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UNIT-I

Calculus of finite differences: Operators, forward difference operator, back-
ward difference operator, E-operator, relation between them, difference of a
polynomial, factorial polynomial, Inverse operator, forward difference table,
Backward difference table.

Calculus of finite differences

Finite Differences. In theoretical science most of the functions and relations are
in explicit and continuous form. Practical problems leads us to situations when
the value of function y = f(x) is known not in form of an explicit formula, but
value of y are known only at some points. In such cases we cannot calculate the
value of y at any arbitrary given point. Similarly, in such cases it is not possible
to find derivatives or integral of the function, and so, it is difficult to analyze
the behaviour of function in its domain. To overcome this problem, we need the
techniques of finite differences and approximation.

Let y = f(x) be any function of the independent variable x. Suppose the
explicit values of y in form of x is not known, but only a finite number of values
of y at points x0, x1, x2 . . . , xn are known and given by the following table:

x x0 x1 x2 · · · xn
y y0 y1 y2 · · · yn

where yi = f(xi), i = 0, 1, 2, . . . , n. Then, the values of x, i.e., x0, x1, x2, . . . , xn
are called the argument of function and the corresponding values y0, y1, y2, . . . , yn
of y are called the entries. We assume that the arguments are equally spaced
with space h, i.e., x1 = x0 + h, x2 = x1 + h, . . . , xn = xn−1 + h. In general,
xi = xi−1 + h = x0 + ih, i = 1, 2, . . . , n.

The forward difference operator ∆. It is denoted by ∆ and defined by:

∆f(x) = f(x+ h)− f(x).

By definition of ∆, it is clear that the forward difference operator finds the dif-
ference of the values of function y = f(x) on two consecutive values x+ h and x
of argument. Also:

∆y0 = ∆f(x0) = f(x0 + h)− f(x0) = f(x1)− f(x0) = y1 − y0.

Similarly, ∆y1 = y2 − y1, . . . ,∆yn−1 = yn − yn−1. The higher order differences are
defined as follows:

∆2f(x) = ∆(∆f(x)) = ∆[f(x+ h)− f(x)] = ∆f(x+ h)−∆f(x)

= f(x+ 2h)− f(x+ h)− [f(x+ h)− f(x)]

= f(x+ 2h)− 2f(x+ h) + f(x).

Similarly, ∆3f(x) and other higher order differences can be obtain.
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The differences of y = f(x) for tabular values of y can be obtained by the
following forward difference table.

The backward difference operator ∇. The backward difference operator is de-
noted by ∇ and defined by:

∇f(x) = f(x)− f(x− h).

It is clear that

∇y1 = ∇f(x1)− f(x1 − h) = f(x1)− f(x0) = y1 − y0.

Similarly, ∇y2 = y2 − y1, . . . ,∇yn = yn − yn−1. Also, it is obvious that:

∇yn = ∆yn−1.

The higher order backward differences can be obtained similarly. The various
higher order differences can be obtained by the following backward difference
table:

The shifting operator E. It is denoted by E and defined by:

Ef(x) = f(x+ h).

The higher order shifting is defined by:

E2f(x) = Ef(x+ h) = f(x+ 2h).

Similarly, we define:
Enf(x) = f(x+ nh).
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The negative powers of E is defined in similar way:

E−1f(x) = f(x− h) and E−nf(x) = f(x− nh).

Example 1. Calculate the values of backward differences of f(4) from the
data below:

x : 0 1 2 3 4
f(x) : 1.0 1.5 2.2 3.1 4.6

Solution: The difference table for the given data is as follows:

Hence, from the above table we have ∇f(4) = 1.5,∇2f(4) = 0.6,∇3f(4) = 0.4
and ∇4f(4) = 0.4. �

Relations between ∆, ∇, E and D.

Example 2. Prove the following relations:

(a) ∆ ≡ E−1 (b) ∇ ≡ 1−E−1 (c) ∆ ≡ ∇E (d) (1+∆)(1−∇) ≡ 1

(e) ∆∇ ≡ ∇∆ (f) D ≡ 1

h
ln(1 + ∆) (g) D ≡ −1

h
ln(1−∇).

Solution: (a) By definition we have:

∆f(x) = f(x+ h)− f(x) = Ef(x)− f(x) = (E − 1)f(x).

Therefore:
∆ ≡ E − 1 or E ≡ 1 + ∆ .

