Find f(42) from the following data:

z : | 20 25 30 | 35 | 40 | 45
fz) :| 354 | 332 | 201 | 260 | 231 | 204

Ans. f(42) =~ 219.

Interpolation with unequally spaced intervals

For unequally spaced intervals we will use two formulae: (i) The Lagrange’s for-
mula; (ii) Newton’s Divided Difference formula.
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(i) Lagrange’s formula. Suppose, the values of function y = f(z) at points

Lo, L1,T2y.-.,Tn be Yo = f(x(])ayl = f(ml)’y2 = f($2)7 ey Yn = f(mn) Then7 the
Lagrange’s approximated polynomial of degree n is given by:

(x —z1)(x—x2) (T —23) -+ - (T — )

1®) = Go—22) (w0 — z2) (@0 — )+~ (@0 — 7) "
(x — zo)(z — x2)(x — x3) - - - (T — xp)
(o — 20) (31 — 22) (31 — 33) -+ (21 — Tn) "

(z — 2o)(z — z1)(z — @2) -+ - (T — Tn—1)

4.4 (xn —xg)(xn — xl)(xn _ $3) (xn - -’/Un—l)

n-.

(ii) Newtons divided difference formula. First we define the divided difference
of a function. Suppose xg, x1,x2,...,Z, be the values of arguments x and yy =

f(zo),y1 = f(z1),y2 = f(x2),...,yn = f(x,) be the corresponding values of y.
Then the first divided difference of f is denoted by A f(zg) or flzo,z1] and

A f(zo) = flzo,z1]
f(x1) — f(zo)

1 — Zo .

Similarly, we define

432 f(wo) = flwo, 71, 7]
flz1, 2] — flxo, z1]
o2 — I

and so on.

Suppose, the values of function y = f(z) at points zg, 1, Z,...,Z, be yo =
f(zo),y1 = f(x1),y2 = f(x2),...,yn = f(x,). Then, the Newton’s divided differ-
ence approximated polynomial of degree n is given by:

f(@) = f(zo)+ (z — o) A f(mo) + (x — z0)(z — 71) A f(20)
+oo+ (T —z0) (T —21) - (T — Tp1) A" ().

Example 24. Find the Newton’s divided difference approximated polynomial
for the function given below and hence find f(8), f(9) and f(15).

- 4 5} 7 10 11 13
y=f(x):| 48 100 294 900 1210 2028

Solution: The divided difference table for the given function is as follows:
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z | flz) Af(z) N f(z) M f(x) A f(x)
4 | 48
100 — 4
050 48 .
5 | 100 9:_22 — 15
204 — 1 1 -
97 5oo . 2110 145 N
T 294 2?3_?:21 i:o
. — B 11—4
90100 279 - 2171 2108
N 1 o
10 | 900 310 — 2020 11— T
1210-900 _ o L7 332700 1370
11—10 B 13 278
11 | 1210 409 — STONE. ‘i
13— 10
20281210 _ o
13— 11
13 | 2028

Therefore, the Newton’s divided difference approximated polynomial will be:
f(z) = f(xo) + (z—m0) f(xo)

+(z — z0)(z — 71) A f(20) + (2 — 96'0)(-75 —31)(z — 22) A° f(0)

+(z — z0)(x — 71)(z — 72)(z — 33) A" f(0)

+(& — o) (z — 1) (z — 22)(z — 73)(x — z4) 4° f(20)
= 484 52(x —4)+15(x —4)(x — 5) + (x — 4)(z — 5)(z — 7).

Thus,
f(z) =48+4+52(x —4)+15(x —4)(z —5) + (x — 4)(xz — 5)(xz = 7). (1)

Putting x = 8 in (1) we get
F(8) =48 +52(8 — 4) + 15(8 — 4)(8 — 5) + (8 — 4)(8 — 5)(8 — 7) = 448.
Similarly, f(9) = 648 and f(15) = 3150. O

Example 25. Given that f(0) = —18,f(1) = 0,f(3) = 0,f(5) =
248, f(6) = 0, f(9) = 13104, then find f(z).

Solution: Here xg = 0,21 = 1,29 = 3,23 = 5,14 = 6, x5 = 9. Therefore, the points
are unequally spaced. We shall use the Newton’s divided difference interpolation
formula for the calculation of f(z). The divided difference table is as follows:
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z | f(=) Af(x) A f(x) A f(x) A f(x) A flz)
0 ([l
1
01+ 08 — 18
1 -6
0—0 i —
3 0 —;24;0:731 31+5:6
—248 — * 6—0 o
: 30:7124 1264—&-131:31 15 6:1
B i 5 9—0
5 |—248 % — 124 1591 131 i
24 B . b
06—0— 58 — 948 10390 3124 — 151
6 0 y 43698 —5248 — 1030 B
13104 — B
390 0 = 4368
9 |13104

Therefore, the Newton’s divided difference approximated polynomial will be:

f(@) = f(zo) + (z —m0) A f(x0)
+(z — o) (x — 1) A? f(z0) + (z — z0)(z — 71)(z — 72) A® f(x0)
+(z — 20)(z — 1) (z — 2) (z — 3) A* f(0)
+(z — o) (z — 1) (z — 2) (z — 23)(x — 74) A f(o)
= —18+4 18z — 6z(x — 1) + 7.4z(z — 1)(x — 3)
+1.87z(x — 1)(z — 3)(z — 5) + 1.63z(z — 1)(x — 3)(z — 5)(x — 6)
= 2° — 92% + 1823 + 9z — 18.

This is the required polynomial. O

Inverse Interpolation. Sometimes it will be required to find out the value of z
corresponding to a value of y. Keeping in mind x and y are variables representing
independent and dependent variable, in such case we have to treat y as inde-
pendent variable and = as dependent variable so that the interpolation formulae
remain valid in this case also. Since y is considered as the independent variable,
we have to check whether the values of y are equally spaced or not and accordingly
we have to decide which interpolation formula is applicable.

Example 26. Find the value of x for y = 2.2 from the following table:

x :| 0 1 2 3 4 5
y | 1 2 3 ) 12 30

Solution: Since the values of y are not equidistant, we use the Newton’s inverse
divided difference formula. Then, the divided difference table for y will be:
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2 4
y|z Af(x) A f(z) N f(z) A f(x) A f(x)
1 1-0
o
21
2 {[ ;;i —0
21 N —0.167—0
iy = —0.042
3-2 5—1
0.5—1 N
3 I 2 = —0.167 %01'042:0,005
QJ — .
32 _
5 =05 —0'2‘;”2‘167 =0.013 ~ 0
0 0.143—0.5 n 001 —0.
5 JiE 0.143-00 _ R 0.001 = (G- SN,
A 12-3 30 —2
12;5 =0.143 % — 0.001
B 0.056 — 0.143 *
12 4 Y . 0.003
30— 5
5—4
= 0.056
30 — 12
30| 5

Therefore, by Newton’s divided difference formula we have

r = z0+ (Y —yo) P o
+Hy — o)y —31) A% zo+ (¥ — %) (¥ — y1)(y — v2) A® 29
+(y — y0)(y — y1) (¥ — y2)(y — y3) A" zo

+(y —10)(y — 1) ( — ) (y — ¥3) (y — va) A° zg

= 0+ (22-1)(1)+ (22— 1)(2.2—2)(0) + (2.2 — 1)(2.2 — 2)(2.2 — 3)(—0.042)
+(2.2—1)(2.2 — 2)(2.2 — 3)(2.2 — 5)(0.005)

— 1.2+ 0.008 + 0.003

= 1.211.

This is the required value of z. O

Example 27. From the given table find for what value of £ when y = 13.6:

z | 30 35 40 45 50
y | 159 14.9 14.1 13.3 12.5

Solution: We will find the value x(13.6) by Lagrange’s inverse interpolation for-
mula. Here zy = 30,21 = 35,29 = 40,23 = 45,24 = 50 and yy = 15.9,y; =
14.9,yo = 14.1,y3 = 13.3,y4 = 12.5 and y = 13.6. Then, we have:

_ )l —y)y—) + (y —v0)( — y2) (v — y3)(y — v4) 1
(%o — 1) (o — 2) (o — ¥3) (Yo — %) (41 — ¥0) (1 — ¥2) (%1 — ¥3) (31 — ya)

(y — yo)(y Y1)y — y3)(y — va) To + (Y —y0) (W — v1) (¥ — v2)(y — ya)
(Y2 — 90) (Y2 — 1) (Y2 — ¥3) (Y2 — ya) 2 (y3 — Yo)(y3 — y1)(y3 — ¥2) (Y3 — va) ’
(y — yo)(y yl)(’y Y2)(y — ¥3)

( yl)( )

(ya — v0) (ya — y1) (Y2 — v2) (y4 — y3)

_|_

Zy.
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Putting all the values we get:

(13.6 — 14.9)(13.6 — 14.1)(13.6 — 13.3)(13.6 — 12.5)

r = 30
(15.9 — 14.9)(15.9 — 14.1)(15.9 — 13.3)(15.9 — 12.5)

(13.6 — 15.9)(13.6 — 14.1)(13.6 — 13.3)(13.6 — 12.5

(14.9 — 15.9)(14.9 — 14.1)(14.9 — 13.3)(14.9 — 12.5

35

(13.6 — 15.9)(13.6 — 14.9)(13.6 — 13.3)(13.6 — 13.6
(14.1 — 15.9)(14.1 — 14.9)(14.1 — 13.3)(14.1 — 13.6

)

) ) ) )

) ) )( )

) ) ) )40

(13.6 — 15.9)(13.6 — 14.9)(13.6 — 14.1)(13.6 — 13.6)
+

) ) ) )

) ) )( )

) ) ) )

45

(13.3 — 15.9)(13.3 — 14.9)(13.3 — 14.1)(13.3 — 13.6

(13.6 — 15.9)(13.6 — 14.9)(13.6 — 14.1)(13.6 — 13.6
(12.5 — 15.9)(12.5 — 14.9)(12.5 — 14.1)(12.5 — 13.6
= 43.195.

50

This is the required value of z. O

Exercise (Assignment)

(Q.1) Use Newton’s divided difference formula to find the form of f(x), hence
find f(4):

T 0 2 3 6
f(z) :| 648 704 729 792

Ans. f(z) = —2? + 30z + 648.

(Q-2) Given log(654) = 2.8156, log(658) = 2.8182, log(659) = 2.8189 and log(661) =
2.8202. Find log(656).

Ans. Use Lagrange’s interpolation formula log(656) = 2.8169.
(Q.3) Use Lagrange’s formula to find the value of f(9), where:

T s} 7 11 13 17
f(z) :| 150 392 1452 2366 5202

Ans. f(9) = 810.
(Q.4) Apply Lagrange’s formula and find the value of x when f(x) = 15

T ) 6 9 11
y=f(x) :| 12 13 14 16

Ans. Use Lagrange’s inverse interpolation formula z(15) = 9.125.

obdd
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Integral calculus: fundamental theorem of integral calculus, length of curves,
volume, and surface area of revolution of curves.

Riemann Integral

The idea. Suppose, f be a continuous function defined on [a,b] and we want to
calculate the area bounded by this function with the z-axis from point x = a
to point = b. This area is shown by the shaded (blue) part in the Figure 1.
Riemann suggested that this area can be calculated by dividing this area into
small rectangles of infinitely small width.

Area bounded by
y = f(x) with x-axis

X
O a b g
Figure 1. Function f on [a, b]
To understand this, we need the following definitions:
Definition 2. Consider a closed interval I = [a,b]. By a partition of I
we mean a finite set P = {xg,x1,...,2,} of points from I such that
a = x0,Z, = band g < 1 < -+ < x,. The interval Iy = [zg,z1], o =
[z1, 23], ..., I, = [x,_1, z,| are called the subintervals of the interval I = [a, b].
By A1, Ag, ..., A, we denote the length of subintervals I, I, ..., I, respec-
tively, i.e., A; = x;_1 —x; for i = 1,2,...,n. It is obvious that, in a partition

of subintervals of equal length, as we increase the number of points in the
partition P (i.e., the value of n), the length of each subinterval decreases.

Suppose, we divide the interval I = [a,b] into three subintervals (i.e., n = 3)
and we take the partition P = {a = z¢, 21, %2, z3 = b} as shown in the following
figure.
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X

O zp=a T Ty x3=0b

Figure 2. Division of interval into three subintervals

Define m; = inlf f(z) and M; = sup f(x), where s = 1,2, 3. Then, in Figure 3:
rel; zcl,

A; = area of first rectangle bounded between zy and z7 = Mj(z1 — zg) = M1Aq;

Ay = area of next rectangle bounded between z; and zo = Ma(xe — 1) = MaAy;
As = area of third rectangle bounded between x5 and z3 = M3(x3 — z2) = M3As.

A A
A
Y| Ay = My(x5— ) Y| Ay = my(zs — a5)

M; \
f f I~ ms
X X
] y > A 4 >
O zg=a *1 Ty w3=0> O zg=a *1 Ty x13=0>
«— «—
T3 — T2 T3 — To
Figure 3. Upper Sum Figure 4. Lower Sum

Then, the sum of all these areas is called the Upper Sum of f over the partition
P and it is denoted by U(P, f), i.e.:

3
U(P, ) = MiA; + MyAg + M3Ag = ZMzAz
=1

Similarly, in Figure 4 we define the Lower Sum, denoted by L(P, f) and

3
L(P, f) = miA1 + maAs + mgAz = ZmzAz
i—1
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It is clear that, the value of U(P, f) is some larger than the exact area bounded
by the cure f(x) with the z-axis from a to b; and the value of L(P, f) is some
smaller than the exact area bounded by the curve f(z) with the z-axis from a
to b. Thus, there is an excess of area in U(P, f) and a lack of area in L(P, f).
It is obvious that, as we increase the number of points in the partition P, the
rectangles becomes more narrower and the length of subintervals decreases. As
the rectangles becomes more narrower, the upper sum U(P, f) starts to decreases
and so the excess of area in U (P, f) decreases. Similarly, as the rectangles becomes
more narrower, the lower sum L(P, f) starts to increase and the lack of area in
L(P, f) decreases as well.

A A
Y Y
f F ™
X X
O a b g O a b g

VN
VN

Upper Sum decreases Lower Sum increases
Figure 5.

Finally, as the number of points (we denote it by “n”) in the partition P tends to
infinite, then the upper sum U(P, f) reaches to a definite value called the Upper

Riemann Integral and denoted by | ; f(z) dz. Similarly, as the number of points in
the partition P tends to infinite, then the lower sum L(P, f) reaches to a definite
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value called the Lower Riemann Integral and denoted by f: f(z)dz. Thus:

rb n b n
L f(x)dz = nll—>noloz M;A; and L f(x)dz = nll_)IIolOZmZAz
i=1 Ja i=1
b b . . . .
If [[f(z)de = f_a f(z) dz, then the function f is called Riemann integrable over
[a, b] and the common value of upper and lower Riemann integrals is denoted by
ff f(z)dz and it is equal to the area bounded by the curve with the z-axis from
x=atozr=>.
Theorem 3 (FIRST FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS).

Let f be an integrable function over [a,x] for each x € [a,b]. Then the
function F' defined by:

H@zfﬂwuxe@w

is differentiable and F'(x) = f(z) for all x € (a,b).

Definition 3 (ANTIDERIVATIVE OR PRIMITIVE OF A FUNCTION). A function
F' is called a primitive or antiderivative of a function f on an open interval

(a,b) if F'(z) = f(z) for all x € (a,b).

For example, the function sinz is a primitive of the function cosz in every
interval. Notice that, the function sinz as well as the function sin z + ¢, where ¢
is any arbitrary constant, a primitive of cosx. Therefore, primitive of a function
are not unique.

Theorem 4 (SECOND FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS).
If F is an anti-derivative (primitive) of a continuous function f on (a, b), then:

fﬁ@ﬁ:F@—F@ for all € [a,b].

List of some fundamental integrals

n+1
(a) [z"dz = ] + ¢, where n # —1;
(1
(b) ) ;dm =Inz +¢;
r mx
(c) ) e™dr = + ¢, where m # 0;

T

~+ ¢, where a > 0;

Q) [ avde =2
()Ja " na
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]
(e) ) sinzdxr = —cosx + ¢;

-
(f) ) cos zdx = sinx + ¢;

]
(2) ) sec? xdr = tan +¢;

[ 2
(h) ) cosec”zdr = — cot +c;
~ [
(i) | secztanzdr = sec+c;

i
() ) sec zdx = In(secz + tanz) + ¢;
-
(k) ) cosecz cot xdx = —cosecz + c;
(1) ) coseczdzr = In(cosec — cot x) + ¢;

= sin"' z + ¢, where |z| < 1;

=tan 1z 4 cor —cot x4+ ¢

J 24+a?2 a a
i dx
_ 2 _ 2
(r)J x2_a2—lnx—|— x? — a?| + ¢
([ dx
8) | ———==In|z+ Vz?+a?|+¢
()J V2 + a?
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Length of Curves (Rectification)

The finding of the length of a line is quite simple task in geometry. But, in
case of an irregular curve given by an equation y = f(x) it is not such an easy
task. For this purpose, we use the concept of calculus. Suppose, we have to find
the length of arc of the curve given by y = f(x), from point A to the point B,
i.e., the arcAB.

£ :Q(x + oz, y + 0y)

y= 1@

O i:a a:.:b

Suppose P(z,y) be any point on arcAB, and Q(z + dz,y + dy) be any point
on this arc in the vicinity of point P. Suppose arcP(@) = ds. Now consider the
triangle PRQ. Then it is obvious that: (PQ)? = (PR)2+(RQ)?, ie., (PQ)?=
dz2+dy>. As the point @) tends to the point P, i.e., 6z, 5y — 0, then arcPQ — Js.
Therefore, §s? = 6x% + dy?. Since 6z, dy — 0, the small quantities &s, dz, dy now
reduce into the infinitely small quantities ds, dx, dy respectively. Thus, we obtain

(ds)? = (dx)* + (dy)?, or
2
ds =141+ (@) dz.
dx

Now, the whole length of the arc AB can be obtained by summing (integrating)
ds from x = a to x = b, i.e.:

arc(AB) = J:za ds = Lb 1+ (%) 2dx. (2)

The formula (2) is useful when the integral can be performed easily with respect
to . The following forms can be used as per the convenience and requirement:

(A) Cartesian form: arc(AB) = ds —f 1/1 + d:z: dy
y =c

(B) Parametric form: arc(AB) = ds —f \/ ) dt.
t=t; t
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(C) Polar form: arc(AB) = ds = J r2 + d0 or:
0 o o \ d9
arc(AB) = J ds = J \/

r=rq

Y B

£ Q(r+6r, 0+ 60)

Q

YA
P/ )

o9~ P(r,0)
/ X

O
ZPOX =0, ZQOX =0+60, OP' ~OP =r, OQ = r+0r, PP =160, ds ~ +/(dr)2 + (r66)2.

Example 28. Find the length of the arc of the parabola z? = 4ay measured
from the vertex to one extremity of the latus-rectum.

z? dy =«

Solution: Since x? = 4ay, we have y = ~— and —> = —.
4a dr 2a

O

The required length of the arc is the arcOL. Now

Lt (Z_Z)z = it (20,)2

1
= —/(22) + 22
» (2a)2 + x
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Therefore:
2a
arcOL = f 1 -I— d = — (2a)? + 22
(2 ) 2a
= — \/ (2a)2+22+-—=1In ( (2a)? + x2>
2a i 2 0

= % aV8a2? + 2a*In <2a + V8a )] [2a In (2a)]

= a [\/ﬁ +In (2a + \/8a2) —In (2a)]

= a[\/§+ln<1—i—\/§>] :
Thus, the required length, arcOL = a [\/§ +1In (1 + \/5)] O

Example 29. Find the length of arc of the semi-cubical parabola ay? = x

from the vertex to the ordinate z = 5a.

Solution: Given equation of semi-cubical parabola is:

ay? = 3.
3/2 3
Hence, y = ud therefore, Y _ ﬁ The required length of the arc is the
va’ drz  2+v/a
arcOA.
ty % /A(5a, 5\/§a)
v 7 -
o e
I
O
N
Now:
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Therefore:
5a 5a
A = 1 = — \/4
arcO J + d d =5 \/_ a+ 9z
— 4 3/2
= m/& 3. 9[(4“+9"”) }0
1
_ 73,3/2 _ 93, 3/2]
v
_ 3%,
27
335
Thus, the required length, arcOB = ?a U

Example 30. Find the whole length of:
(a) cardioid: r = a(1 + cos#);

(b

) cycloid: z = a(f —sinf), y = a(1 — cosb);
(c) astroid: = acos®t, y = asin®t (or, 22/3 4 y?/3 = a?/3);
)

(d) circle: x = acosé, y = asinf (or, 22 + y? = a?);

Solution: (a) Given equation of cardioid is

r = a(1l + cosf).

d
Therefore, d_g = —asin @ (polar form). Hence:

dr 5
2 — 2 2 :
T +<d0) \/a (14 cosf)? + (—asinb)
= 2acos(6/2).
Now, the whole length of the Cardioid

r=2f r2(>d0

= 2 J_W 2a cos (0/2) df

= 4a[2sin(/2)]°.,
= &a.
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Y
0=m 0=
< O » X
A(2a,0
(20,0) .
Ol A(2ma, 0)
r = a(l+ cos0)
(a) Cardioid (b) Cycloid
A
Y B(0,a)
A'(—a,0) A(a, 0)
0 X
YV
\Y
& 7
X
B'(Oa —CL) (2))
(c) Astroid (d) Circle

(b) Here, x = a(6 —sinf), y = a(1 — cos ) (parametric form), so:

dx dy i
5= a(1l — cosf), i asin@.

Therefore:

\/(%)2 i (%)2 - \/[a(l — cos)]” + (asinf)® = 2asin(6/2).

Now, the whole length of the cycloid is the arcOA. Note that, at point O, § =0
and at point A, § = 2w. Therefore,

2w 2m
OA = J \/ d9 f 2asin(6/2)do
0

—2 cos( 0/2 2”

= 8a.
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(c) Here, = acos®t, y = asin®t (parametric form), so:

dx d
— = —3acos’tsin t, & _ 3asin’t cost.
dt dt

Therefore:

de 2—i— % 2 = \/[—3acosztsint]2—|—(3asin2tcost)2:3asintcost
dt dt .

Now, the whole length of the astroid is the L =arcABA’B’A. Note that, at point
A, t =0 and at point B, § = 7/2. Therefore,

/2 2 2 /2
L = 4><arcAB=4J d_a: + @ dt=4f 3asint costdt
0 dt dt 0

w/2
= 6af sin(2t)dt = 3a [— cos(2t)]5/2

0
= 06a.

(d) Try yourself. O

Exercise (Assignment)

(Q.1) Find the length of the arc of the parabola y? = 4a(a — ) cut off by the
Y-axis.

N

Ol

Ans: arc BA= a[v2 + In(1 + v/2)].

(Q.2) By finding the length of of the curve show that the curve z = a(6—sinf),y =
a(1 — cos) is divided in the ratio 1: 3 at 6 = 2.

(Q.3) Find the length of the curve y = In(sec x) from z = 0 to = = 7/3.
Ans: In (2 + \/g)

(Q.4) Find the length of the arc of the parabola y?> = 4azx cut off by the line
3y = 8z.

Ans: a(15/16 + In 2).
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(Q.5) Find the whole length of the loop of the curve 3ay* = z(z — a)?
A Y

A(a, 0)
0 X

Bay’ = a(x —a)” Ans: 4“0‘/\/g

(Q.6) Find the length of the curve y?> = (22 — 1)3 cut off by the line z = 4.

>
3/2
Y @/x\ B(4,7/%)
//@v
Y X

A(l,o
2

A Ans. 37.85

Volume of solid generated by the revolution of area of curves

The idea. Suppose, the area enclosed by an arc of the curve y = f(z) from
x = a to x = b with z-axis is revolved about the x-axis. Then a solid shape is
thus generated and we have to find the volume of this solid. For this, we cut
vertically this solid into a large number (say “n”) of thin discs each of thickness
dz. Consider such a disc PP'QQ’ shown in the figure below. Then, the volume

of the solid can be obtained by adding the volume of all such discs.

Now we obtained the volume of disc PP'QQ’. Let the coordinate of point @ is
(z,7), then the volume of the disc PP'QQ’ will be év = my?éx. As n — oo the
small quantities dx and v reduce into the infinitely small quantities dr and dv
respectively. Therefore, the volume of disc PP'QQ’ is dv = mwy?dz. Thus, the

volume of the solid generated is V = f;’: LJdv= 5 nyldz.
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Remark 1. (A) If the area bounded by the arc of curve (from y = ¢ to y = d)
with y-axis is revolved about the y-axis, then the volume of generated solid

is given by V = | ;:c dv = fcd nrldy.

(B) If the area bounded by the arc of curve (from point A to B) with line L
is revolved about the line L, then the volume of generated solid is given by

V = ff dv = ff 7T(R1R2)2(.[1.[2).
A

(C) In polar form the volume of revolution about the initial line is:

2 (P
V== f 772 sin 6d6.
3 Jo=s,
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Example 31. Find the volume generated by revolving the area in the first
quadrant bounded by the parabola y?> = 8z and its latus rectum about the
Z-axis.

Solution: Given equation of parabola is y? = 8z
and its latus rectum is the line LL’' whose equa-
tion is x = 2, as shown in the figure. The re-
quired volume is the volume generated by the
area bounded by the arc OL from x = 0to z =2
with the z-axis. Therefore, the required volume O |\ dz
is:

2 2
V = J myldzx =J 7(8z)dz = 16m.
0 0

L~
Thus the required volume V' = 16m. O
22 2
Example 32. Find the volume generated by revolving the ellipse — + e 1,
a

about the z-axis.

2
Solution: Given equation of ellipse is x—2 +
a
2
%2 = 1. The ellipse is shown the figure. The
required volume is the volume generated by
the area bounded by the arc A’/BA from z =

—a to x = a with the z-axis. Therefore, the

dz _\
required volume is: A'(—avo)w yA(a,ﬁ)
a a b2

\ B(0, b)

V = f 7ry2dm=f 7r—2(a2 — 2 dx B'(0,—b)
_a —a @
2mb? (@ 4
= 7T—2 (a® — 2%)dx = ?ﬂabz.
a
4
Thus the required volume V = ?ﬂ-abz. O

Example 33. The curve y*(a + z) = 22(3a — x) revolves about the axis of z.
Find the volume generated by the loop.
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Solution: Given equation of curve is y%(a + x) = A
z2(3a — z). Given curve is symmetric about the
z-axis and cuts the z-axis at points O(0,0) and
A(3a,0), hence a loop OA’AO is formed. The b'e
curve is shown the figure. The required volume ~ o e A<§a
is the volume generated by the area bounded by

the arc OA’A from z = 0 to £ = 3a with the
x-axis. Therefore, the required volume is:

3a 3a 2 _
V = J nylde = f ﬂMdaﬁ
0 0 a—+x

3a 40,3
= 7TJ [—x2—i—4aa:—4a2—|— ] dx
0 r+a

$3 3a
= T [—3 + 2a2® + 4a® In(z + a)]

0
= 7wa®[8In(2) — 3].

Thus the required volume V = ma®[8In(2) — 3]. O

Example 34. Find the volume of the solid generated by the revolution of the

2/3 2/3
curve: £ = acos®t, y = bsin®¢, or <£> + (%) = 1, about the z-axis.
a

Solution: Given equation of curve (astroid) is
z = acos®t, y = bsin®t. The curve is shown
in the figure. The volume generated by revolving
the area bounded by the arc A’BA with z-axis
from x = —a to x = a about the z-axis. From
the figure it is clear that this volume is equal to
the twice of the volume generated by the revolu-
tion area bounded by the arc BA with the z-axis
from x = 0 to £ = a about the z-axis.

[TTTN

=
T
8
ZI\
AT

At point z = 0 we have t = g and at £ = a we have t = 0. Thus, the required

volume;:

0 0
V =2 f Ty’dr = 2 f m(bsin®t)%d(a cos® t)
t=m/2 /2

w/2 3
= 67rab2J sin’ t cos’ tdt = 6mab? L )( 1( )2)
0

1
i. - 3! b2
= 6mab® 927\/57?3 1 _32a_

2.9.7.5.3. 1 /7 105
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b2
Thus the required volume V = 32#%. Il

Example 35. Find the volume of the solid generated by the revolution of the
cardioid: 7 = a(1 4 cosf) about the initial line from 6 = 0 to 6 = .

Solution: Given equation of cardioid is
r = a(1 4 cosf). The cardioid is shown
in the figure. It is clear from the figure
that the required volume is formed by
the area bounded by the arc OBA from
§ = 0 to 0 = m with the initial line. Thus, g — .
the required volume:
2 J T 4
V = - 7r® sin 0d6
3 #=0
= 2% J ma®(1 + cos 0)? sin d6.
0_

0
Putting 1 + cosf =t we obtain sin df = —dt and

0 -0 = t—2
0 > = t—0.

Hence:
t3
3

v 2ma® J2t3dt _ 2ma’ [ ]2 _ 87ra,3.
3 Jo 3 0 3
3
Thus the required volume V = 8ma

Exercise (Assignment)

(Q.1) Find the volume of the spindle-shaped solid generated by revolving the area
of astroid z?/3 + y?/3 = a?/® about z-axis.
32mad

Ans. .
5 05

(Q.2) Find the volume of sphere of radius a.

Hint: revolve the area of upper half of the circle z2 + y?> = a? about the
x-axis.

(Q.3) Find the volume of the solid generated by the revolution of area of parabola
y? = 4az formed by the its arc from = = 0 to z = h and z-axis about the
T-axis.

Ans: 2arh?.
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(Q.4) Prove that the volume of a right circular cone of height h and base of radius

T is %71’7”2h.

Hint: It is generated by the revolution of the line y = %(r — ) about y-axis.

Surface of revolution

The idea. Suppose, an arc of the curve y = f(x) from = = a to x = b is revolved
about z-axis. Then a solid shape is thus generated and we have to find the surface
area, of this solid. For this, we cut vertically the surface of solid into a large number
(say “n”) of thin rings each of thickness ds. Consider such a ring PP'QQ’ shown
in the figure below. Then, the surface area of the solid can be obtained by adding
the surface area of all such rings.

Now we obtained the surface area of the ring PP'Q(Q)’. Let the coordinate of point
Q is (z,y), then the surface area of the ring PP'QQ’ will be 6S = 2myds, where
s is the length of the arc QQ'. As n — oo the small quantities ds and S reduce
into the infinitely small quantities ds and dS respectively. Therefore, the surface
area, of the ring PP'QQ)’ is dS = 2myds.

We know that the length of the arc QQ' = ds = /(dz)? + (dy)2. Therefore,
the surface area of the small ring:

2
dS = 2nyds = 2my+/(dz)? + (dy)? = 27y (1 + %) dz.

Now the surface area of the whole revolution can be obtained by integrating dS
from x = a to x = b, i.e., the required surface:

b b / 2
S=f ds=J27ry 1—|—<@) dz.
T=a a dx
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Remark 2. (A) If the curve is revolved about the y-axis, then the surface of rev-

olution:
d:p
S = ds—J 27r$\/1—|— dy

(B) If the curve is revolving about the z-axis or the initial line (polar form), then
the surface of revolution:

0 02 dr
S = ds = f 2mrsinf4 [ r2 + ( ) dé.
6=0, 6, do

(C) If the curve is revolving about the y-axis or the line § = 7/2 (polar form),
then the surface of revolution:

0 0 dr
S = ds = f 2nrcos 04 /12 + ( ) do.
0=0, 0 do

1

Example 36. Find the surface area of the solid generated by the revolution
of ellipse z? + 4y? = 1 about z-axis.

Solution. The equation of ellipse is 2% + 4y? = 1,
dy

B0,
ie, — = — 2 Therefore: ( )
o A
X
a2 ) (T, O)Qiyfm 0)
1 — = —+/2% + 1692
i (d:p) 4y vy - ;

/4 — 322

1
4y
Now, the surface area of the revolution of ellipse is equal to the twice the area of
revolution of the arc(BA) about z-axis. On this arc, the value of x varies from

B(z =0) to A(z = 1). Thus, the required area:

1 dy2
= 2 2 1
S Loﬂy —|—<dt)dx

4
= 47TJ y - —\/4 3x2 d:1:—7r\/_J 3 x? dx

i (3]

ol

= V3
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1
Thus, the required surface area S =« [— + L] . O

2 33

Example 37. Find the surface area of the solid generated by the revolution of
the arc of the parabola y? = 4ax bounded by its latus rectum about z-axis.

Solution. Given equation of parabola is:
y? = daz. Y

d 2
Hence, d—y — 2% The equation of latus rec- ﬁ
£ )
tum LL' of parabola is x = a, and the re- 8
quired surface of solid is the surface of solid X
generated by the revolution of arc OL about —

x-axis. Now: 0O

x—l—a

The value of z varies from O(z = 0) to L(z = TR
a). Thus, the required area:

a dy 2
S = 2ryr 1+ — | dx
=0 dx

a
= 27rf Vidax
z=0

+adx

x

= 47r\/5j Vz +adz
z=0

8ma?
= = 2v2 —1].

8 2
Thus, the required surface area S = 7;a [2v/2 — 1]. O

Example 38. Find the surface area of the solid generated by the revolution
of astroid 22/3 4+ ?/3 = a?/3 about z-axis.
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Solution. The parametric equation of as-
troid is:

T =acos’t, y=asin’t.

Therefore,

dx 2 dy 2 . Q) ‘v
\/(%) + (%) = 3asintcost.
B'(Oa _a)

Now, the surface area of the revolution of astroid is equal to the twice the area of
revolution of the Acr(BA) about z-axis. On this arc, the value of ¢ varies from
B(t =0) to A(t = w/2). Thus, the required area:

/2 dz\ 2 dy 2
= 2 2 — —
d Jtzo 7Ty\/<alt) i (dt> “
/2

/2
= 47rJ (asin®t - 3asintcost) dt = 127ra2J sin*t cost dt
0 0

=

n

8
,ji‘
aasss

4

L(3)r(
= 127ra2—(2) 7( )
2I'(3)
_ 12ma?
= =
12ma?
Thus, the required surface area S = 75ra . O

Example 39. Find the surface area of the solid generated by the revolution
of cardioid r = 5(1 + cosf) about the initial line.

Solution. The equation of cardioid is

d
r = 5(1 + cos#), ie., d_z = —b5sind.

Therefore,
dr\?
r? + T = 5v2+ 2cosf = 10 cos(6/2).

Now, the surface area of the revolution of cardioid is equal to the area of
revolution of the Acr(OA) about z-axis. On this arc, the value of 0 varies from
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A(0 = 0) to O(0 = 7). Thus, the required area:

dr
— ‘/ 2 4
S Jo027ry r d0 d9

= 207rJ rsind cos(0/2) d
0
= 407TJ 5(1 4 cos ) sin 6 cos(6/2) db
0
= 4007 J sin(0/2) cos*(6/2) db
0
= 1607.
Thus, the required surface area S = 1607. O
Example 40. Find the surface area of the solid generated by the revolution

of circle r = 2a cos @ about the initial line.

Solution. The equation of circle is r = 2acosd, 4,_ . /9

ie., % = —2asin . Therefore:
dr\? p 6=0
r2 4+ (@) = V/4a2cos?6 + 4a2sin20 o C(a,0) X

= 2a.