(b)By definition we have:

∇f(x) = f(x)− f(x− h) = f(x)− E−1f(x) = (1− E−1)f(x).
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Therefore:
∇ ≡ 1− E−1 or E−1 ≡ 1−∇ .

(c) By (a) and (b) we have:

∆ ≡ E − 1 ≡ E − EE−1 ≡ (1− E−1)E ≡ ∇E.

(d) By (a) and (b) we have:

(1 + ∆)(1−∇) ≡ EE−1 ≡ 1.

(e) By (a) and (b) we have:

∆∇ ≡ (E − 1)(1− E−1) ≡ E − EE−1 − 1 + E−1 ≡ E − 2 + E−1.

Similarly, we have ∇∆ ≡ E − 2 + E−1. Therefore, ∆∇ ≡ ∇∆.

(f) By Taylor’s series we know that:

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + · · ·

=⇒ Ef(x) = f(x) + hD [f(x)] +
h2

2!
D2 [f(x)] +

h3

3!
D3 [f(x)] + · · ·

=⇒ Ef(x) =

[
1 + hD +

h2

2!
D2 +

h3

3!
D3 + · · ·

]
f(x)

=⇒ Ef(x) = ehDf(x).

Therefore, E ≡ ehD, i.e., 1 + ∆ ≡ ehD or

D ≡ 1

h
ln(1 + ∆) .

(g) Again, since E ≡ ehD and E−1 ≡ 1−∇ we have

1

1−∇
≡ ehD

=⇒ 1−∇ ≡ e−hD

=⇒ ln(1−∇) ≡ −hD

=⇒ D ≡ −1

h
ln(1−∇).

This proves the result. �

Example 3. Prove that: ex =

(
∆2

E

)
ex · Ee

x

∆2ex
.
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Solution: We have:

R.H.S. =

(
∆2

E

)
ex · Ee

x

∆2ex

=

(
(E − 1)2

E

)
ex · Eex

(E − 1)2ex

=

(
E2 − 2E + 1

E

)
ex · Eex

(E2 − 2E + 1)ex

=
(
E − 2 + E−1

)
ex · Eex

(E2 − 2E + 1)ex

=
(
ex+h − 2ex + ex−h

)
· ex+h

(ex+2h − 2ex+h + ex)

=
ex
(
ex+2h − 2ex+h + ex

)
(ex+2h − 2ex+h + ex)

= ex

= L.H.S.

This proves the result. �

Example 4. Prove that: ∆ ln f(x) = ln

(
1 +

∆f(x)

f(x)

)
.

Solution: We have

L.H.S. = ∆ ln f(x)

= (E − 1) ln f(x)

= ln f(x+ h)− ln f(x)

= ln

(
f(x+ h)

f(x)

)
= ln

(
Ef(x)

f(x)

)
= ln

(
(1 + ∆)f(x)

f(x)

)
= ln

(
f(x) + ∆f(x)

f(x)

)
= ln

(
1 +

∆f(x)

f(x)

)
= R.H.S.

This proves the result. �
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Example 5. Evaluate: ∆ [eax ln(bx)] .

Solution: We know that:

∆ [eax ln(bx)] = (E − 1) [eax ln(bx)]

= E[eax ln(bx)]− eax ln(bx)

= ea(x+h) ln[b(x+ h)]− eax ln(bx)

This is the required value. �

Example 6. Find the value of: (i)

(
∆2

E

)
x3 (ii) ∆n

(
1

x

)
.

Solution:

(i)

(
∆2

E

)
x3 =

[
(E − 1)2

E

]
x3

=
(
E − 2 + E−1

)
x3

= (x+ h)3 − 2x3 + (x− h)3

= (x3 + 3x2h+ 3xh2 + h3)− 2x3 + (x3 − 3x2h+ 3xh2 − h3)
= 6xh2.

(ii) ∆

(
1

x

)
=

1

x+ h
− 1

x
=

−h
x(x+ h)

.

Similarly:

∆2

(
1

x

)
= ∆

[
∆

(
1

x

)]
= ∆

[
−h

x(x+ h)

]
= −h

[
1

(x+ h)(x+ 2h)
− 1

x(x+ h)

]
=

(−1)2 2! h2

x(x+ h)(x+ 2h)
.

In general, we have:

∆n

(
1

x

)
=

(−1)n n! hn

x(x+ h)(x+ 2h) · · · (x+ nh)
.