Now, the surface area of the revolution of cardioid is equal to the area of

revolution of the Acr(OA) about z-axis. On this arc, the value of 6 varies from
A(0 =0) to O(0 = 7/2). Thus, the required area:

/2 dr 2
= 2 —
S fo:o 2y [ % + (d@) do
/2

= 27rJ r sin 02a d6
0

/2
= 47raf 2a cosfsinf db
0

. sin? 0™
= > |,

= 4ma?.
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Home Work (Assignment)

(Q.1) Find the area of the surface generated by the revolution of the cycloid
x = a(t —sint), y = a(l — cost) about z-axis.
_ 64ma?

Ans: .
ns: —

(Q.2) Find the surface area of a right circular cylinder of radius r and hight h.

Hint: Right circular cylinder is generated by the revolution of line y = r
about z-axis, from z = 0 to x = h.

(Q.3) Find the surface area of a cone of hight h and radius r.
T

h—1y) about y-axis,
=y y

Hint: Cone is generated by the revolution of line x =

from y =0to y = h).
ddbdbd
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= J

Evaluation of integrals using gamma function. Multiple integral: double
integral, area by double integral. Evaluation of triple integrals.

Beta and gamma functions

Beta function. For n, m > 0 the beta function of n,m is denoted by £(n,m) and

1

B(n,m) = f 2" N1 — z)™ da.

0

For n > 0, the gamma function of n is denoted by I'(n) and it is defined by:

['(n) = J e 2" .
0

Property I. Prove that 8(n,m) = B(m,n). (the beta function is symmetric
in its arguments).

Proof. By the definition we have:

1

B(n,m) = f " Y1 — z)™ dz.

0
On putting 1 — z =y, i.e., dr = —dy we have:

=0 = y—1
r—=1 = y—=0.

Hence: .

0
Bln,m) =~ [ (1 -y tymlay = [ -yl
1 0
As, in definite integral variables are dummy, hence we have:

B(n,m) = J ™11 — 2)" ldx = B(m,n).

0

This proves the result. ]

/2
Property II. Prove that 8(n,m) = 2 f sin®®~! 4 cos®™ ! 9d6.
0
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Proof. By the definition we have:

1
B(n,m) = j " (1 — 2)™ dg.
0

On putting = sin? 0, i.e., dz = 2sin 0 cos 8df we have:

r—0 = 0-—>1
T
r—1 = 0—>§.

Hence:

/2
B(n,m) = f (sin®6)"~! (1 — sin®6) ml (2sin 6 cos 6d6)
0

/2
= 2 f sin?” 20 cos?™ 26 - sin 6 cos 6db
0

/2
2 f sin?” 1 0 cos®™ 1 0d6.
0

This proves the required result.

Property III. Prove that I'(1) = 1.

Proof. By the definition we have:

On putting n = 1 we have:

o0
I'1) = f e Tzl ldy
0

This proves the required result.

Property IV. Prove that I'(n + 1) = nI'(n) (reduction formula for I'(n)).
Hence, prove that I'(n + 1) = n! if n is a positive integer.
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Proof. By the definition we have:

On replacing n by n + 1 we have:

o0

F'n+1) = J e_’”a:"H_ldJ;:J e “z"dx
0 0

= [—x”e‘w]go — f n-x" ! (—e“”) dx
0

o
= —04+0+ nf " e %dx
0
= nl'(n).
If n is positive integer, then replacing n by n — 1,n — 2,...,2,1 in the above

formula, we get:
F'n)=n-DI'n-1),I'(n—-1)=(Mn-2)'(n-2),...,I'(2) =1I'(1) = 1.
On combining all the above results, we get:

I'n+1) = nI'(n)=n-(n—DI'n—1)=n-(n—1)-(n—2)I'(n —2)
=n-(n—-1)-(n—-2)---2-1
= nl

This proves the required result. ]

1
Property V. Prove that I' <§> = /7.

Proof. By the definition we have:

: 1
On putting n = g e get:

1 o0 o0
r (—) = J e T/ gy = J e Tz 2y,
2 0 0

Putting z = ¢?, i.e., dz = 2ydy we have:

z—=0 = y—0
T —00 = Y —>00.
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]. 0 2 0 2
r (—) = f e Vy . (2ydy) = QJ e ¥ dy.
2 0 0

Since variables are dummy we can write:

I (1) = QJ e_yzdy, and I' (1) = 2] e % dz.
2 0 2 0

On multiplying these two values we get:

1\1? o fo0 o,
[I‘ (—)] = 4f f e @) dxdy.
2 o Jo

Since [,° [ e~ @) dpdy = % (we will prove it later), hence we get:

F()] -5

1
Hence, T (5) = /7. []

Hence:

Relation between beta and gamma functions

Theorem 5. If n, m are positive integers, then prove that:

L(n)['(m)

B(n,m) = Tn+m)

Proof. By definition we know that
o
['(n) = f e %z tdx.
0

On putting x = 12, i.e., dz = 2ydy we have:

=0 = y—0
T —00 = Yy —O00.

Hence, I'(n) = [§° e ¥y 2(2ydy), or:

I'(n) = QJ eV 2 ldy. (3)
0
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Since variables are dummy we can write:

I'(n) = 2] e 2 1dz, and T (m) = 2] eV y2m1gy.
0 0

On multiplying these two, we get:

D ()T (m) = Hooe - 1dx]-[2f°° 1Py 1dy]
= f J e~ @)=Ly 2m=1 gy,

To evaluate the above double integral, we change the variables into polar coor-
dinates. Then we know by the relation between cartesian and polar coordinates
that

z=rcosf,y=rsind,r*=z*+y? dxdy = rdrdf.

Since the limits of integration are from x,y — 0 to x,y — oo, hence the region
of integration is the positive quadrant of xy-plane. We know that in the positive
quadrant, the polar coordinates changes from r — 0 to 7 — oo and 8 — 0 to
0 — 7 /2. Hence:

(/2 [, -1 2m—1
F'(n)'(m) = 4 e (rcosf)™ " (rsinf) rdrdf
JO JO
(/2 oo )
= 4 e p2tm)—1 o201 g Gin =1 9 drdg
JO JO
rT/2 T 00 )
= 2 2f e T p2ntm) =11 60g2n1 g gin2n—1 g dp.
Jo L Jo

09]

From (3) we get I'(n + m) = 2[ e~ r2™+m™) =14 On putting this value in the
0

above equation we get:

/2
I'(n)l'(m) = 2 f I'(n +m) cos®™ ! §sin**~* §d0
0
w/2
= 2I'(n+m) J cos® 1 fsin®* 1 9d.
0

/2
Also, we know that B(n,m) = 2f cos? 1 9sin?" 1 9dh. On putting this value
0
in the above equation we get:
'(n)T'(m) = T'(n+m)B(n,m).

L'(n)T'(m)

Thus, f(n,m) = T(ntm)’
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Corollary 6. If n,m are positive integers, then prove that:

1 1
r(5)r (%)
J sin® 6 cos? 0dO = )

2
0 2F(p+g+ )

r (p + 1)
/2 /2 N
sin? d — J co 9 — 2 ) VT
v T pt2 E
2
Proof. We know that if m,n are two positive integers then

['(n)I'(m)
I'(n+m)’

Hence, show that f
0

B(’I’L, m) =

w/2
Also, since f(n,m) = 2f sin?" ! 0 cos®™ ! §dh, hence we obtain:
0

/2 T T
f sin®" ™1 0 cos®™ ! §df = T(n)T'(m) :
0 2I'(n +m)

: p+1 q+1 : :
Putting n = 5 m = 5 orp=2n—1,q=2m — 1 in the above equation
we get:

1 1
o()r (5
J sin” @ cos?0df = .
0 pP+q+2
2T —

Putting p = 0 and g = 0 respectively in the above relation we get:

p+1) (1) (p—i—l)

'i——|I'| = | ——

/2 (

J sin? 0d6 2 2) _ 2 . VT
p+2

0 p—|—2 2
r(252) v (55
q+1 (1) (q—l—l)
'i——|I'l = 'l ——
/2 (
f cos? 0df = 2 2 = 2 ﬁ
0 q—|—2 q—|—2 2
2T T r T

This proves the result. ]
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Evaluation of integrals

1 1 n—1
(ln —) dy, n > 0.

Example 41. Prove that I'(n) = f y

0
Solution: We know that:
(0 .0]
['(n) = J e 2" .
0
, : _ dy
Putting x =In—, i.e.,, y=¢e7® and dzr = —?, also:
(]

=0 = y—>1
T =00 = y—0.

o= [l ()L )

This proves the result. 0

Hence:

le 42. Prove th W e
E 42, that = Axam®¥ =
xample rove that 5(n,m) JO (14 y)ntm Y JO (14 z)ntm v

Solution: We know that

1
B(n,m) = f " N1 — z)™ da.
0

1 dy
Putting t = —, i.e., dt = ———, also:
& 1+y (1+1y)?
T—0 = y—
z—1 = y—0.
Hence:

B(n,m) = Z(ﬁ) (“ﬁ)m [‘(1 iyw]

[ 00 m—1
— y—dy
o (I+y)ntm

N R Sl—"— f S —
o (L+gy)ntm 1 (T+y)ntm

(.

[

[
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1 d
Putting y = p in the second integral of the above equation we get dy = —z—j, ,
also:
y—>1 = z—-1
y—+o00 = z—0.
Therefore:
(1>m—1
1 m—1 0 .
Y z dz
B(n,m) = f ———dy —I—J (——
1 + n+m 1 n+m 22
o (1+y) 1 (1 N _)
z
rl ym—]_ 1 zn—l
= ———d ——d
Jo (L+g)mtm y+J0 1+ z)mm ™
rl xm—]_ 1 xn—l
= |, de + Jo de (variables are dummy)
_ rl xm—l + xn—ld
 Jo (L) v
This proves the result. 0
< x¢ [(c+1)
Example 43. Prove that J —dr = ———-—=.
g C° (Inc)ett

Solution: Given integral is

o0

xc o0 xc
—dx = ; dx.
0 C(E 0 e.’t nc

d
On putting xlnc = y, ie., do = l_y we get y > 0asz — 0 and y — oo as
nc

xr — 00. Hence:

xto o (T Yy dy 1 * 11—y, _ Llc+1)
J;] cwdx B JO (Inc)cey lnc_(lnc)cﬂfg Y ¢ dy_(lnc)cﬂ'

This proves the result. O

L dzx v T(1/4)
E le 44. P that: (i = . ;
xample rove that: (i) fo it 4 T(3/4)

(i) J " Jambds — %r (1/4)T (3/4).

0
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1
Solution: (i) On putting z2 = sin 6, i.e., £ = v/sin § we have dz = 2 sin™"/2 6 cos 6d6
and

r—>0 = 060
r—>1 = 0-—>n/2

Hence:

0o 2 1 —sin?6

Jl dz f’rﬂ 1 sinY/20cos6df
0

/2
— % f sin~/2 9dp

r( 1/2+1) .
r( 1/2+2) 2

R0,
Cr()
+1
(i) Since fo " sin? @ cos? §df = (P (p)-l—q( 2) )
/2

/2
f vV tan 0d6 =f sin'/2 0 cos~1/2 0d0
0

0

") ()

o (1/2 - 1/2+2)

2

, hence the given integral

will be:

_ %r(1/4)r(3/4).

This proves the result. O
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0 9 1 1 3
Example 45. Evaluate: (i) J a % dz; (i) f z? lln (E)] dzx.
0 0

Solution: (i) Given integral is:

& 2 o0 2
f o dz = f e~br gy
0 0

Wy
2¢y/bylna
r—>0 = y—0
r—00 = Yy —00.

On putting bz?Ina = y, we have dz = and

Hence:

% a2 * dy 1 Ly 1/2-1
fo o dr = fo ey2 —bylnazz —blnafo eyy/ dy
- e’ ()
2v/blna  \2
NLs
2Wblna

f: z* [m e)rdm.

1
On putting In (—) =y, ie,x=¢eY wehave dr = —e Y%y and x - 0 =
x

(ii) Given integral is:

y —~> oo,z —1 = y — 0. Hence:

1 1 3 0 00
f z [ln (—)] dr = J e W3 (—e_ydy) =f e Y3 dy.
0 & 00 0

Again putting by = z, we have dy = _5z and limits of integration remains same.
1 3 ) 3 0
1 z° dz 1
]_ — d = —_— . = — d
Jo x [n(m)] x Jo € e T 6o . e “z* dz

This is the required value. O

Hence:
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1 T

a5 le dx .
0 V1—z4 0 V1+zt 4\/5'

Example 46. Prove that

1,2 1
xodr dz
Solution: Let I; = f and I, = f . Then, on putting z? = sin 4,
0 0

V1 -zt . V1+ 7t
i.e., z =sin26 in I, we have dz = 3 sin /2
6 — w/2 as x — 1. Hence:

0 cosfdf, and 6 — 0 as z — 0 and

/2 : 1
L = & .~ sin"Y2 0 cos 0d0

0 1 —sin?8 2

1 /2
= 2 f sin'/2 6 cos® Odo
0

() ()0 6)
o (1/2+0+2> 4 F(Z)
"(4)r(2)
"(4)

On putting 2> = tan ¢, i.e., z = tan'/2 ¢ in I, we have dz =

tan~1/2 ¢ sec? pdo

2
and ¢ - 0 asx — 0 and ¢ = 7/4 as ¢ — 1. Hence:
I__JW 1 umﬂ%%8m¢_fﬂ do
? v/1+tan? ¢ 2 v/24/2sin ¢ cos ¢

— \/_ fﬁ a sin~/2(2¢)d 2\/_f sin”Y2qpdip  (putting 2¢ = 1))
ﬁ J sin~1/2 1 cos® pd)
0
~1/2+1\ . (0+1
() ()

2v2 2F(—U2;0+2)

() G)

)
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Hence, we have

1 22de 1 dx
X = 11X12
0 vV1—2t 0o V1+z4

o
= i
This is the required result. O
/6 7
Example 47. Prove that J cos®(36) sin(66)df = 384"
0

Solution: Given integral is:

/6
I = f cos®(36) sin?(66)df
0

_ J ™ cos6(36) [25in(30) cos(30)]2 0
0

/6
= 4 J sin?(36) cos®(36)do.
0

Putting 30 = z, i.e., df = d?x’ we have § 40 — z —>0and 0 > 7/6 —

x — /2. Hence:

/2 d
I = 4J sin? z cos® x—x
0 3

4 /2
= - J sin? z cos® zdz
3 Jo

() ()

3 2F(2—|—8—|—2)

2

4F(§)F@

3 2r(6)
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1 3 1
3 2-5-4-3-2-1
I
T 334
This is the required result. O

2a
Example 48. Evaluate J z3\/2az — x2dz.
0

Solution: Given integral is:

2a 2a
I = J 23/ 2ax — x2dz = J 27/%2\/2a — zdz.
0 0

Putting = 2asin? 0, i.e., dv = 4asinf cos0dd, we have x — 0 => 6 — 0 and
r — 2a = 6 — /2. Hence:

/2
I = J (2a sin? 0)7/2\/2a— 2a,5in? @ - 4a sin 0 cos 0d0
0

/2
= 64a° f sin® 0 cos® 6d6
0

8+1 2+1
r(5)r (7))
64a° - 2 2

2+ 2
- <8+2+ )

0 G)

or (6)

Since, I'(n + 1) =nI'(n), I'(1) =1 and T (%) = 4/, hence we get:

1 1
2:-5-4-3-2-1
_ Tnad®
8

This is the required result. O
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1
3
Example 49. Prove that J 3% (1 m)3/ 2dx = ] 27T8
0

Solution: Given integral is:

1
I = f 2% (1 — z)** da.
0

Putting x = sin?, i.e., dz = 2sin# cos #df, we have § — 0 as z — 0, and  — /2
as r — 2a. Hence:

w/2 .2 1\3/2 . 2324 .
I = (sin®6)*/? (1 — sin®#) ™" 2sin 6 cos d6
0

/2
= QJ sin* @ cos* 0d6
0
. (4+1> r <4+1)
_ . 2 2
or (4-|—4-|—2)
2
) )
=)=
() )
B re)
1
Since, I'(n + 1) =nI'(n), I'(1) =1l and T (§> = 4/, hence we get:
3 1 3 1
,_ 23 VT g VT e
B 4.3-2-1 128
This is the required result. O
Example 50. If I, = [ 2"(a — z)'/2dz, n > 1, then prove that:

(2n + 3)I,, = 2anl,_; — 2z"(a — )%/

a 5 4
Therefore, prove that J 2\ ax — z2dz = ;Tg :
0

Solution: Given that:

I, = j z™(a — 2)dx, n > 1.
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Using integration by parts we get:

2 2
I, = —gx”(a — )32 — J nx" 1. g(a — z)3?(—1)dz
2 2n

= —gx”(a — )% 4 3 f " Ha — )3 2dx

= —gxn(a — )% 4 2?77, f " Ha—z)"?(a — z)dz

2 2 2
= —Zz"a—2)¥*+ % J 2" Yo —z)Y?dx — ; f z"(a —

3

2 . 3/2 , 2na 2n
- -z =

7@ —2) T+ = = 3

Rearranging the terms we get:
(2n + 3)I, = 2anl,_; — 2z™(a — z)*/2.
This is the required result.

Using the above relation for n = 5/2,3/2, we obtain:

1
_[5/2 = g [5&]3/2 — 2x5/2(a — $)3/2]

5a
_oa,  1osp 3/2
S I3/ 4517 (a—z)
5a 1 1
= 3% [3a11/2 —25%%(q — )3/2] — Zx5/2(a — )%
5a” 5a 3/ 32 1 5. 3/2
= 1611/2——95/(65 )/—Zx/(a—x)/

= 5a” J 2 (a — x)Y2dz — @w:‘ﬂ(a — )32 - ix5/2(a —z

16 24

Now, using the above relation we obtain:

f 2Vazx — x2ds = f %% (a — 2)2dz

- [15/2] 0

_ 5a’ 1/2 1/2 SRy 32 1 55

= [1—6Jx (@ —x) d:p—ﬂm (a — x) — 4 (a —x
_ 5a® (¢ 1/2 1/2

= 16 fo z*(a — x)"*dz.

Putting « = asin? @ we have dz = 2asin 6 cos #df, and

r—0 = 00
r—a = 60—-m/2

) 2dx

)3/2

)3/2.

a

0
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Hence, we have:

a 2 rm/2
f 2\ ax — x?dx = 51%.} (asin® 0)%(a — asin® 0)/?(2a sin 6 cos 6d8)
0 0
4 rm/2
_ S sin? (1 — sin® 6)'/2 cos 6d6
8 Jo
2+1 2+1
'—— |\ —-
_ o sin 6 cos® fdf = ba”. 2 2
8 J, 8 (2 Yo+ 2)
2 ————
2
3 3
| I I A P
w T(0)7G)
16 ra)
1
Since, I'(n + 1) =nI'(n), I'(1) =1l and T (§> = /7, hence, we get:
RS =
a —_— 7'(' « — o 7'('
J v ax — x2dx = o0 2 2
. 16 2.1
_ 5ma’
-128°
This is the required result. O

a

Example 51. Prove that f (a—2)™ 2" de = o™ '8(m,n), where
0
a,n,m > 0.

Solution: Given integral is:

I = J (a —2)™ ' z" \da.
0

Putting x = ay, i.e., dr = ady, we have y - 0 as x — 0, and y — 1 as = — a.
Hence:

1
I = j (a— ay)™ (ay)™tady

— gmtnl fl (1 _ y)m—l yn—ldy
0
= a™" 18(m,n).

This is the required result. O
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00 $8 (1 _ $6)
Example 52. Prove that J ———>dx =0
o (1+z)*
Solution: Given integral is:
;o foo 8(1—$6) _J«oo $8—$14
Jo A+ Jo 1+
00 9—-1 00 15—1
- f() (1 + z)°+15 _fo (1 + z)i5+9°
00 mm—l
Since, B(n,m) = B(m,n) = fo de, hence:
= 0.
This is the required result. Il
00 n—1
Example 53. Prove that J x—ern = M
o (a+bx) amb™
Solution: Given integral is:
00 xn—l
I = ———dx.
Jy T
On putting bx = ay, i.e., dx = %dy, we have:
z—0 = y—0
r—00 = y— 0.
Therefore:
n 1 a
I = it
J bn—1 a+ay)m+n ™Y
y"
= —d
ambnjg 1+ )"
_ B(n,m)
arb™
This is the required result. O
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Exercise (Assignment)

o I'(5)
.1) Sh hat [° “-dx = :
(Q.1) Show that |, 4wdar: ()5
. _ _ T /2 _ T
(Q.2) It is given that I'(n)I'(1 —n) " , then show that [;/* v/cot 6d6 A
(Q.3) Show that | vemdda x [ 2
. ow that sin X = .
Jo J 0o Vsinf
(Q.4) Prove that ! ™ (Inz)"dz (=1)"n! here n is a positive integer and
: \s = W v
Jo (m+1)nH P ©
m > —1.
r2a 7
(Q.5) Prove that 23 (2ax — 22)%2dx = oma :
Jo 16
(b do V7T(1/n)
.6) P that = .
(Q.6) Prove tha Jo A—gn 2~ al (I/n+1/2)

1 1
Hint: Put 2 = '/, i.e., dx = —y}/™dy, the given integral — fOl yl/m=1(1—
n n
1
y) 2 dy = —B(1/n,1/2).
n

/2

s
.7) P that tan" zdr = ———.
(Q.7) Prove tha Jo an” xdx 2sec(n7r/2)
Hint: Use I'(n)['(1 —n) = sm(nm) hen:
/2 1+mn 1 -n 1 s U
I= in" dr = _ :
fo sin” z cos " wdz = ﬁ ( 2 2 ) 2sin (T =) 2008("'2—")
/2
(Q.8) Prove that J (1 — %)z = 3—7T
. 256

Hint: Put x = sin# and then use gamma function.

(Q.9) Express fo z™(1 — )pdx in terms of gamma function, hence evaluate: (i)
01 23(1 — 22)4da; (ii) [ 251 — 2%)0da
s: -0 (™, p+1) and () a5 (1) 355
92 _ 63ma®

(Q.10) Prove that J m S

Hint: Put « = 2asin? 6 and then use gamma function.
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Double Integral

Z
P (wi yYi ,zi)
A
Y 0 Y
X X 8y;
(%)
The idea

(I) Double integral as volume. Suppose, z = f(z,y) represents a surface S,
as shown in the figure (a). Suppose, the region R, i.e., the rectangle ABC'D
be the region of integration. We divide this region R into a large number of
small rectangles (say “n”) of areas A1 = §z10y1, Ag = dz20y2, . . ., Ay = T, 0Yn.
Let P'(z;,y;) be a point in the i* area A;. Let P(x;,1;,2;) be a point on the
surface S, so that, z; = f(z;,¥;) and P'(z;,y;) is its projection of point P on the
region R. Then, the volume of the rectangular solid of hight z;, i.e., f(=;, ;) and
the base area A; = dx;0y; will be dv; = 2z;0z:0y; = f(zi,y;)0z:0y;. Similarly, we
calculate the each volume vy, vy, ...,v,, and calculate the sum of volumes of all

such rectangular solids thus obtained, i.e., the sum Z v = Z f (i, y;)0zidy;. Tt

i i=1
is clear that this sum of volumes is not exactly the volume bounded by the surface
S with region R. Now, when n — 0o, each small value (i.e., ) transform into the
infinitely small quantity (i.e., d). In this case, the value of the sum of volumes is
called the double integral of the function f over the region R, and it is denoted

by JJ f(z,y)dzdy, i.e.,
R

|| £, p)dzdy = 1 > S(eu)dmou:
R =

It is clear that the quantity ff f(z,y)dzdy represents the exact volume bounded
R

by the surface S (i.e., z = f(z,y)) with the region R.
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(IT) Double integral as area. Suppose R be a given region in XY -plane and we
have to find the area of this region. We consider the function z = f(z,y) = 1. Now
it is obvious that the double integral of function z = f(z,y) = 1 over this region
will be equal to the volume of the lamina L shown in the figure (c). Since the hight
of lamina is 1, its volume, i.e., the double integral of function z = f(z,y) = 1
over the region R will be equal to the area of region R. Therefore:

Area of region R = JJ f(z,y)dzdy = JJ dzdy.
R R

—
L

()

(III) Double integral as mass of lamina. Again, suppose the lamina L has a
uniform surface density (mass per unit area) p = p(z,y). Then the mass of the
infinitely small area dxdy will be p(x,y)dzdy. Therefore, the mass of the whole

lamina
M = J J p(z,y)dzdy.
R

Similarly, for different meanings of the function f(z,y) the double integral of
this function over a region R can be describe in different ways. Actually, the
significance of double integral is directly related to the meaning of function f(z,y).

Solving double integral and limits of = and y. If the double integral is of the
d b

type [ [ f(z,y)dzdy, then we first solve the inner integral, i.e.,
Cc a

d b d b
[ [ st@ oty = "] [ ste.v)as] ay.

Note that, when we integrate with respect to variable x, then y must be treated as
a constant and vise versa. In case, when the limit of integration is not constant,
then the order of integration is decided by the variable present in the limit and

we perform the first integral with respect to that variable, which is not present in
b 22

the limits of inner integral. For example, in the double integral [ [ f(z,y)dzdy,

we first integrate with respect to y (since y is not present in the limits of inner
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bef(w,y)dxdy= Jb ff(w,y)dy dz.

Finding the limits when the region of integration R is given.

integral), i.e.,

A A

Y Q Y Q

f(z) R f(z) R

sy
g(x) i g(x)
~ | \\ P |
P <+—>
X dx X

0 Tr=a rz=1"0 g o T =a r=2>b g

We understand this with an example. Suppose we have to calculate the integral
[ f(z,y)dzdy, where R is the given region of integration bounded by the lines
R

z = a, x = b and the curves y = f(x) and y = g(x) as shown in figure. Since
we are obtaining the limits from region R, we can integrate with respect to any
variable first. Suppose, we integrate first with respect to y then z is treated as
constant and we move the elementary area drdy from the bottom to the top and
parallel to y axis (or along to a line parallel to y axis) in such a way that it always
lies inside the region of integration. Thus, a strip P() is formed which is parallel
to y axis (if you integrate first with respect to x, then a strip parallel to y is
formed). The lower end P decides the lower limit of y, and since the lower end P
is situated on the curve y = g(z), the lower limit of y is y = g(x). Similarly, the
upper end P decides the upper limit of ¢, and since the upper end P is situated
on the curve y = f(x), the upper limit of y is y = f(x).

Now, we integrate with respect to = therefore y is treated as constant and now
the strip PQ will move from left to right and along a line parallel to z axis in
such a way that the strip always remains inside the region R and its lower end P
always lie on the lower limit curve g(x) and the upper end @ always lie on the
upper limit curve f(z). The strip moves from x = a to z = b to cover the whole
region R, and so, the limits of z are from x = a to x = b. Thus,

b | flz)

[[ s@yizay= | [ s.9)dy| @

R a |g(z)
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2 1
Example 54. Evaluate: [ [ (2 + y?)dzdy.
00
Solution: The given integral is:
2 1 2 1
ff 2% 4 92 dwdy = J f (w2+y2)dx dy
0 0 0 Lo
f2' [ 23 !
= —+ xy2] dy
J L3 0
0
1
2
= = d
J L3 +y] Y
0
_ 10
2 1
Thus, [ [ (22 + y?)dzdy = ¥. O
00
1Vz
Example 55. Evaluate: [ [ (22 + y?)dzdy.
0 z
Solution: The given integral is:
1 vz 1 [ vz
fJ z® + ¢ dxdy = J J(wz—l—y)dy dz
0 =z 0 K
1
r [ 37ve
2 Y
= = d
] 'y + 3L T
0
rl‘ 3/2 3
_ 52 T 3 T |y
)1 + 3 x 3] T
0
_ 3
- 35
1Vz
Thus, [ [ (2% +y?)dzdy = 3. O
0z
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1 V1422 dzrd
Example 56. Evaluate: [ [ %
0 0 1 B A Yy
Solution: The given integral is:
1 V/14z2 1 -w/1+.1'2
f J dzdy B J f dy Jx
14+22+9y2 1+ 22+ g2
0 0 0o [ ©
1
- Vita?
1
= - tan 'Y ] dx
o L Vv 1+ x2 1+ 2 0
1
o dr
4) 1+ 22
0
T 1
= — |In (CE-l— 1+x2)]
41 0
= %ln(l +2).
1 V1422 dzdy T
Th —————=—1In(1 2). O
us, [l g = +v2)

Example 57. Evaluate: [[ zydzdy, where R is the positive quadrant of the
R

circle 2 4+ y? = a?.

Solution: The region of integration R is the

shaded part OAB in the figure. We integrate first

with respect to y. Then we consider a strip PQ
parallel to Y-axis lying inside the region OAB. N4
The lower end P of strip PQ) is situated on the K
X-axis, therefore the lower limit of y is y = 0
(the equation of X-axis). The upper end @ is
situated on the circle 22 + y? = a2, therefore the
upper limit of y is y = Va2 — 22. Now, to com-
plete the region of integration, this strip moves
from z = 0 (i.e., the Y-axis) to the point z = a
(i.e., the point A), and so, the limits of = are from
x =0 to x = a. Therefore:
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ff xydzdy

R

0 Jo

[

ra'2:|\/a2_7$2 1

Jo L2 ], 0

4
Thus, [[ zydzdy = il
R 8

Example 58. Evaluate:

Solution: The region of integration R is
the area of ellipse as shown in the fig-
ure. We integrate first with respect to
y. Then we consider a strip P@ par-
allel to Y-axis lying inside ellipse. The
lower end P of 2strip 2PQ is situated on

the the ellipse w_z + y_2 = 1 below the X-
a* b

axis, therefore the lower limit of y is y =

JJ (@+y)*dndy, where R s bounded by Sty

Va2 o [ pvai=a?
xydxdy = J f ydy | zdz
0o |Jo

a
zdx = 5[ z(a? — %) dx

2 2

y
=1

—2\/ a? — z2. The upper end @ is again
situated on the same ellipse but this time
on the above of X-axis, therefore the up-
per limit of y is y = 2\/ a2 — x22. Now, to
complete the region of integration, this
strip moves from z = —a (i.e., the point
A’) to the point £ = a (i.e., the point A),
and so, the limits of x are from z = —a

to £ = a. Therefore:
JJ (x + y)2da:dy f J
R
ra b Va?—z?
JO

J-a

Q a2—rx2
o VaZ—z2 a

a

(2 + y*)dzdy = QJ

—a

3a3

b:I: 2
o | a 3a3

[w2y +

2—z2

(z® + 2zy + y*)dzdy

~b /a2

y_3 b\ /a2 a2
3 0

dx

a 2 3
!b% a? — 22+ b—(a2 — )3/2] dx

b3
— 224 ——(a® - )3/2] dz.
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Putting = = asin @, the above equation reduces into the following form:
w/2 b2
Jf (z +y)%dzdy = 4abJ (a2 sin? 6 cos® § + 3 cos* 0) dx
0
R
[T GRTE2)  PT(5/2)T(1/2)
B 2I'(3) 3 2I'(3)
_ by,
4
b
Thus, [[(z + y)?dzdy = %(a2 + b%). O
R

Example 59. Evaluate: [[ r2dfdr, where R is the are of the circle r = a cos .
R

Solution: The region of integration R
is the shaded circle as shown in the fig-
ure. We integrate first with respect to r.
Then we consider a strip OP along the
radius vector r lying inside the region R.
The lower end O of strip is situated on
the pole, therefore the lower limit of r
is r = 0. The upper end P is situated
on the circle r = acosf, therefore, the
upper limit of r is r = acosf. Now, to
complete the region of integration, this
strip rotates from = —7/2 to 6 = 7/2,
and so, the limits of # are from § = —x /2
to § = w/2. Therefore:

0=—m/2

w/2 racosd /2 acosf
ff r2dfdr = f r2dfdr = f U r2dr] dé
—r/2J0 —w/2 LJO
R

3 pm/2 3

_ 2 cos® 0 — 20°T(2)T'(1/2)
3 ), 3 2r(5/2)

_

= 5

Thus, f1£ r2dfdr = %.

Example 60. Evaluate: [[ 7sinfdfdr, where R is the region bounded by

R
r = a(1 + cos ) above the initial line.
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Solution: The region of integration R is the
shaded cardioid as shown in the figure. We
integrate first with respect to r. Then we
consider a strip OP along the radius vector
r lying inside the region R. The lower end
O of strip is situated on the pole, therefore
the lower limit of r is » = 0. The upper
end P is situated on the cardioid » = a(1 +
cosf) therefor the upper limit of r is r =
a(l + cosf). Now, to complete the region of
integration, this strip rotates from 6 = 0 to
0 = 7, and so, the limits of # are from 6 =0
to 8 = w. Therefore:

rm ra(1+cos 0) ™ a(1+cosf)
Jf rsin 0dOdr = rsin 0dOdr = J f rdr | sin 0d6
A Jo Jo 0 0

T2 a(l+cos9) a2 (™
= 5] sin 6df = ) f (14 cos 6)? sin 6] df.
Jo

| 2 10 0
Substitute 1 4+ cos @ =t we obtain sin 0df = —dt and now the new limits of ¢ are
from ¢t = 2 to t = 0. Therefore
a2 (Y a? [¢3 0 40>
infdfdr = —— | t*dt=—|—| ==—.
J[ rnoasar = 5 [Fea=—5 5] =%
R
Thus, [[ rsinfdfdr = %.
R

Example 61. Evaluate [;° [, e~ (@*+9’)dzdy by transforming it into polar co-
ordinates.

Solution:
______ Q _ y=o0 . P
YA : Yn __________
I
I
d
F 2 /4 :
ol N !
dyI : 8 Ny |
1 d9 1
I I
d : !
I I
3 X K| X
@) P @) 9= 0

(a) Cartesian coordinates (b) Polar coordinates
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Here, in the limits of integration, x and y both varies from 0 to oo, therefore the
region of integration is the first quadrant as shown in the figure (a). Now, to
change the integral into polar coordinates, we note that the elementary area in
polar coordinates is dxdy = rdrdf. Also, since x = rcosf, y = rsinf, we have
x?+y? = r2. For the new limits of r and 6 we see the figure (b). We first integrate
with respect to r. Then we consider a strip OP along the radius vector r and its
lower end O is situated on pole and the upper end in on oo, therefore, the limits
of r are from r = 0 to r = oo. To complete the region of integration (i.e., the
first quadrant) this strip rotates from 6 = 0 to # = 7/2, which are the limits of .
Therefore:

00 oo s /2 (oo ) /2 00 )
f f e~ @) drdy = f e " rdrdd = f U e " rdr] df
0o Jo o Jo 0 0

2 [ -2 o /2
- J € ] do = f do
0 2 1, 2 Jo

N

Thus, [;° [;°e™ @ ) dedy = % O

Exercise (Assignment)

dxdy.

11 dydzx
(Q.1) Evaluate g{ Tl

. T
Ans: .

1 2
(Q.2) Evaluate [ [ e¥/*dzdy.
00

o 1
Ans: 5

@ e ydxdy
3) Evaluate
(@) Braluate | f 57

Ans: %.

(Q.4) Evaluate [[ zydzdy over the region R, where z + y < 1 in the positive
R

quadrant.
.1
Ans: ;.

(Q.5) Evaluate [[ zy(z + y)dzdy over the region R bonded by the curves y = z?
R

and y = x.

. 3
Ans: £5-
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dmdy

(Q.6) Prove that J J In(a) In(b).