This is the required value. �
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Example 7. Find the value of: (i) ∆ tan−1 x (ii) ∆2 cos 2x.

Solution: (i) By the definition of forward difference operator, we know that:

∆ tan−1 x = tan−1(x+ h)− tan−1 x

= tan−1
{

x+ h− x
1 + (x+ h)x

}
= tan−1

{
h

1 + hx+ x2

}
.

(ii) By the definition of forward difference operator, we know that:

∆2 cos 2x = ∆ {∆ cos 2x}
= ∆ {cos 2(x+ h)− cos 2x}
= ∆ cos 2(x+ h)−∆ cos 2x

= cos 2(x+ 2h)− cos 2(x+ h)− {cos 2(x+ h)− cos 2x}
= −2 sin(2x+ 3h) sinh+ 2 sin(2x+ h) sinh

= −2 sinh [sin(2x+ 3h)− sin(2x+ h)]

= −2 sinh [2 cos(2x+ 2h) sinh]

= −4 sin2 h cos(2x+ 2h).

This is the required value. �

Example 8. If f(x) = eax+b, then show that the leading difference from a
geometric progression.

Solution: Given that f(x) = eax+b. Hence, by the definition of forward difference
we have:

∆f(x) = ∆
[
eax+b

]
= eb∆ [eax]

= eb
[
ea(x+h) − eax

]
=
(
eah − 1

)
eax+b.

Again, the second difference:

∆2f(x) = ∆
[
∆eax+b

]
= ∆

[(
eah − 1

)
eax+b

]
=
(
eah − 1

)
∆
[
eax+b

]
=
(
eah − 1

) [
eb
{
ea(x+h) − eax

}]
=
(
eah − 1

) [
eax+b

{
eah − 1

}]
=
(
eah − 1

)2
eax+b.
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Similarly, we can obtain that ∆nf(x) =
(
eah − 1

)n
eax+b for all natural numbers

n. Hence for any natural number r we have:

∆rf(x) =
(
eah − 1

)r
eax+b =

(
eah − 1

) (
eah − 1

)r−1
eax+b =

(
eah − 1

)
∆r−1f(x).

This show that the every two successive terms are in a common ratio
(
eah − 1

)
,

and so, the differences are in a geometric progression. �

Example 9. Find the value of: (i) ∆2

(
5x+ 12

x2 + 5x+ 6

)
(ii) ∆n(ex)

with interval of difference h = 1.

Solution: (i) By the definition of forward difference operator, we know that:

∆2

(
5x+ 12

x2 + 5x+ 6

)
= ∆2

(
5x+ 12

(x+ 2)(x+ 3)

)
= ∆2

(
2

x+ 2
+

3

x+ 3

)
= ∆

{
∆

(
2

x+ 2

)
+ ∆

(
3

x+ 3

)}
= ∆

{
2

(
1

x+ 3
− 1

x+ 2

)
+ 3

(
1

x+ 4
− 1

x+ 3

)}
= −2∆

{
1

(x+ 2)(x+ 3)

}
− 3∆

{
1

(x+ 3)(x+ 4)

}
= −2

{
1

(x+ 3)(x+ 4)
− 1

(x+ 2)(x+ 3)

}
−3

{
1

(x+ 4)(x+ 5)
− 1

(x+ 3)(x+ 4)

}
=

4

(x+ 2)(x+ 3)(x+ 4)
+

6

(x+ 3)(x+ 4)(x+ 5)

=
2(5x+ 16)

(x+ 2)(x+ 3)(x+ 4)(x+ 5)
.

(ii) By the definition of forward difference operator, we know that:

∆ex = ex+1 − ex = (e− 1)ex.

Again, the second difference:

∆2ex = ∆ {∆ex} = ∆ {(e− 1)ex}
= (e− 1)∆ex = (e− 1)(e− 1)ex

= (e− 1)2ex.
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Again:

∆3ex = ∆
{

∆2ex
}

= ∆
{

(e− 1)2ex
}

= (e− 1)2∆ex

= (e− 1)3ex.

Similarly, ∆nex = (e− 1)nex. �

Theorem 1. Prove that the nth difference of a polynomial of degree n is
constant and all higher order differences are zero.

Proof. Let
f(x) = a0x

n + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an.

By definition we have

∆f(x) = f(x+ h)− f(x)

= a0(x+ h)n + a1(x+ h)n−1 + a2(x+ h)n−2 + · · ·+ an−1(x+ h) + an
−
[
a0x

n + a1x
n−1 + a2x

n−2 + · · ·+ an−1x+ an
]

= a0[(x+ h)n − xn] + a1[(x+ h)n−1 − xn−1] + · · ·+ an−1[(x+ h)− x]

+[an − an]

= a0nhx
n−1 + b1x

n−2 + b2x
n−3 + · · ·+ bn−1 (using binomial theorem).

Similarly, ∆2f(x) = ∆[∆f(x)]

= ∆[a0nhx
n−1 + b1x

n−2 + b2x
n−3 + · · ·+ bn]

= a0n(n− 1)h2xn−2 + c1x
n−3 + c2x

n−4 + · · ·+ cn−2.

Thus, we obtain:

∆nf(x) = a0n(n− 1)(n− 2) · · · 1 · hn = a0n!hn = constant.

Therefore, ∆n+1f(x) = ∆[a0n!hn] = ∆(constant) = 0.

Example 10. Find the value of ∆10
[
(1− ax)(1− bx2)(1− cx3)(1− dx4)

]
.

Solution: We know that:

(1− ax)(1− bx2)(1− cx3)(1− dx4)
= abcdx10 + terms containing x9 and lower degree of x.
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Hence:

∆10
[
(1− ax)(1− bx2)(1− cx3)(1− dx4)

]
= ∆10

[
abcdx10 + terms containing x9 and lower degree of x

]
= abcd∆10x10 + ∆10

[
terms containing x9 and lower degree of x

]
= abcd∆10x10 + 0

= abcd · 1 · (10)!hn.

Thus, ∆10
[
(1− ax)(1− bx2)(1− cx3)(1− dx4)

]
= abcd · (10)!hn. �

Example 11. Show that: ∇2y8 = y8 − 2y7 + y6.

Solution: We know that ∇ ≡ 1− E−1, hence:

∇2 ≡
(
1− E−1

)2
= 1− 2E−1 + E−2.

Therefore:

∇2y8 =
(
1− 2E−1 + E−2

)
y8

= y8 − 2E−1y8 + E−2y8
= y8 − 2y7 + y6.

This proves the required result. �

Motivation for the calculus of finite differences

How can we evaluate

b
∫

a

f(x)dx, where f is continuous in its domain? The

answer is given by the the fundamental theorem of calculus. It says that if g(x)
is the anti-derivative of f(x), i.e., f(x) = g′(x) then:

b
∫

a

f(x)dx = g(a)− g(b).

Obviously, the above problem is meaningful when the function f is continuous in
its domain (in general). For a function f(x), where the value of function is known
only at some finite number of values of x in the interval [a, b], an analogue of the

above problem can be stated as: how can we evaluate
b∑

x=a

f(x) ? Such problems

occurs frequently in practical and theoretical calculations.
To answer this question, we need a result similar to the fundamental theorem

of calculus which works for “
∑

” instead “
∫

”.
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Definition 1 (Anti-difference operator). A function g(x) is called anti-
difference of the function f(x) if ∆g(x) = f(x).

Theorem 2 (Fundamental theorem of finite difference calculus). Let g(x) be

an anti-difference of f(x). Then,
∑b

x=a f(x) = g(b+h)−g(a), b = a+(n−1)h.

Proof. By definition we have:

b∑
x=a

f(x) =
b∑

x=a

∆g(x) =
b∑

x=a

[g(x+ h)− g(x)] =
b∑

x=a

g(x+ h)−
b∑

x=a

g(x)

= g(a+ h) + g(a+ 2h) + · · ·+ g(b+ h)− [g(a) + g(a+ h) + · · ·+ g(b)]

= g(a+ h) + g(a+ 2h) + · · ·+ g(a+ nh)

−[g(a) + g(a+ h) + · · ·+ g(a+ n− 1h)]

= g(b+ h)− g(a)

which proves the theorem.

Next, we collect some tools for finding anti-difference of a function.

Factorial notation or falling powers: Suppose n be any integer, then the factorial
power of x is denoted by x(n) and it is defined by:

x(n) = x(x− h)(x− 2h) · · · (x− n− 1h).

If the length of interval is assumed h = 1, then

x(n) = x(x− 1)(x− 2) · · · (x− n− 1).