VIte®  drdy T
(Q 7) Prove that J J m = Z 11'1(1 + \/é)

CL3

m‘a

a r/a?—y?
. rove that — x° —ycdrady =
(Q.8) P h Jf Va2 — 22 — y2dxd
0 Jo

Area by Double Integral

Example 62. Find the area between the curves y?> = 4az and z? = 4ay.

Solution: The required area is the area OPAQO.
Consider the elementary area drdy in the region
OPAQO. We first integrate with respect to y.
Then, this elementary area moves along the y
axis in the region OPAQO and forms the strip
PQ. The lower end P of strip is situated on the
parabola 2?2 = 4ay and the upper end Q on the
parabola y? = 4ax. Therefore, the limits of y are
from y = ff—z to y = 24/ax. Now, to complete the
region, this strip moves along the X-axis from
point O, i.e., from x = 0 to the point A, i.e., to
x = 4a, therefore, the limits of x are from x =0
to x = 4a. Thus, the required area:

da 2+ ax 4a 2/ax 4a
Area OPAQO = f f2 dxdy = f f dy| dr = f [y]z;/a? dz
0 J&

o [J2 0 i
= f:a (2\/@— g) dz = %az.
Hence, Area OPAQO = %Cﬁ. O
Y

Example 63. Find the whole area the ellipse — + -5
a
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Solution: The required area is the shaded area
and is equal to 4 x area OABQO. Consider the
elementary area dxdy in the region OABO. We
first integrate with respect to y. Then, this ele-

mentary area moves along the y axis in the region 4,

OABO and forms the strip PQ. The lower end
P of strip is situated on the X-axis, i.e., y = 0

and the upper end ) on the arc AB of ellipse
2 2
mav

Therefore, the limits of y are from y =0to y = g

B'(0, —b)

a? — z2. Now, to complete

the region, this strip moves along the X-axis from the line OB, i.e., from x = 0
to the point A, i.e., to x = a, therefore, the limits of z are from z = 0 to z = a.

Thus, the required area:

b

5 a2 —x2 a 2vVa2—x2 a b g
= J fa dxdy=4J U dy] dx=4f gV ™" da
0o |Jo 0

a

— 4J0 (am> dx=49J

aJo

T a? . _ /z\|"
= |=va?2—2?2+ —sin (—)
2 2 a’l,

= mab.

Hence, the required area = mab.

(\/a — x2) dx

Example 64. Find the whole area of the astroid z%/3 + y?/3 = 2/3.

Solution: The required area is the shaded area
and is equal to 4 x area OABQO. Consider the
elementary area drdy in the region OABO. We
first integrate with respect to y. Then, this ele-
mentary area moves along the y axis in the region
OABO and forms the strip PQ). The lower end
P of strip is situated on the X-axis, i.e., y = 0
and the upper end () on the arc AB of the as-
troid z%/® 4+ y?/3 = a?/® Therefore, the limits of y
are from y = 0 to y = (a3 — x2/3)3/2. Now, to
complete the region, this strip moves along the
X-axis from the line OB, i.e., from x = 0 to the
point A, i.e., to x = a, therefore, the limits of x
are from x = 0 to x = a. Thus, the required area:
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3/2 3/2

ra (a2/3—m2/3 a a2/3_12/3)
= 4 f dzdy = 4[ f dy| dx
Jo Jo 0o |Jo
ra 2/3_,.2/3)3/2 a 3/2
= 4 [y]ga o) dx = 4[ (a2/3 — x2/3> dzx.
Jo 0

Putting z = asin®#, we obtain dz = 3asin®fcosf and the new limits of § are
from 6 = 0 to § = w/2. Therefore, the required area is:
VT3 -i/m  3ma?

/2
= 1242 in2 6 cos®0df = 1242 - —
G,JO Sin COS a 2.3! 8

3mra?
8

Hence, the required area =

Example 65. Find the whole area of the cardioid 7 = a(1 + cos ).

Solution: The required area is the shaded area
and is equal to 2 x area OACQO. Consider the
elementary area rdrdf in the region OACO. We
first integrate with respect to r. Then, this ele-
mentary area moves along the radial vector r in
the region OACO and forms the strip OP. The
lower end O of strip is situated on the pole, i.e.,
r = 0 and the upper end P on the arc ACO of
the cardioid 7 = a(1 + acosf). Therefore, the
limits of r are from 7 =0 to r = a(1 + acos6).

r = a(l+ cos )

Now, to complete the region, this strip rotates from the line OX, i.e., from
6 = 0 to the point O, i.e., to 8 = 7w, therefore, the limits of 8 are from § = 0 to

0 = 7. Thus, the required area:
a(l+cos9)
f rdr| df

7 ra(l4cosh) m
= QJ rdrdf = 2[
0 Jo 0 0

™ [p2 a(1+cos ) -
= 2f —] d9=a2f (1+ cos6)* df
o L2]o 0

= 4a2J cos? (Q) do.
0 2

Putting g = ¢, we obtain df = 2d¢ and the new limits of ¢ are from ¢ = 0 to
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¢ = m/2. Therefore, using gamma function, the required area is:

/2
= 8a2J cos* ¢pd¢p = 8a2J

0

NCUNCS

2r (%5%)

3
8a2-\/7_r.§.
2-2

T

[N

3ma?
5

3mra?

Hence, the required area =

/2

0

sin® ¢ cos* pdo

Example 66. Find the area between the curves y = 4z — 2% and y = z.

Solution: The required area is the shaded
area OPBQO. Consider the elementary area
dzdy in the region OPBQO. We first inte-
grate with respect to y. Then, this elemen-
tary area moves along the Y-axis in the re-
gion OPBQO and forms the strip PQ). The
lower end P of strip is situated on the line
y = x and the upper end () on the arc OQB
of the parabola y = 4z — % Therefore, the
limits of y are from y = z to y = 4z — 2.
Now, to complete the region, this strip moves
from the point O, i.e., from z = 0 to the point
B, i.e., to x = 3, therefore, the limits of z are
from x = 0 to x = 3. Thus, the required area:

3 rdr—2? 3
= J J dxdy =J
0 Jzx 0

B
= 2| [y];" " dx

0

3

(330 — x2) dx

I
S

0
3x2 x3] 3

2 3],

I
N ©r—

Hence, the required area = g.

B(3,3)

N\

)

[ J:x_xz

v

A4, 0)\
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Exercise (Assignment)

(Q.1) Find the area of a circle of radius a.

(Q.2) Find the area of cardioid r = a(1 — cos#f).

(Q.3) Find the area between the curves y = 2% and y = z3.
YA
Hint: The limits of y are from y = 2% to y = 2
and those of x are from x =0 to x = 1.
O

Triple integrals

Triple integral as mass of a solid. Suppose, the mass per unit volume (i.e.,
the volume density of mass) of a solid is given by its mass distribution function
w = f(x,y, 2), where (x,y, z) represent the coordinates of points inside the solid.
Let V represents the volume of the solid. Then, we divide the whole volume V
into n small volumes dv; = 0x;0y;0z;, i = 1,2,...,n. Suppose, P(z;,yi,2;) be a
point in the small volume dv;. If we choose the small volume dv; sufficiently small,
then we can assume that the volume density of mass in the volume Jv; is constant
and is equal to f(z;,¥;, %), and so, the mass of this i** small volume is given by
om; = f(zi, s, 2)00; = f(zi, 45, 2;)02;0y;02;. We calculate all such small masses
dom; of small volumes dv;, where ¢ = 1,2,...,n and then sum up them and get
the sum

zn:(sz Zf Tiy Ui, 2)00; = z:f(ﬂrzl,yz,,7%)(5301(53/%(5,2Z
=1 =1

It is clear that this sum masses of all small volumes is not exactly the mass of
solid. Now, when n — oo, each small value (i.e., §) transform into the infinitely
small quantity (i.e., d). In this case, the value of the sum of masses is called
the triple integral of the function f over the volume R, and it is denoted by

Jff(x,y, z)dzdydz, i.e.,
v

ff f(z,y, 2)dzdydz = 7}5{)10 Z; f (i, yiy 2i)02:0yi0 2.
14 =

It is clear that the quantity ff f(z,y, z)dxdydz represents the exact mass of the

solid.
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Triple integral as Volume:

Z Z 7
H G H G H G
A
D d C D C D
¥ %
& Y Y Y
0 > 0 | > —>

i(/ E F / E Ji F / F
A B X 4 B X A B
(a) (b) (c)

Suppose, we have to find the volume of a rectangular parallelepiped (cuboid)
ABCDEFGH formed by the planes x = 0,z = o,y = 0,y = 5,2 = 0,z =
v, i.e.,, FA = o, EF = 3 and EH = . Consider an infinitely small volume,
i.e., the elementary volume dv = dzdydz inside this cuboid (see, figure (a)).
We sum up such elementary volumes along the Z-axis (i.e., during the addition
the coordinates x and y remain constant), in such a way that the elementary
volume remains inside the cuboid. Thus, the integration with respect to z is
completed and a vertical column P() is formed inside the cuboid ABCDEFGH
(see, figure (b)). The volume of this column PQ is obviously ydzdy. Now, we
sum up this column along the Y-axis (i.e., during the addition the coordinate
x remains constant), in such a way that the column remains inside the cuboid.
Thus, the integration with respect to y is completed and a rectangular lamina
is formed inside the cuboid ABCDEFGH (see, figure (c)). The volume of this
rectangular lamina is obviously Svydz. Finally, we sum up this rectangular lamina
along the X-axis in such a way that the rectangular lamina remains inside the
cuboid. Thus, the integration with respect to z is completed and the whole cuboid
ABCDEFGH is formed and we get the volume of cuboid, i.e., V = af~. Thus:

-
V = dev
J

7

r B v

= J dxdydz.
z=0 Jy=0 J2=0

[

Example 67. Evaluate: [, [ Y vdrdydz.
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Solution:

Given integral can be solved as follows:

4 rzx z+y r4 rT [ rz+y
f f f zdzxdydz = f zdz] dzdy
2 Jy=0J2=0 J2 Jy=0 LJ2=0
4 rx [,2 z+y
= [ z_] dxdy
J2 Jy=0 _2 0
(4 'Jx(x—l—y)Q ]
= ~——dy| dz
J2 [Jo 2 Y
AT 31%
_ (*[=+y) ] i
J2 | 6 0
(47823 23
= — ——1d
Jo |76 6] v
= 70.

Thus, [; [ 0 [V zdxdydz = 170.

Example 68. Evaluate: [; 11n(y) [£ n(z)dzdydz.

Solution:

Given integral can be solved as follows:

re rlny e’
I = f In zdxdydz
J1 )1 1
re rlny e®
= [f In zdz] dxdy
J1 1 1
re (lny z
= [2lnz — 2]] dzdy
J1 )1
re rlny
= [((z —1)e® + 1] dzdy
J1 J1
rel Iny
=, fl (x—l)em—l—ldx] dy
L
=, [(z — 1)e® — e + ] dy
re
= [(y+1)Iny —2y+e—1]dy
1

1
Z(e2 — 8¢ + 13).

(5335 ) v eon]

e
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Thus, [¢ [{"® [ In(z)dedydz = L(e? — 8e + 13). O

Spherical coordinates. The spherical coordinates of a point P in the space are
given by P(r,0,¢) (see the figure below). The relation between cartesian and
spherical coordinates is given by:

X = rcos ¢sin b
y =rsin¢gsind
z =r1cosf.

The elementary volume in spherical coordinates is given by dV = 72 sin 0drdfd¢
(see the figure below). Some times it is easy to solve the integral by changing the
cartesian coordinates into spherical coordinates. There is no hard and fast rule
to decide whether it is easy to use the spherical coordinates, we can decide only
by observations. Although, converting to spherical coordinates can make triple
integrals much easier to work out when the region you are integrating over has
some spherical symmetry.

A A

n 0de

Spherical coordinates Elementary volume in spherical coordinates

dV = r? sin 0drod¢

Cylindrical coordinates. The cylindrical coordinates of a point P in the space
are given by P(r, ¢, z) (see the figure below). The relation between cartesian and
spherical coordinates is given by:

T =17cos¢
y = rsin ¢
z = z.

The elementary volume in cylindrical coordinates is given by dV = rdrd¢dz (see
the figure below). Some times it is easy to solve the integral by changing the
cartesian coordinates into cylindrical coordinates. There is no hard and fast rule
to decide whether it is easy to use the cylindrical coordinates, we can decide only
by observations. Although, converting to cylindrical coordinates can make triple
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integrals much easier to work out when the region you are integrating over has
some cylindrical symmetry.

Cylindrical coordinates Elementary volume in cylindrical coordinates

OP =r, QP =z, ZQOX =¢ dV = rdrdodz

Example 69. Find the volume of the sphere z2 + 3% + 2% = a2

Solution: The volume of the given sphere is: V = 8ffpr dzdydz where V,, is the
volume of the sphere in the positive octant. Changing the coordinates into the
spherical coordinates we get:

drdydz = r*sin 6drdfde

and in the volume V}, r changes from r = 0 to a, 6 changes from 6§ = 0 to /2
and ¢ changes from ¢ = 0 to 7/2. Thus, the required volume:

/2 rw/2 /2
Vo J J J 2 sin Odrddde — o2& f f sin 0dfde
=0 0=0

/2 4
= ? 49 = 7;@
¢=0

Ama’

Thus, the volume of a sphere of radius a is

Example 70. Find the volume of the tetrahedron bounded by the co-ordinate
planes and the plane ad + % + z = 1,
a



Dr. Satish Shukla

88

Solution: The required volume is the
volume of the tetrahedron as shown in
the figure. The value of z changes from
zr Yy
z =0t 2z = c(l————) so that a
a b .
bar from z = 0 to z = c(l———y)
a b

is created. Then y changes from y = 0

toy== (1 _z
a

is thus created. Finally, z changes from

x = 0 to x = a and the volume is com-
pleted. Thus, the required volume:

rb(l_g) ) dxdydz = f f

y=0
x
a

(‘b(l——

a

and a triangular plane

_z_ Y

c@ -1

J.e
)c(l—g—%)dmdyzf

)2dx )

ra

=0 J

|4

ra
Jz=0J
be
2

C
y=0 0

L
z=0

Lz
a

_ abc

’Az’(a, 0,0)

[(

Example 71. Find the volume bounded by the cylinder 22 4+ y? = 4 and the

planes y + z =4 and z = 0.

Solution: Suppose the required volume is V

which is the dark shaded part in the figure. Then

V = [[[ dzdydz. The limits of z are from z = 0
v

to z = 4 —y and then x and y varies according to
the limits of circle C : 2 4+ y? = 4. The variable
y varies from y = —v/4 — 22 to y = v/4 — 2, and
then x varies from x = —2 to x = 2. Thus, the
required volume:

2

(%)
N

4—x2%2 4—y

|74 f dxdydz
_JA—g? #=0
2 Vi—g? o [ vicz?
= f f (4 —y)dzdy = f f (4 —y)dy
=2 _\/4—x2 =2 | —4—2?

4
4_ 2 - . p—
T —i—2sm

A

m of
plane and gylinder
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Thus, the required volume V = 16m. O

Example 72. Find the volume cut from the sphere 2% + y? + 22 = a2 by the
cylinder 22 + 92 = az.

Solution:

Y
A
r = acosf
0]
X
Y
Side view of volume (the shaded part) Top view

The required volume V' is the 2 times of the volume V; shown in the figure by
shaded part (half of the volume is above of the zy-plane and half is below). To
make easy, we will use cylindrical coordinates. The cylindrical coordinates are:

x =r cos b,
y =rsin0;
z =z.

and the volume element dV = rdrdfdz. The equation of sphere will become
r? + 22 = a2, and the equation of cylinder will become r = acos. In the shaded
part, the limits of z are from z = 0 to 2z = va? —r2 and the r and 6 varies
throughout the circle » = acos@ (see the figure). Therefore, r varies from r = 0
tor = acosf and 6 from § = —7/2 to § = w/2. Thus, the limits of r, § and z are:

z2=0to z=+a%—r?
r=0tor =acosb;

T T

Therefore, the required volume:

V=2 Jf drdydz = J:U rdrdfdz.
Vi £
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Applying the limits for r, # and z we get:
7/2 acos® VaZ—r2 7/2 acosd
V =2 f f f rdrdfdz = 2 f f rv/ a? — r2drdf
—m/2 0 0 —-m/2 0
/2 1 acosf 9 3 /2
-2 | [_5 (a— 72)3/2] =2 [ (1-sm*s)as
—7/2 0 —m/2
3 w/2 3 w/2
4 4
= % J (1 — sin30) df = = J [1 —sin 6 (1 —coszﬁ)] do
0 0
/2
4 3 30 /2
— 4% f [1 - sin9+sin000320] df = il [0 + cosf — cos
. 0
_ 4’ (m 2
3 \2 3/
Thus, the required volume V = % (2-12). O

Example 73. Find the volume bounded by the zy-plane, the paraboloid 2z =
z? + 42 and the cylinder z2 + y% = 4.

Solution:

X XL

The dark shaded region
is the required volume

X mi*y

The required volume

Suppose the required volume is V. Then V = 4 [[[,, dzdydz. The limits of z are
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2 4 .2
from z = 0 to z = ad —;—y and then z and y varies according to the limits of
circle C : 2% 4+ y? = 4. The variable y varies from y = —v4 — 22 to y = V4 — 2,
and then z varies from x = —2 to £ = 2. Thus, the required volume:

2 Vic? T 2 Vi—z? 2 | vi—z?
_ _ z’ + y’ _ 2, .2
V = dzdydz = dzdy = (“ +y*)dy | dz
ijz _i—z? #=0 2 _\/i—a? 2| 0
fz' 3 VA 1 3/2
= ) [xzy—l—%] da:—2f [x2\/4—x2+§(4—x2)/]d:1:.
0 0

Putting z = 2sin#, the limits now changed to § = 0 to § = 7/2, and dz =
2 cos 8df. Therefore:
/2 16 /2
V = 16f sin? 0 cos? 0dO + ?J sin® 0 cos* 0d6
0 0

I'(3/2)T(3/2) | 16 T(1/2)L(5/2)

= 16- —
2. T3) 3 2.1(3)
= 4m.
Thus, the required volume is V' = 4. Il

Example 74. Find the volume between the paraboloid 22 + y? = az, cylinder
z2 + y? = 2ay and the plane z = 0.