Example 12. Prove that: ∆x(n) = nx(n−1), where h = 1.

Solution: By definition, we have:

∆x(n) = (x+ 1)(n) − x(n)

= (x+ 1)(x)(x− 1) · · · (x− n− 2)− x(x− 1)(x− 2) · · · (x− n− 1)

= x(x− 1) · · · (x− n− 2)
[
(x+ 1)− (x− n− 1)

]
= nx(x− 1) · · · (x− n− 2)

= nx(n−1).

This proves the result. �

Example 13. Express y = 2x3 − 3x2 + 3x − 10 in a factorial notation and
hence show that ∆3y = 12.
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Solution: Suppose

y = 2x3 − 3x2 + 3x− 10 = Ax(3) +Bx(2) + Cx(1) +D.

To find the constants A,B,C,D, we use the synthetic division as follows:

Therefore

y = 2x3 − 3x2 + 3x− 10 = 2x(3) + 3x(2) + 2x(1) − 10.

Also,

∆3y = ∆3[2x(3) + 3x(2) + 2x(1) − 10]

= ∆2[6x(2) + 6x(1) + 2]

= ∆[12x(1) + 6]

= 12.

Hence, ∆3y = 12. �

Example 14. Find the function whose first forward difference is 6x2 + 2.

Solution: Suppose f(x) is the function whose first forward difference is 6x2 + 2,
i.e.,

∆f(x) = 6x2 + 2 = Ax(2) +Bx(1) + C.

To find the constants A,B,C, we use the synthetic division as follows:
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Therefore
∆f(x) = 6x(2) + 6x(1) + 2.

Integrating the above we obtain:,

f(x) = 2x(3) + 3x(2) + 2x(1) + c.

This is the required function. �

Exercise (Assignment)

(Q.1) Prove that ∆3yi = yi+3 − 3yi+2 + 3yi+1 − yi.
Hint: Use the relation ∆ ≡ E − 1 and Enyi = yi+n, n = 1, 2, 3.

(Q.2) Prove that ∆

(
1

f(x)

)
= − ∆f(x)

f(x)f(x+ 1)
, assume h = 1.

Hint: Think.

(Q.3) Evaluate ∆

[
5x+ 12

x2 + 5x+ 6

]
, assume h = 1.

Ans: 10x+32
(x+2)(x+3)(x+4)(x+5) .

(Q.4) Evaluate ∆3 [(1− x)(1− 2x)(1− 3x)] , assume h = 2.

Ans: −288.

(Q.5) Prove that ∆ +∇ =
∆

∇
− ∇

∆
.

Hint: Use the relations between ∆,∇ and E.

(Q.6) Construct the table of differences for the data below:

x : 0 1 2 3 4
f(x) : 1.0 1.5 2.2 3.1 4.6

(Q.7) Express x3−2x2+x−1 into factorial polynomial hence show that ∆4f(x) =
0.

Ans: f(x) = x(3) + x(2) − 1.

(Q.8) Represent the function f(x) = x4−12x3+24x2−30x+9 and all its successive
differences into factorial notation. Hence show that ∆5f(x) = 0.

Ans: f(x) = x(4) − 6x(3) + 13x(2) + x(1) + 9.

(Q.9) Find the function whose first forward difference is 2x3 + 3x2 − 5x+ 4.

Ans: f(x) = 1
2x

(4) + 3x(3) + 4x(1) + c.

(Q.10) Find the function whose first forward difference is 9x2 + 11x+ 5.
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Finding the missing terms in a given series

In this section, we deal with the data in which few terms are missing and we
have to recover those missing values. We know that to fit a straight line we must
have two points i.e., two points known means we can assume that a first degree
curve can be fitted. Generally, n points known means a (n − 1)th degree curve
can be fitted with the given data. Then we apply the theorem that says the nth

difference of a (n− 1)th degree polynomial is zero.

Example 15. Find the missing value in table given below:

x: 0 1 2 3 4

y: 1 3 9 ? 81

Explain why the value differ from 33 or 27.

Solution: In the above data, there are 4 points are known (as their both x and y
co-ordinates are known). So, we can assume that y is a third degree polynomial.
Hence all the fourth differences must be zero. Let a be the unknown value of y.
Then the difference table will be as follows:

Since the fourth difference must be zero, we have 124 − 4a = 0 =⇒ a = 31.
This value is not 33 = 27, because we assume y a polynomial of degree three in
x, while the function is actually y = 3x, an exponential function. �

Example 16. Find the missing values in table given below:

x: 0 1 2 3 4 5 6 7

y: 1 -1 1 -1 1 ? ? ?

Solution: In the above data, there are total 8 points are given. But, only for 5
points the value of y are known for given values of x. So, we can assume that y is
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a fourth degree polynomial. Hence, its fourth difference will be constant and the
fifth differences must be zero. Let corresponding to x = 5, 6, 7 the values of y are
a, b, c respectively. Then, the difference table for the given data is as follows:

Since the fifth difference must be zero, we have:

a− 31 = 0;

b− 5a+ 26 = 0;

c− 5b+ 10a− 16 = 0.

The first equation of the above gives a = 31. Putting this value in the second
equation we get:

b− 155 + 26 = 0

=⇒ b = 129.

Putting the values of a and b in the third equation we get

c− 645 + 310− 16 = 0

=⇒ b = 351.

Hence, the required values are:

a = 31, b = 129, c = 351. �

Example 17. If yx is a polynomial for which fifth difference is constant and
y1 + y7 = −7845, y2 + y6 = 686, y3 + y5 = 1088, find y4.
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Solution: Since the ∆5y1 =constant, therefore we must have ∆6y1 = 0, i.e.,

∆6y1 = 0

=⇒ (E − 1)6y1 = 0

=⇒ (E6 − 6E5 + 15E4 − 20E3 + 15E2 − 6E + 1)y1 = 0

=⇒ y7 − 6y6 + 15y5 − 20y4 + 15y3 − 6y2 + y1 = 0

=⇒ (y7 + y1)− 6(y6 + y2) + 15(y5 + y3)− 20y4 = 0

=⇒ y4 =
1

20
[(y7 + y1)− 6(y6 + y2) + 15(y5 + y3)]

=⇒ y4 =
1

20
[−7845− 6× 686 + 15× 1088] = 571.

Hence, the required value is y4 = 571. �

Example 18. If y10 = 3, y11 = 6, y12 = 11, y13 = 18, y14 = 27, then find y4.

Solution: For the given values the backward difference table is as follows:

Now we know that:

y4 = y14−10 = E−10y14 =
(
E−1

)10
y14

= (1−∇)10 y14

=

[
1− 10∇+

10 · (10− 1)

2!
∇2 − 10 · (10− 1) · (10− 2)

3!
∇3 + · · ·

]
y14

= y14 − 10∇y14 +
10 · 9

2
∇2y14 −

10 · 9 · 8
6

∇3y14 + · · ·
= 27− 10 · 9 + 45 · 2− 120 · 0 + · · · = 27.

Hence, y4 = 27. �
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Exercise (Assignment)

(Q.1) From the following table find the missing value:

x: 2 3 4 5 6

y: 45.0 49.2 54.1 ? 67.4

Ans: 60.05.

(Q.2) From the following table find the missing value:

x: 1 2 3 4 5 6 7

y: 2 4 8 ? 32 64 128

Ans: 16.1.

(Q.3) From the following table find the missing values:

x: 0 0.1 0.2 0.3 0.4 0.5 0.6

y: 0.135 ? 0.111 0.100 ? 0.082 0.074

Ans: y(0.1) = 0.123, y(0.4) = 0.090.

♣ ♣ ♣ ♣
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UNIT-II

Interpolation: Introduction to interpolation; Interpolation with equally
spaced interval, forward and backward interpolation formula, Interpolation
with unequally spaced intervals, Newton divided difference interpolation,
Lagrange’s formula for interpolation and inverse interpolation.

Interpolation

The interpolation is a technique with the help of which we can construct the
new data points within the range of given discrete data points. In other words,
if a function f(x) is unknown, but the values of this function at some discrete
points, say x0, x1, . . . , xn are known, then we can find the value of f(x) at a point
x ∈ [x0, xn]. For this, we approximate the function f(x) by a polynomial of degree
maximum n (since the value of function is known at n + 1 points). This process
is called the polynomial interpolation.