Solution:

r = 2qsin 0

v =

Side view of volume (the dark shaded part) Top view

The required volume V' is shown in the figure by shaded part. To make easy, we
will use cylindrical coordinates. The cylindrical coordinates are: x = rcosf, y =
rsinf, z = z and the volume element dV = rdrdfdz. The equation of paraboloid
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will become r? = az, and the equation of cylinder will become r = 2asinf. In

the shaded part, the limits of z are from z = 0 to z = % and the r and 6 varies
throughout the circle r = 2asin 6 (see the figure). Therefore, r varies from r = 0
to r = 2asinf and 6 from 6 = 0 to 8 = w. Therefore, the required volume:

7 2asinfr?/a

V = ffl dxdydz = fff rdrdfdz = f f Of rdrdfdz

0
7 2asinf

1 r 2as1n0
= " rdh = -
ff " 4af
0

0

T 2
= 4a3J sin 0 d = 8a® J (sm 6 cos® 0) dé
0 0

o TGT(/2) _ o3 33 V7-vr
2.T(3) 2.2

3
Thus, the required volume V = Sma

Exercise (Assignment)

z x4z
(Q.1) Evaluate: f [ [ (z+y+ 2z)dzedydz.
-10z—2
Ans. 0
In2 z z+lny

(Q-2) Evaluate: [ [ [ et dzdydz.
00 0

(Q.3) Evaluate: [[[(z — 2y + 2)dzdydz, where R is the region determine by

R
0<xz<1, 0§y§x2,0§z§x+y.

v 1f_$2 1=a*—y* dxdydz
0

of V1—12—y2— 22
integration, it is clear that the region of integration is the part of sphere

1
(Q.4) Evaluate: [ . (Hint: From the limits of
0
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22+ 9%+ 22 = 1 in the positive quadrant. Change the cartesian coordinates
into the spherical coordinates, the new limits will be r = 0to 1, ¢ =0 to
/2 and 8 = 0 to 7/2.)

2

st
Ans. g

(Q.5) Find the volume cut from the sphere x2+y2+ 22 = a? by the cone 2% +y% =
22. (A filled Ice-cream cone)

Hint. Suppose the required volume is V.
Then V = 8 [ fVl dzdydz where V4 is part
of volume in the positive octant and it is
the shaded part in the figure. The spher-
ical coordinates are £ = rcos¢sinf,y =
rsingsinf,z = rcosf. Equation of sphere
r?2 = a? and of cone is tan?0 = 1, ie.,
¢ = +%. The limits of r are from r = 0
to r = a and then ¢ varies from ¢ = 0 to Part Vi

2w and 6 varies from 6 = 0 to 7. Thus, the
required volume is 2’;“2 (2 —2).

~y

<

S
—

obdd
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= J

Linear differential equations of n*® order: Linear differential equations of
n*® order, method of variation of parameter and Cauchys homogenous linear
equations.

Linear differential equations of n order

The following differential equation:

dr dr—1 dn—2 d
ag dxz + o dx“—% + a2 Wn—z Tt an % + any = ¢(x). (4)

is called an ordinary linear differential equations of n** order.

There are two parts of solution of differential equation (4). One is called the
Complementary function or C.F., which is the solution of the following homoge-
neous equation:

dny dn—ly dn—2y dy

aoﬁ—l—mdxn_l—|—a2W—|—---—|—an_1%—l—any=0. (5)

The second part is the particular solution or P.I., which is a solution of differential

equation (4) with no arbitrary constant, and the complete solution of differential
equation (4) is given by:

y=CF.+P.L

Definition 4. The solution of homogeneous equation (5) which consist n arbitrary
constant is called the complementary function (C.F.) of equation (4).

Rules for finding C.F.: There are n linearly independent solutions of differential
equation (5), say, ¥1,¥2, - - .,y and the C.F. will be the linear combination of all
these solutions, i.e.,

C.F.=c1y1 + cy2 + -+ + Coln.

d d
To find the solutions y1, ¥s, . . ., Yn, We denote e by D, ie., D = s differential

equation (4) will be

(apD™ + o D" 4+ aD"? 4+ ... 4 qa, 1D+ a,)y = ¢(x)
= F(D)y = ¢(z) (6)

where F'(D) = agD" + a;D" ! + a2D" 2 + -+ + ay_1D + a,. Now find the roots
of equation:
F(m) = 0 (auxiliary equation).

Suppose, my, mo, ..., m, are the roots of auxiliary equation. Then:

(A) If all the roots of auxiliary equation are real and distinct, then

C.F. =c1e™* 4+ cpe™* + - - - + ¢,e™”*.
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(B) If roots are real but k roots are equal, i.e., my = mg = --- = my and
remaining roots are distinct, then

CF.=(c; 4+ cox + 3z + - - - + 3z 1)e™® 4 31 €™H7 oo 4 cre™.

(C) If there is any pair of complex roots, say, @+, then the corresponding part
of C.F. will be

= €*[c; cos(Bz) + cosin(Bx)].

(D) If we get two pair of complex roots equal, i.e., a1 981 = ag £ iy = a i
(say), then the corresponding C.F. will be

= e*|[(c1 + coz) cos(fx) + (c3 + cax) sin(Bx)].

If k pair of complex roots are equal, then the above formula can be generalized
in similar way.

Next, we consider techniques for finding the P.I.

Definition 5. The function &(x) satisfies the equation (6), therefore it is a

1
F(D)
solution of equation (4), and since it is free of arbitrary constant, it is called a
particular solution.

Example 75. Prove the following results:

(1) 59() = [ (a)dz.

() - e —p(a) = ™ [ eg(a)da.

Solution: (I) Let

S(z) =y
then we have ¢(x) = Dy, i.e., Z—‘Z = ¢(z). On integrating with respect to =, we
obtain
y==fd@®
1
— ;#@) = [ @)
(IT) Let
1
@)=y

d
then we have ¢(x) = (D —m)y, i.e., d—y —my = ¢(x). It is a linear equation in y.
z
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Here, L.F.= e/ =™ = ¢=m% gnd the solution will be:

ye T = J e "™ ¢(x)dx (without constant ¢ because P.I. consists no constant)

= y= em”f e " o(z)dx

D i mqb(x) = em””f e ™ o(x)dx.

—

This is the required value. O

Short-cut Methods for finding P.I.: The P.I. of differential equation (4) is given
by:

PI — ﬁqﬁ(m).
(a) If ¢(z) = ™, then
1 1 ar __ 1 azx
PL:W (x) = F(D)e = F(a)e

provided F'(a) # 0.

Note. If in the case (a) we have F'(a) = 0, it implies that D — a is a
factor of F(D), then we write

1 1 1

o= @"3(‘”)1 =~ D-a6D)° ~ (P-a6@°
- G(a) D-— aeaw

provided G(a) # 0. If G(a) = 0, we again repeat this process.

(b) If ¢(z) = e* - f(x), then
1 1 1

PI = mqb(m) = F(D)e‘w - f(z) = emF(D—i—a)f( )
(c) If ¢(z) = sin(ax) (or ¢(x) = cos(ax)) then
1 1 . 1 :
Pl = mqﬁ(m) = F (D7) sin(az) = Fl—a?) sin(ax)

provided F'(—a?) # 0. The formula for cos(az) is same.
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Note. If F(D) = D? + a?, then F(—a?) = 0. In this case we can use the
following direct formula:

L in(az) = — = cos(az), —s— cos(az) = = sin(az)
——SIn\ar) = —— Ccos\axr —COoOSs\axr) = —Ss1nlarxr).
D2 + g2 2a " D2 4 g2 2a

(d) If ¢(z) = z™, then we write F(D) in form of 1 + G(D) and then we use one
of the following expressions:

(l-a)?t = 1+a+a®*+a®+---

(l+a)t = 1—a+a*>—a*+---, then
1 _ 1 n 1 n

Now, use the expansion of [1+ G(D)] ™.

(e) If ¢(x) =z - f(x), then

1 1 d 1
Pl = F(D)xf(:v) =z- [mf(x)] +5 [m] - f(z).
Example 76. Solve: Z%E + 52—:; + 6z = 0.

d
Solution: Putting D = pre given differential equation can be written as:

(D24+5D+6)z2=0 = F(D)z=0

where F(D) = D? + 5D + 6. The auxiliary equation of the above equation will
be:

Fm)=0 = m?>+5m+6=0
= (m+2)(m+3)=0
== m=-2,-3.

Therefore, the roots of the auxiliary equation are real and distinct, and so, the
complementary function will be:

C.F. = c1e7 2 + cpe7 32,

Since the given equation is homogeneous, therefore, C.F. is the solution of given
equation, i.e., y = c1e 2 + coe %%, O

Example 77. Solve: (D* — 4D +4)y = 0.
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Solution: Given differential equation can be written as:
F(D)x=0

where F(D) = D* — 4D + 4. The auxiliary equation of the above equation will
be:

F(m)=0 m* —4m? +4 =0
(m*—2)?=0
m?=2,2

m = £V?2,+v2
m=v2,v2,—V2,—V2.

Therefore, the roots of the auxiliary equation are real and in two pairs of equal
roots, and so, the complementary function will be:

Ll

CF.=(a+ c2x)e‘/§$ + (e3+ C4£L')€_\/§z.

Since the given equation is homogeneous, therefore, C.F. is the solution of given
equation, i.e., y = (c1 + cox)eV?® + (c3 + caz)e V2, 0

d*y 4
Example 78. Solve: — + m"y = 0.
dr*

Solution: Given differential equation can be written as:
(D*+mY)y=0 = F(D)z=0
where F(D) = D* + m*. The auxiliary equation of the above equation will be:
FM)=0 = M'+m*=0
(M? +m?)? = 2M°m?
M? +m? = £vV2Mm
Mz—i—m2 \/_Mm=0 M2—|—m2+\/§Mm=O

M_Tj”\/_ ——E:I:zﬁ

Therefore, the roots of the auxiliary equation are complex, and so, the comple-
mentary function will be:

C.F. = em#/V2 (cl cos me + ¢z 8in %) 1 e=ma/V2 (03 cos me + ¢4 8in @) .

Ll

V2 V2 V2 V2

Since the given equation is homogeneous, therefore, C.F. is the solution of given
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equation, i.e.:

_ emelV2 mT L s @) —mx/ﬂ( MT s @)
=e C1 COS + ¢ s1n +e C3 COS + ¢4 81n .U
Yy ( 1 \/5 2 \/5 3 \/ﬁ 4 \/§

Example 79. Solve: (D? + 5D + 6)y = €°.

Solution: Given differential equation can be written as:

F(D)y = v(x)

where F(D) = D? + 5D + 6 and 9(x) = €. The auxiliary equation of the above
equation will be:

Fim)=0 = m?>+5m+6=0
= (m+2)(m+3)=0
- m=-2,-3

Therefore, the roots of the auxiliary equation are real and distinct, and so, the
complementary function will be:

C.F. = c1e7 2 4 cpe7 3%,

The particular integral will be:

1 1
PL = - o(z) = z
D) Y@ = prisp16
1 x
= e
12+5-1+6
1 xr
= — €.
12

The complete solution will be:

y = CF.+PL

1
= y = cie % +ce 4 T e’.

This is the required solution. 0

Example 80. Solve: (D + 2)(D — 1)y = e72* + 2sinh .

Solution: Given differential equation can be written as:

F(D)z = (z)
where F(D) = (D+2)(D—1)? and 9(z) = e 2®+2sinh z. The auxiliary equation
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of the above equation will be:

Fm)=0 = (m+2)(m—-1)>=0
— m=-2,1,1.

Therefore, one root of the auxiliary equation is real and the other two are real

but equal, and so, the complementary function will be:
C.F. = cie % 4 (c3 + c3z)€”.

The particular integral will be:

1

1 —2z :
Pl = m¢(x)= (D—|—2)(D—1)2[6 + 2sinh z]
1 o e’ —e”?
S w+0-12° Porom-1r 2

-

- B33 [(D = } + 1 [(D 5 ] SOrS e

B 1 1 2| 4 1 1 o 1 .
 (D+2) [(-2-1)? (D-1)2[(1+2) (=1+2)(=1—1)2

1 1 1 —2“’—|-1 L 1-¢€° 1e_$
[ — . e — . - —

9D + 2 3(D—1)2 4

e 2" 1 e’ 1 1
= 1+ — 1—-¢e™®

0 D—2+2 ' 3(D+1-12 1°

e 2 1 e 1 1

= —1+——=1—-¢€"
oD 3D 1€
_ xe—2x N x2ear: 1 -
9 6 4
The complete solution will be:
y = CF.+ P.L
— y = cie 4 (cp+c3z)e” + ze ™ + ze” _! e ”
y = a 2 T C3 9 6 4 .
This is the required solution.
a3 d? d
Example 81. Solve: L gt t + 4% _ 2y = € + cosx.

dx3 dx? dx

Solution: Given differential equation can be written as:

(D3 —3D? 44D —2)y = e* + cosz = F(D)y = ¢(z)

where F(D) = D3 —3D? +4D — 2 and ¢ (x) = €% + cos z. The auxiliary equation
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of the above equation will be:
Fm)=0 = m®-3m?>+4m—-2=0.

Since the above equation is satisfied by m = 1, therefore, (m — 1) will be a factor,
and so, we write:

m?*(m—1) —2m(m —1) +2(m —1) =0
— (m—-1)(m?*-2m+2)=0
— m=11=+1.

Therefore, the complementary function will be:
C.F. =c1e” + €°(cacosx + c3sinz).

The particular integral will be:

1 1
Pl = — — z
FD) Y@ = pi3pryap —ol T8
1 i 1
= Ds_3D244D_2¢ T D5 _3D?1ap _g °®7
L 1 T4 1 cos
— [ i
D—1|D2=-2D+2 D-D?2—3D%+4D — 2
L L T4 1 cos
— (A T
D—1[12-2-1+2 D (=12) = 3(=12) + 4D — 2
1
— ——  (1-¢°
D11 €)tgp g cosz
= e‘”; 1—|—3D—_100333
- " D+1-1 9D2 — 1
1 3D — 1
= e —+-1+——-——— cosz

D 9(—12) — 1

1
= ze® — E[3D(cos x) — coS ]

1
= ze® + E[3sinx—|—cosx].

The complete solution will be:

y = CF.+PL

1
= y = cle””—l—e’”(@cosx—l—c?,sinm)—I—xe”-l—E[Bsin:z:—l—cosx].

This is the required solution. O



Dr. Satish Shukla 102

d? d
. —i—3—y—|—2y=4coszar;.

Example 82. Solve: ) I

Solution: Given differential equation can be written as:
(D* 43D+ 2)y = 4cos>z = F(D)y = (x)

where F(D) = D? + 3D + 2 and 9(z) = 4cos? z. The auxiliary equation of the
above equation will be:

Fm)=0 = m?’+3m+2=0
= m=-1,-2.

Therefore, the roots are real and distinct, and so, the complementary function
will be:

C.F. = cie™® + coe 2.
The particular integral will be:

1 1
Pl = — _
D) Y@ = priapia |
1
_ 4. 2
D2—|—3D—|—2 COS ™ T
1
_ 9. 1 2
_D2+3D+2[ + cos(2z)]

1 1
1 2
| D2+ 3D + 2 JrD2+3D+2 cos( x)]

! 0+ = cos(2z)
e
| D2+ 3D +2 —22+3D +2

1 .1
2
053.042°¢ Tap—2 @l x)]

[1 3D + 2

P topt—4 cos(2x)]

[1 1

5 + m (3D + 2) COS(2JJ)]

= 1-— % [—65sin(2z) + 2 cos(2x)].

4 cos? z]

= 2

The complete solution will be:

y = CF.+PL

1
— y = e "+ e P +1— 50 [—6sin(2x) + 2 cos(2z)].

This is the required solution. O]
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2
Example 83. Solve: j i

s + 4y = €” + sin(2x).

Solution: Given differential equation can be written as:
(D? +4)y = €® +sin(2z) = F(D)z = ()

where F(D) = D? + 4 and v¢(z) = €® + sin(2z). The auxiliary equation of the
above equation will be:

Fim)=0 = m?+4=0
— m = £2i.

Therefore, the roots are complex, and so, the complementary function will be:
C.F. = €%?[c; cos(2z) + co5in(2z)] = ¢1 cos(2z) + ¢; sin(2x).

The particular integral will be:

1 1.
Pl = F(D) P(z) = Drid [e” + sin(2z)]
= ! T+ 1 sin(2x)

D2+46 D? +4

1 T
= — et - 1 F —a? =
Z14€ 3.2 cos(2x)  (since F(—a®) = 0)
Z
= %—2008(295).

The complete solution will be:

y = CF.+PL

T

— y = cyco8(2z) + cosin(2z) + % — zcos(%).

This is the required solution. O

dy Ay dy
Example 84. Solve: @ +3 @ + 2% =x.

Solution: Given differential equation can be written as:
(D3 +3D?>+2D)y =2?> = F(D)y = ()
where F(D) = D3+3D?+2D and 9(x) = z%. The auxiliary equation of the above
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equation will be:

Fm)=0 = m*+3m*+2m=0
= m(m*+3m+2)=0
— m=0,—-1,-2.
Therefore, the roots are real and distinct, and so, the complementary function

will be:
C.F. = c1€% + coe ™ + coe ™ = ¢; + coe % + cpe 2.

The particular integral will be

1 1
Pl = —— = 2
D) Y@ = Dpitspryen ©

1 1 \
oD 14D 3D 7
1+ 5+

1 D? 3D1°!
[1—|— —] 72,

~ | T2
Using the formula (1 +a)'=1—-a+a?—--- we get:
1 [ /Dp* 3D D? 3D\’ )
_ 1[,_D* 3D D' 9D* 3D \
oD 2 2 T4 TT4 T v
1 [, 7
= |° ‘3“5]
P T
6 4 47

The complete solution will be:

y = CF.+PL
2 3z Tz

— -z 24 7 _ et
= Yy = c1+tce " +cge —|—6 4—|—4.
This is the required solution. O
d? d
Example 85. Solve: Y _ 4% + 4y = 8(e** + sin 2z + 2?).
dzx? dz

Solution: Given differential equation can be written as:
(D* —4D +4)y = 2* = F(D)y = ¢(x)
where F(D) = D?—4D+4 and ¢(x) = 8(e?*+sin 2z+z?). The auxiliary equation
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of the above equation will be:

Fm)=0 = m?>—4m+4=0
= m=2,2.
Therefore, the roots are real and equal, and so, the complementary function will

be:
C.F. = (c1 + coz)e™.

The particular integral will be:

1 1

Pl = FD) Y(z) = 571D 4 8(e*® + sin 2z + 2?)
- 8_D2—iD+4e2w+D2—iD+4 Sin2x+D2—iD+4x2]
= 8 Dz—iD—l—él (1-62””)—1—_22_141)4_4 sin2x+i-¢x2]
=8 62gc(D+2)2—i(D+2)+4'1

1 1 D2 -
_@szx—i_Z{l—i_(Z_D)} :1:]

1 1 1 D2 D? 2
= 8 ezwﬁ-l—l—gcos%—l—z{l—(Z—D)—F(Z—D) -I—} 5E2]

[12e2*  cos 2z

_ Ly
—8_ st Ti1® —i—2:1;-|—3/2}].

The complete solution will be:

y = CF.+PL
= y = (a1 +cz)e™ +4z%e®® + cos2z + 2 {2® + 2z + 3/2} .

This is the required solution. O
3 d2y

d d
Yr22 Yy

oy a9y _ % 2
e iz T dp & AF 4 =p 4B

Example 86. Solve:

Solution: Given differential equation can be written as:
(D3 +2D?> 4+ D)y =e* 4+ 2>+ 2. = F(D)z = ¢(z)

where F(D) = D3+ 2D? + D and (x) = €** + 2% + z. The auxiliary equation of
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the above equation will be:

m3 4+ 2m?*+m =0
m(m? +2m+1) =0
m(m+1)2=0
m=0,-1,-1.

F(m)=0

FEEL

Therefore, the roots are real and equal, and so, the complementary function will
be:

CF.=c1+ (¢ + c3zx)e™.

The particular integral will be

1 1
PL = —— o(z) =
D) Y@= piyape b
_ 1 2z 1 2
= DixersD® T DirepEyp® T
= L eX 4 L (z® + )
C2342.2242 D3+2D2+ D
e 1 1
R — (
18" D|1+D*+2D
2c

= e—+ [{1+ (D* +2D)} '(2® + 7)]

_ ﬁJr = [{1 = (D*+2D) + (D*+2D)’ - - }(&® + )]

[€2* + 22 + 1]

z’ + )

= ﬁ+ [{1—2D+3D2 - Hz? + )]

62:1:

= ——|— [x2—|—x 22z +1) + 3 2]

e2w 0
= ——i—Ex 3x+4]
18 3 2 '

The complete solution will be:

y = CF. +PL

2 3 3$
= y = ¢+ (e +c3z)e” -i—e——l—————|—4a:.
18 3 2

This is the required solution. O

Example 87. Solve: (D? — 3D + 2)y = 540z%¢°.
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Solution: Given differential equation can be written as:

F(D)y = v(x)

where F(D) = D3 — 3D + 2 and 9(z) = 540x%e2. The auxiliary equation of the
above equation will be:

Fm)=0 = m*-3m+2=0
m2( — 1 4+mm—1)—-2(m—-1)=0
( —D(m*+m-2)=0

=1,1,-2.

Hﬂ

Therefore, the roots are real and equal, and so, the complementary function will
be:
C.F.=cie™® 4 (c3 + c32)€”

The particular integral will be

1 B 1
7o) Y@ = Diap s

1
— 4 2 _—x
> 0[D3—3D+2“ ]

Pl =

5 540x%e"

1 2
(D—1)3—3(D—1)—|—2$]

1
— 4 —x 2
b40e [D3—3D2+4m]

_ e [, D°-3D’ o,

D3 3D?2
= 135¢7° [{1_T+T+'”} x2]

= 135¢° [xz + g] .

= 540e™”* [

The complete solution will be:
y = CF.+PL
3
— y = c1e % 4+ (cp +cax)e” + 135¢77 [x2 + 5] ,

This is the required solution. O

2
Example 88. Solve: y _ 2dy

= ze’sinz.
dx? dx +y
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Solution: Given differential equation can be written as:
(D? —2D + 1)y = ze®sinz => F(D)y = ()

where F(D) = D* — 2D + 1 and (z) = ze®sinz. The auxiliary equation of the
above equation will be:

Fm)=0 = m?’-2m+1=0
— (m—-1)>=0
— m=11

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = (c1 + cox)e”.

The particular integral will be

1 1
Pl = —— = T si
F D) () DT —ap 11 Y€ sinw
1 —
= . x sin
D2_9oD41 - THmT
T 1 .
- _(D+1)2—2(D+1)+1xsmx]
[ 1
= € ﬁxsinx]
= ¥ l fxsinxdx
- | D
= e L (—xcosx + sinzx)
| D

= e J(—x cos T + sin a:)da:]
= —e“;(m sinz + 2cos x).
The complete solution will be:

y = CF.+PL

= y = (c1+ cox)e” —e”(zsinz + 2cosx).
This is the required solution. O
d? d
Example 89. Solve: U gt +y =zsinx.
dx? dx

Solution: Given differential equation can be written as:

(D?* —2D + 1)y = zsinz = F(D)y = ¢(z)
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where F(D) = D? — 2D + 1 and ¢(z) = zsinz. The auxiliary equation of the
above equation will be:

Fm)=0 = m?>-2m+1=0
= (m-17%=0
= m=1,1.
Therefore, the roots are real and equal, and so, the complementary function will

be:
C.F. = (c1 + cox)é”.

The particular integral will be

1 1 :
Pl = m¢(x)=D2_2D+lwsmx
1
= pro2pt1
1 , d 1 :
=z (D2—2D+ 1) sm:z:—l—dD [D2—2D+1] sin
1 , 2D -2 ,
= T (DT—2D +1) sinz — [(D2—2D+1)2] sin
1 , 2D -2 ,
= T (12 —2D+1) sinx — [(—12—2D—|—1)2] sin
1 . 2D -2 .
= —T55 smx—[ 1D? ]smx
I COSZT D—-11| .
= 5 [2(_12)] sinx
_ TCOST | COST —SIinx
- T 2

The complete solution will be:

y = CF. +PL
ICOST COST —sinzx

2 * 2

This is the required solution. l

= y = (c1+cx)e” +

Example 90. Solve: (D? — 4D + 4)y = 8z%e%* sin 2z.

Solution: Given differential equation can be written as:

F(D)y = ¢()
where F(D) = D? — 4D + 4 and 1 (z) = 8x2€?®sin 2z. The auxiliary equation of



Dr. Satish Shukla 110

the above equation will be:

Fm)=0 = m?>—4m+4=0
—= (m-22%=0
== m=2,2.
Therefore, the roots are real and equal, and so, the complementary function will

be:
C.F. = (c; + com)e™.

The particular integral will be

1 1 .
Pl = F(D) () = DI _4D+4 82%e*” sin 2z
1
= 8 [D2—4D—|—4 e2$-x2sin2x]
1
= 8 . 22sin 2
¢ [(D—|—2)2—4(D-|—2)-|—4 v s x]
1
= 8 [ﬁ . 2 sin2x] )

1
Operating o e obtain:

[ 1
PI. = 8&** ) j 72 sin dea:]

_ g (1 ( a°cos2x N 27 sin 2 N 2 - cos 2
B 2 4 8

D
_ g l _x2 cos 2z + T sin 2z + cos 2z
B D 2 2 4

- ) .
_ g _J (x 033230) dx—I—J <w31;12a:> dx—l—f (conm) dx]

op | 1 [x? sin2z 2zcos2z 2-sin2z
2 2 4 8

+1- x0082x+sinx n sin 2x
2 2 4 8

= ¥ [(3 — 22°)sin 2z — 4z cos 2z .

The complete solution will be:

y = CF.+PL
= y = (c1+cx)e®™ + € [(3 — 22°)sin 2z — 4z cos 2z .

This is the required solution. O
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d? d -
Example 91. Solve: — b + 50 +2y=e€°.
dz?  dr

Solution: Given differential equation can be written as:
(D*+3D +2)y=e” = F(D)y=(z)

where F'(D) = D? +3D + 2 and (z) = €. The auxiliary equation of the above
equation will be:

Fm)=0 = m?>4+3m+2=0
— (m+1)(m+2)=0
= m=-1,-2.
Therefore, the roots are real and distinct, and so, the complementary function

will be:
C.F. = cie™® 4 coe =,

The particular integral will be

1 1

— — ev
PL = 7o) Y@ =Dperapi2©

_ 1 e

(D+1)(D+2)
Sy
~ |D+1 D+2

1 . 1 .
“ D+1° "D12°¢
1

Applying the general formula, f(x) =€™ f f(z)e”™*dx we obtain:

D—m
PI. = e_xj e e*dr — 6_2$J e edx

= e” J eldt — e J te'dt  (put e* =t)

e—a:et _ e—Zw(tet _ et)
e—weem . 6—21:(6:1:66” . ee"‘)

_ T
= e 2"

The complete solution will be:
y = CF.+P.L
= y = c1e %+ coe % 4 e 2%,

This is the required solution. O]
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Example 92. Solve: (D*+ 2D? + 1)y = z%cos .

Solution: Given differential equation can be written as:

F(D)y = ¢(z)

where F(D) = D* + 2D? + 1 and ¥(x) = x% cosz. The auxiliary equation of the
above equation will be:

Fm)=0 = m*4+2m?>+1=0
= (m*+1)*=0
= m= 1. %1
Therefore, the roots are complex and repeated, and so, the complementary func-

tion will be:
C.F. = (c1 + cox) cosx + (c3 + cax) sin .

The particular integral will be

1 1
Pl = —— = 2
FD) Y@ = Digapr1 © O
o |
— | f 2 _ix
Real part o —(D2 1) e ]

iz 1 2
= Real part of _e {((D+i)2—|—1)2 x }]

- 1
— 1 f (% 2
Real part o _e {(D2 2Dy T H
e D\ ,
= Real part of [e {—E (1 + Z) x }]
P! iD . (iD\’ )
= Realpartof € {—E<1—27+3(7) +> x}]

[ e (1 9 , 3
= Real part of __T {ﬁ (:1: — 2ix — 5) }] :

1
Applying Dz Ve obtain:

1 iz T .5173 3z2
PL = —ZReal part of [e { (E —ig - T) }]

B _i .. 4 -3 042
= 48Real part of [(cosz + ising) {(z* + 4iz® — 92°) }|

1
T I

z' — 92%) cosz — 4z’ sinz)] .



Dr. Satish Shukla 113
The complete solution will be:
y = CF.+PL
= y = (c1+cx)cosz + (c3+ cax)sinx — % [(z* — 92%) cos z — 42° sin z] .
This is the required solution. O

Exercise (Assignment)

(Q.1) Solve: (D —1)2(D —3)3y =¢*
Ans. y = (c1 + am)e” + (3 + cam + c5?)e™™ + ZE7

3

Y
iz ——Sty=3+e Tt 5e?”,

Ans. y = c1e7® + %/2 czcos‘[””—i—c sm‘[ —|—3—|—5 g2 4 ze T
3

(Q.2) Solve:

Ans. y = c1€” + (c2 + c32)e™" — x[cos(2z) + 2sin(2z)).

4

(Q.4) Solve: % — m*y = cos(maz).

Ans. y = c1e™® + cpe™™ + c3 cos(mx) + cysin(mz) — o5 sin(mz).

2

dg+4y—x + cos? z.

Ans. y = ¢j cos(2x) + cosin(2z) + %2 + g sin(2z).

(Q.5) Solve:

4

d
(Q.6) Solve: d_xz — a'y = 2.

Ans. y = c167% + €% + ¢z cos(az) + casin(ax) — 5 (z* + 24/at).

(Q.7) Solve: (D?+ 2D + 4)y = €% sin 2.

Ans. y=¢e7" [cl cos (\/gx) + ¢9sin (\/gx)] + ;—;(3 sin 2z — 8 cos 2x).

d? dy
(Q.8) Solve: d—z + 5% + 6y = e **sin 2z.

Ans. y = ci1e7 % + e

— %(cos 2z + 2sin 2x).

2

d
(Q.9) Solve: d_xy2 — 4y = rsinhz.
Ans. y =cie?® 4 cpe™* - 2 3sinhz — 3 2 cosh z.
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(Q.10) Solve: (D? +1)(D? — 1)y = e¥*z + z2.
Ans. y = c1€® + coe™% + cacosx + ¢y sinx + 26;)—;(151: — 32) + x2
d%y .
(Q.11) Solve: i 4y = zsinz.
Ans. y = ¢ cos(2z) + co8in(2z) + Zsinz — 2 cos .

d%y dy
(Q.12) Solve: e 4% + 3y = 2xe% + 3e” cos 2.
3

Ans. y = c1€” + €3 + Lze¥(z — 1) — 2e%(sin 2z — cos 2z).

2

d
(Q.13) Solve: Y4 g y = sinax.

dz?
Ans. y = cjcosax + cagsinar — 5 cos az.
d%y dy 4e”
.14) Solve: ——5 — 2= = —.
(Q.14) Solve dx? dm+y x2

Ans. y = (c1 + cox)e” — 4e” In(x).
(Q.15) Solve: (D? +2D + 1)y = zcosz.

Ans. y = (c1 + coz)e™ + 3 cosz + 3(x — 1) sinz.
(Q.16) Solve: (D? — 3D + 2) = sin(e””)

Ans. y = c1€® + cpe?® — e** sin(e?).

Method of variation of parameters

This method is applied on the differential equations of the form:

dy  dy
dz? T Pa

where p, ¢ and 1 (x) are the functions of z. Suppose, the complementary function
of this equation is

+ qy = P(x)

C.F. = ciy1 + couo.
Then, the particular integral of this equation is given by:

PL = —y J W‘ﬁﬁ‘”)dx + y2f y“&ﬁm) da

where W = ‘ 9 y2 = y1y5 — Y1y is the Wronskian of y; and ys.

Z/1 yz

d2
Example 93. Solve: d—‘z + 4y = tan 2z.
x
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Solution: Given differential equation can be written as:
(D* +4)y =tan2z = F(D)y = ¢(x)

where F(D) = D? + 4 and v(z) = tan2z. The auxiliary equation of the above
equation will be:

Fim)=0 = m2+4=0
= m = +2i.

Therefore, the roots are complex, and so, the complementary function will be:
C.F. = ¢y cos2x + cosin 2z = c1y1 + c2ys.

Here y; = cos 2z, y, = sin 2x. Now the Wornskian of y; and ys will be:

y1 Yo
Y1 Y

—2sin2x 2cos2x

_ ‘ cos2r  sin2z

Therefore, the particular integral will be:

PL = —y, J ZUICIF R J np(e) .

w W
[ sin 2x tan 2 2z tan?2
—eosop [Sin22 tan xdm—l—sianJCOS z tan2z
J 2 2
22 in 2
— —COS2 x ) (1 — cos®2z) sec2zdx + biad J sin 2zdx
2z ( in 2 2
_ L8 (sec2x — cos2x) dx — S 2T CO5 2%
2 ) 4
2 in 2 2
= _Coz d [In(sec 2z + tan 2x) — sin 2x] — W
1
= —,cos 2z - In(sec 2z + tan 2z).

The complete solution will be:
y = CF.+PL
1
—> y = ¢1c082% + cysin 2z — 1 €08 2z - In(sec 2z + tan 2z).

This is the required solution. O

2

d
Example 94. Solve: d—'Z + a’y = secax.
7

Solution: Given differential equation can be written as:

(D? +a®)y =sec2z => F(D)y = ()
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where F(D) = D? + a? and 9 (z) = secaz. The auxiliary equation of the above
equation will be:

Fm)=0 = m?+a>=0
= m = %ia.

Therefore, the roots are complex, and so, the complementary function will be:
C.F. =cicosax + cesinax = c1y1 + coys.

Here y; = cosax, ys = sinazx. Now the Wornskian of y; and y, will be:

W = Y1 Yo
—asinar acosax

Y1 Yo

. ‘ cosar  sinaw

Therefore, the particular integral will be:

Pl = —ylf yﬂé/(vx)dx + yQJ y“{féx) dx

sin ax secax ) cosar secazx
= —Cosax dx + sin ax dz
a a

cosazx sin ax
= — tan axdzx + dx

a a

Ccos ax T sin ax

= -0 [In(sec az)] +

1 )

= —cosaz- In(cosax) + —z sin az.
a a

The complete solution will be:

y = CF.+PL

. 1 1 .
= Yy = 10822 + ¢zsin2x + — cosax - In(cos az) + —zsinaz.
a a

This is the required solution. l

3z

Example 95. Solve: y” — 6y’ + 9y = 1—2.

Solution: Given differential equation can be written as:

(D* — 6D +9)y = ii: — F(D)y = ¢(z)

e3w

where F(D) = D?— 6D +9 and 9(z) = — - The auxiliary equation of the above
T
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equation will be:

Fm)=0 = m?>—6m+9=0
— (m-3)?%=0
— m=3,3.