According to the nature of points x0, x1, . . . , xn the process of interpolation is
divided into the following:
(I) Interpolation for equally spaced intervals. In this case, the values x0, x1, . . . , xn
are equally spaced, i.e., xi = xi−1+h for i = 1, 2, . . . , n and h is the space or length
of the interval. For such case, we will use Newton’s forward interpolation formula
or Newton’s backward interpolation formula. If the point at which the value is
to interpolated lies in the upper half of the difference table then we use Newton’s
Forward interpolation formula. Newton’s backward interpolation formula is used
when the point at which the value is to interpolated lies in the lower half of the
difference table.

(II) Interpolation for unequally spaced intervals. In this case, the values x0, x1,
. . . , xn are not equally spaced. For such cases Newton’s divided difference formula
or Lagrange’s interpolation formula is used.

Newton’s forward interpolation formula. Suppose the value of function y = f(x)
is given at n+1 equally spaced points x0, x1 = x0+h, x2 = x1+h, . . . , xn = xn−1+h,
and we have to find the value of function at an intermediate point x ∈ [x0, xn].

Suppose x = x0 + rh, i.e., r =
x− x0
h

. Then we know that

y = f(x) = f(x0 + rh)

= Erf(x0) = Ery0
= (1 + ∆)ry0
=
[
1 +rC1∆ +rC2∆

2 +rC3∆
3 + · · ·+rCr∆

r
]
y0.

Therefore:

y = y0 + r∆y0 +
r(r − 1)

2!
∆2y0 +

r(r − 1)(r − 2)

3!
∆3y0 + · · ·+ ∆ry0.
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Newton’s backward interpolation formula. Suppose the value of function y =
f(x) is given at n+ 1 equally spaced points x0, x1 = x0 + h, x2 = x1 + h, . . . , xn =
xn−1 + h, and we have to find the value of function at an intermediate point

x ∈ [x0, xn]. Suppose x = xn − rh, i.e., r =
xn − x
h

. Then we know that

y = f(x) = f(xn − rh)

= E−rf(xn) =
(
E−1

)r
yn

= (1−∇)ry0
=
[
1−rC1∇+rC2∇2 −rC3∇3 + · · ·+ (−1)r rCr∇r

]
yn.

Therefore:

y = yn − r∇yn +
r(r − 1)

2!
∇2yn −

r(r − 1)(r − 2)

3!
∇3yn + · · ·+ (−1)r∇ryn.

Example 19. The area A of a circle of diameter d is given by the following
table:

d: 80 85 90 95 100
A: 5026 5674 6362 7088 7854

Find the area of circle of diameter 82.

Solution: The forward difference table is as follows:

We represent d by x and A by y. Since d = 82 is near the initial value 80 we will

use the forward interpolation formula. Then, for x = 82 we have r =
x− x0
h

=
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82− 80

5
= 0 · 4. Now by Newton’s forward interpolation formula we have:

y(82) = y0 + r∆y0 +
r(r − 1)

2!
∆2y0 +

r(r − 1)(r − 2)

3!
∆3y0 + · · ·

= 5026 + (0 · 4)(648) +
0 · 4(0 · 4− 1)

2
(40) +

0 · 4(0 · 4− 1)(0 · 4− 2)

6
(−2)

+
0 · 4(0 · 4− 1)(0 · 4− 2)(0 · 4− 3)

24
(4)

= 5280.1056 sq. units.

This is the required value. �

Example 20. From the following table, estimate the number of students who
obtained marks between 40 and 45.

Marks: 30-40 40-50 50-60 60-70 70-80
No. of Students: 31 42 51 35 31

Solution: We construct the cumulative table which is as follows:

We have to find y(45) and 45 is near the initial value 40, therefore we will use the
Newton’s forward interpolation formula. Then, for x = 45 we have

r =
x− x0
h

=
45− 40

10
= 0 · 5.
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Now by Newton’s forward interpolation formula we have:

y(45) = y0 + r∆y0 +
r(r − 1)

2!
∆2y0 +

r(r − 1)(r − 2)

3!
∆3y0 + · · ·

= 31 + (0 · 5)(42) +
0 · 5(0 · 5− 1)

2
(9) +

0 · 5(0 · 5− 1)(0 · 5− 2)

6
(−25)

+
0 · 5(0 · 5− 1)(0 · 5− 2)(0 · 5− 3)

24
(37)

= 47.87

≈ 48.

Thus, the number of students obtained marks less than 45, i.e., y(45) = 48 and
from the table the number of students obtained marks less than 40 is y(40) = 31.
Therefore, the number of students obtaining the marks between 40 and 45 will
be:

y(45)− y(40) = 48− 31 = 17.