Therefore, the roots are real and equal, and so, the complementary function will
be:
C.F. = 1% + coze®® = c1Y1 + C2Ya.

Here y; = 3%, y, = ze3®. Now the Wornskian of y; and y» will be:
3z 3z
_| Y ¥ = zre _ bz
W= vl yh | T | 3e% 34 3zed | T
Therefore, the particular integral will be:
Y290 () f y19 ()
Pl = — d d
y1f W T+ Y2 W z
3z 3z 3z ,3x
= —e3””f %dw + xe?’xJ ¢ :; e dx

The complete solution will be:

y = CF.+P.L
— y = 1% +cpze®® — ¥ (Inz +1).

This is the required solution. O

Exercise (Assignment)

2

d
(Q.1) Solve by the method of variation of parameter: d—'z +y=tanzx
T

Ans. y =cjcosx + cpsinx — cosz - In(sec z + tan z).

2

d
(Q.2) Solve by the method of variation of parameter: d—'Z + a’y = cosecaz
x

Ans. y = (¢1 — z/a) cosaz + [c2 + (1/a?) In(sin az)] sin az.

(Q.3) Solve by the method of variation of parameter: y” — 2y’ + y = €® In(x).

Ans. y = c1€® + coze® + 1z2e®(2Inz — 3).
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Problems on operator method

Example 96. Prove the following result:

If (D —my)(D —mgy)y =0, then y = c1e™7* + cpe™x, where my # mao.

Solution: Putting (D — mg)y = z in the given equation we get:

d
(D—my)z=0 = Z—;—m1z=0=>£=m1z
—= @zmldx

= In(z) = In(c) + mz
= z=ce™".

Putting this value of z in (D — my)y = z we get:

(D—mo)y=2 = (D —my)y=-ce™®
d

— Y moy = ce™?,

dx

The above equation is linear in y, and L.F.= el —made — o=maz a1 the solution of
it will be:

_ _ _ (& _
ye Mo __ Cs + ce™ZT =M% J.p s ye Mo __ s + 6(m1 m2)T
mi; —ma

moXl m1x

= Y =cCe + ce

Cc

where ¢y = ——.
m1 —me

Example 97. Prove the following result:

If (D —m)?y =0, then y = (c1 + cox)e™.

Solution: Putting (D — m)y = z in the given equation we get:

(D—m)z=0 = Z—;—mz=0 = Z—;zmz

= In(z) =1In(c1) + mz
— 2z =-cem™.

Putting this value of z in (D — m)y = z we get:

(D—m)y=2 = (D—m)y=-ce™

d
— W my = c1e™”.
dz
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The above equation is linear in y, and L.F.= e/ =M@ = ¢=™% gpd the solution of
it will be:

ye ™ =co + f cae™e T ™dr = ye "™ =cy+

— y=(c2+ c1x)e™. n

Example 98. Prove the following result:

If [D— (a+iP)][D — (a—iB)]y = 0, then y = e*®[c; cos(Bz) + co sin(fz)]

Solution: Put m; = a + i and my = o —if in Example 96 and then use the
Euler’s formula e = cos + isin#.

Example 99. Solve by operator method: (z+3)y"—(2z+7)y'+2y = (2+3)%e®.

Solution: The given equation can be written as:
[(z+3)D* — (2z+ 7)D + 2] y = (z + 3)¢".
To apply the operator method, we have to factorize the expression
(x+3)D? — (22 4+ 7)D + 2.
Then the above equation can be written as:

[(z+3)D*— (22+6)D—D+2]y = (z+3)%"
— [(x+3)D(D-2)—(D-2)]y
— [(z+3)D-1](D-2)y = (z+3)%"

|
—~~
8
+
w
N—"
N
QDo
S

Putting (D — 2)y = z we obtain:
[(z+3)D—1]z = (z+3)%°
d
— (@+3) 2 2= (z+3)%"

dz
dz 1

_—_— — —
de x*+3

z=(z+ 3)e”.

It is linear differential equation in z. Now:

1

IF. =l —s3d0 — _—__
r+3

The solution of the above equation will be:

z 1
— e
z+3 cl+f(x+ e 213

= 2z = c(z+3)+e"(z+3).
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d
Putting z = (D — 2)y = % — 2y we get

dy
dz

It is again linear in y, and

—2y = ci(z+3)+e°(z+3).

ILF. = ¢f ~2dz _ g2z,

The solution will be:

ye ™ = cy+ J [c1(z +3) + €%(z + 3)] e 2 da
— ye 2 = ¢+ J [c1(z 4+ 3)e ™™ + e *(z + 3)] d=
1 1
—= ye ¥ = ¢y — icz(ac +3)e 2 — 1016_2” —(z+3)e*—€"
1 1
— y = e’ — icz(x +3) — i (z +3)e” — e”.
This is the required solution. 0

Equations reducible to linear equation with constant coefficients (Cauchy
homogeneous linear equation)

A differential equation of the following form:

d"y 1 d™ 1y 2 d" %y dy
apzr” —= + a1x™” + ax"” +-rt a1 ==+ ay =d(x). (7
0" o 1 dzn—1 2 dz"—2 1T o ny =¢(z). (7)
is called Cauchy homogeneous linear equation or homogeneous linear equation.
To solve this type of equations we use the substitution = e?, so that Z—‘; =e* =r.

Hence, if we denote D = d we have:

Ly dy de_dy
Ydr " Tdr dx dz Y
On comparing we get:
xi =D
dr
Similarly, we can show that:
o d? 5 d3
x @:D(D—l) x F:D(D—l)(D—Q) and so on.

Now equation (7) reduces into the equation with costant coefficients and can be
solved by the methods we have already discussed.
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d3 d? d
Example 100. Solve: z* d_z + 223 d_y2 — 12 d_y +zy =1
7 7 7

Solution: Given differential equation is:

d’y dy  ,dy
4 3 2
— 4+ 2% —xt = = 1.
z dz3 + 2x 42 ) . + xy
On dividing by x we get:
d3y d%y dy 1
3 2
29 49,209 L0 I
dx3+ Tar Tar YT g
The above equation is Cauchy homogeneous linear equation, hence putting
d _ o d?
x = ez,x% =D,z I = (D —1), and
3 &
—=D(D-1)(D -2
o 45 =D(D-1)(D~2)

(where D = £4) we get:

1
D(D—~1)(D~2)y+2D(D ~ 1)y~ Dy +y=—

= [D(D*-3D+2)+2D*-2D—-D+1]y=¢"*
= (D°-D*-D+1l)y=e*
= F(D)y=14(2)

where:

=

(D)=D®*-D*-D+1 and
P(z) =e >

The auxiliary equation of the above equation will be:

F(m)=0
m*—m?-—m+1=0
m?*(m—1)—(m—-1)=0
(m—1)(m?>—-1)=0
(m—1)(m—-1)(m+1)=0
m=—1,1,1.

el

Therefore, all the roots are real, one root is distinct and other are equal, and so,
the complementary function will be:

C.F.=cie7” 4 (co + c32)€”.
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The particular integral will be:

1 1
Pl = —— = —
Fo) PP = picpeopi1®
1 —z
- O+npD-12°
1 1 s
= e
(D+1) | (D—-1)?
1 1 s,
- e
(D+1) [(-1-1)2
1 1 .
= - e .
4(D+1)
e’ 1 1
4 (D-1+41)
e ?1
= — 1
4 D
_ze”?
4
The complete solution will be:
y = CF. +PL
_ ze™*?
= y=cie °+ (ca+c3z)e’ +
1
— y=c1z ' + (g +c3ln(z))z + Zx_l In(x).
This is the required solution. O
5 d° d? d
Example 101. Solve: z dxg + 3z° dxz + d—y + 8y = 13 cos(In z).
Solution: Given differential equation is:
d3 o d? d%y dy
'3 + 3z 122 +x e + 8y = 13 cos(In z).

The above equation is Cauchy homogeneous linear equation, hence putting m = €%,
x——Dx2dd—22:D(D 1), andxd3_D(D—1)( — 2) (where D = )We
get:
D(D—-1)(D—-2)y+3D(D—1)y+ Dy + 8y = 13cos z
= (D3 + 8) y =13 cosz
= F(D)y=1(2)
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where F(D) = D3 + 8 and 9(z) = 13 cos z. The auxiliary equation of the above
equation will be:

m3+8=0
(m+2)(m? —2m +4) =0
24++/4—-16

’ 2
m=—-2,1%iV3.

F(m)=0

m= —2

AN

Therefore, one root is real and two roots are complex, and so, the complementary
function will be:

CF.=ce ¥ +¢ [02 cos(v/32) + c3 sin(\/gz)] :

The particular integral will be:

Pl = ﬁ Y(z) = D538 13 cos z
= 13.#24—8 COS 2
= 13.——121;4—8) COS 2
= 13.631_11;2 COS 2
= 13.648—4_—(?12) COS 2

1
= g[8cosz—sinz].

The complete solution will be:

y=C.F. + Pl
1
— y=cie ¥ +eé [cz cos(V/32) + c3 sin(\/gz)} + E [8 cos z — sin 2]

1
— y=czr 42 [cz cos(v/31nz) + czsin(v/31n x)] + £ [8cos(lnz) — sin(lnx)].

This is the required solution. O
d*y dy z3
2 _
Example 102. Solve: z 72 +x gr Yy = 1o 22

Solution: Given differential equation is:
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The above equation is Cauchy homogeneous linear equation, hence putting

x=e* xi—Dxd—2—D(D—1) and
dz dz? ’
3 d&°
—=DD-1)(D -2
PO =D(D~1)(D-2)

(where D = L) we get:

3

x
DD —-1)y+Dy—y=
(D-Ny+Dy—y=1-""7
2 1 $3
— (D*-1)y=
(D =Dy =175

= F(D)y=1(z)

3

where F(D) = D? — 1 and ¥(z) = 22

equation will be:

. The auxiliary equation of the above

Fm)=0 = m?-1=0
= (m—-1)(m+1)=0
= m=1,-1.

Therefore, one root are real distinct, and so, the complementary function will be:
C.F. = c1€® + coe%.

The particular integral will be:

1 x>
Pl = ——
)¢() D?2—11+2?
. 1 e3*
 (D-1)(D+1) 1+e?
1

1 e3z
D-1 D+1] 1+e*

[ 1 632 1 632

"|D-11+e* D+1 1+e2z]

1
2
1
2
1 T e3z e3z
= 5 _ezj e‘zl n ezzdz - e_zf ezl n ezzdz]
1
2

-z e2z y ., e4z q
- |€e mz—e mz
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1
Putting e** = u, i.e., e¥*dz = idu, we get:

” 1 s u
-{e fl—i—udu_e fl—i—udu]

[efIn(14+u) — e {u—In(1+u)}]

Pl =

[e*In (14 €*) —e* {e* —In (1 +€*)}]

. [ez In (1 + ezz) —e4+e%ln (1 + ezz)] )

N N e U RN

The complete solution will be:

y = GCF. +PL
= y=ce’+Ce*+ i . [ez In (1 + e2z) —e“+e%In (1 + ezz)]

— y:clx—l—czx_l—l—l- [mln(l—l—m2) —x—l—m_lln(l—l—x2)].

4
This is the required solution. O
d? d
Example 103. Solve: z? all A P dy =22 +2Inz.
dx? dx

Solution: Given differential equation is

d*y dy

2 .2

The above equation is Cauchy homogeneous linear equation, hence putting x = €7,
2

gl =D 2?4 =D(D - 1), (where D = £) we get:

D(D —1)y — 2Dy — 4y = 2> + 2Inz
= (D*-3D—-4)y=¢e"+22
= F(D)y=14(2)
where F(D) = D? — 3D — 4 and (z) = €?* + 22. The auxiliary equation of the
above equation will be:
Fm)=0 = m?>-3m—-4=0
= (m+1)(m—-4)=0
— m=-1,4.

Therefore, one root are real distinct, and so, the complementary function will be:

C.F. = cie™% + coe?.
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The particular integral will be:

1 1
Pl = —— = )
D) Y = pr=3p—4 [ +22]
1
2z
= 9.
D?P—3D-4° T DP_3p—4”
_ 1 622 _ 1 1 P
- 22-3.2-4 2, D?-3D
4
1, 1 D? —-3D
| J— - . 1
6° 2 ( T ‘
6 2 4
= L 1 (.3
6 2 4)°
The complete solution will be:
y = OCF +PL
—z 4z 1 2z 1 3
= Y =ce "~ +ce —66 —5- z—Z
1 1
= y=01$_1+02$4—6$2—§- (lnx—g).
This is the required solution. O
d? d
Example 104. Solve: z2 &Y g% 4 4y = 322
dx? dx
Solution: Given differential equation is
d*y dy
2 2
— —3r—+4y=3
dz 2V dz tay =0z

The above equation is Cauchy homogeneous linear equation, hence putting x = €7,

x4 =D,2> % =D(D 1), (where D = ) we get:

D(D — 1)y — 3Dy + 4y = 3z?
= (D*—4D+4)y = 3¢*
= F(D)y=1(2)

where F (D) = D? — 4D + 4 and 1(z) = 3e%. The auxiliary equation of the above
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equation will be:

Fm)=0 = m?>—4m+4=0
= (m-27%=0
== m=2,2.

Therefore, one root are real equal, and so, the complementary function will be:
CF.=(a+ czz)eZZ.

The particular integral will be:

1 1
Fo) YY) = Dpecapta

1 2
— 3.~ 22
3 (D—2)2e

= 3e*.

Pl = 3e??

1
(D +2—2)2
1
= 3€2Z . ﬁ 1
3
= 22e%.

The complete solution will be:

y = CF. +PL

3
— y=(c1 +cp2)e® + §z2e

2z

) , 37 2
= y=(a+ch)z —I—T(lnm).

This is the required solution. l

3 2 1
Example 105. Solve: z3 34y + 222 L —|— 2y =10 .
dz? dz?

Solution: Given differential equation is

3 2

d’y d 1
3

The above equation is Cauchy homogeneous linear equation, hence putting a: = €%,

gl =D, z? dd22 = D(D —1), and 23 £, = D(D — 1)(D — 2) (where D = £) we
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get:

1
DD —-1)(D—-2)y+2D(D—1)y+2y=10 (x + ;)
= (D*°-D*+2)y=10(c+¢7?)
= (D+1)(D*—2D+2)y=10(e+¢?)
= F(D)y=1(2)
where F(D) = (D + 1) (D*> — 2D +2) and (z) = 10 (e* + e %) . The auxiliary
equation of the above equation will be:
Fm)=0 = (m+1)(m*—2m+2)=0
= m=-—1,1%1.
Therefore, one root is real and two roots are complex, and so, the complementary

function will be:
C.F. =cie ® 4 €*(cacos z + c3sin 2).

The particular integral will be:

1 1

PL = W¢<z):(D+1)(D2—2D+2) 10 (e” +e7%)
- 10'(D+1)(1)1—2D+2) ez+10'(D+1)(D1—2D+2) e
= 10'(1+1)(121—2-1+2) ez“o'(D+1)((—1)21—2.(—1)+2) ¢’
= 5€Z+2°D:_16_z-1
= be* + 277 ﬁ .1
= He* +2e 7 % 1
= bHe® + 2ze %,

The complete solution will be:

y = CF. +PlL
= y=cie *+e*(cacosz + cgsinz) + 5e* + 2ze”*
= y=cz ' +xz[cycos(Inz) + czsin(lnz)] + 5z + 2z Inz.

This is the required solution. O
Example 106. Solve: z2 d2y + 3z 4y + !
. Solve: —= = .
P da? dz Y~ (1 —x)?
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Solution: Given differential equation is

d%y dy 1
2
— 4+ 3x = = —.
TRt Y (1—1x)?
The above equation is Cauchy homogeneous linear equation, hence putting
d d?
z=e T T ( )

(where D = L) we get:

1
D(D—-1)y+3D+y= =2
1
— (D2+2D—|—1)y=m
= F(D)y =14(2)
where ]
F(D)=D?+2D +1 and ¥(2) = i e

The auxiliary equation of the above equation will be:

Fm)=0 = m?>+2m+1=0
= m=-—1,—1.

Therefore, roots are real and equal, and so, the complementary function will be:
C.F. = (c1 + ca2)e™”.

The particular integral will be:

1 1 1
PL = 50y Y9 = pron+1 @ ep
B 1 1
T D242D+1 (1—e)2
1 1 1

D+1 D+1 (1—e*)?
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Putting e* = u we get:

1 1 1
d. = -z R T — — e F — d
Pl € Ju(l—u)du € J[u+1—u] Y

= e ?[lnu —In(1 — u)]
= e ?[z—In(1-¢€%)].

The complete solution will be:
y = CF.+PL

= y=(a+caz)e*+e?[z—In(1—e%)
— y=(a+chr)z +27 Inz —In(l —z)]

— y=(ci+chz)z '+ n (1fx>

This is the required solution. O]

Exercise (Assignment)

2

dy dy 5
(Q.1) Solve: z? proll Tx o 5y = x°.

1 5

1
Ans. y=ciz %+ ozt + @m .

2 d
(Q.2) Solve: x? % — 2z % — 4y = 2.

1
Ans. y =izt + o7 + gx‘l Inz.

d* d3 d? d
(Q.3) Solve: 2t Y 4980 Y 2 0Y —x—y—l—y =z+Inz.

dx? dxz3 dx? dx
1 4
Ans. y ==z [cl +cyInz +cs(Inz)® + ¢4 (1nx)3] + % +Inz +4.
d? d Inz-sin(lnz) + 1
(Q.4) Solve: z? d_mz — 3z é +y= (ln.2) :

Ans. y = 22 [clm‘/g + CQx_‘/g
+z ' [Inz (5sinlnz + 6coslnz) /61 + (54sinlnz + 382coslnz) /3721 + 1/6]] .