This is the required value. �

Example 21. Find a polynomial which takes the following values:

x: 0 1 2 3
y: 1 2 1 10

Hence or otherwise, evaluate f(4).

Solution: The difference table for the given function is as follows:

Here h = 1, x0 = 0, and so

r =
x− x0
h

=
x− 0

1
= x.
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Now by forward interpolation formula we have:

f(x) = y

= y0 + r∆y0 +
r(r − 1)

2!
∆2y0 +

r(r − 1)(r − 2)

3!
∆3y0 + · · ·

= 1 + x(1) +
x(x− 1)

2
(−2) +

x(x− 1)(x− 2)

6
(12)

= 1 + x− x(x− 1) + 2x(x− 1)(x− 2)

= 2x3 − 7x2 + 6x+ 1.

Now, putting x = 4 in the above formula for y = f(x) we obtain:

f(4) = 2(43)− 7(42) + 6(4) + 1

= 41.

Hence, f(4) = 41. �

Example 22. Evaluate f(3.75) from the table given below:

x: 2.5 3 3.5 4 4.5 5
y: 24.145 22.043 22.225 18.644 17.262 16.047

Solution: Here h = 0.5. Since 3.75 is near to the final value x = 5 we will use the
Newton’s backward interpolation formula. Then,

r =
xn − x
h

=
5− 3.75

0.5
= 2.5.

The backward difference table is given as follows:
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Now by backward interpolation formula we have:

y = f(3.75)

= y5 − r∇y5 +
r(r − 1)

2!
∇2y5 −

r(r − 1)(r − 2)

3!
∇3y5

+
r(r − 1)(r − 2)(r − 3)

4!
∇4y5 +

r(r − 1)(r − 2)(r − 3)(r − 4)

5!
∇5y5

= 16.047− (2.5)(−1.215) +
(2.5)(1.5)

2
(0.167)− (2.5)(1.5)(0.5)

6
(−2.032)

+
(2.5)(1.5)(0.5)(−0.5)

24
(−7.994) +

(2.5)(1.5)(0.5)(−0.5)(−1.5)

120
(−20.003)

= 16.047 + 3.037 + 0.313 + 0.635 + 0.312− 0.2352

= 20.1088.

Hence, f(3.75) = 20.1088. �

Example 23. Find the values of f(1.5) and f(5.5) from the following table:

x: 0 1 2 3 4 5 6 7
y: 1 -1 1 2 12 30 45 50

Solution: The difference table is given below:

Now use the forward interpolation formula for f(1.5) and backward interpolation
formula for f(5.5). �

Exercise (Assignment)

(Q.1) Find the values of f(2.1) and f(2.4) from the following table:
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x: 2.0 2.1 2.2 2.3 2.4 2.5 2.6
y = f(x): 0.135 - 0.111 0.100 - 0.082 0.074

Ans. f(2.1) = 0.123 and f(2.4) = 0.0904.

(Q.2) Fit a polynomial to the given data:

x : 4 6 8 10
y : 1 3 8 16

Hence find y at x = 5.

(Q.3) Given that sin(45◦) = 0.7071, sin(50◦) = 0.7660, sin(55◦) = 0.8192, sin(60◦) =
0.8660. Then find sin(52◦).

Hint: Use Newton’s forward difference formula with x = 52. Ans. 0.788.

(Q.4) Find the number of mens getting wages between Rs. 10 and Rs. 15 from

the following data:
Wages 0-10 10-20 20-30 30-40

Frequency 9 30 35 42

Ans. 15.

(Q.5) Find the cubic polynomial in x for the following polynomial:

x : 0 1 2 3 4 5
y : -3 3 11 27 57 107

Ans. f(x) = x3 − 2x2 + 7x− 3.

(Q.6) The pressure p of wind corresponding to velocity v is given by the following
data. Estimate p when v = 15:

v : 10 20 30 40
p : 1.1 2.0 4.4 7.9

Ans. p(15) = 1.325.

(Q.7) Find f(42) from the following data:

x : 20 25 30 35 40 45
f(x) : 354 332 291 260 231 204

Ans. f(42) ≈ 219.

Interpolation with unequally spaced intervals

For unequally spaced intervals we will use two formulae: (i) The Lagrange’s for-
mula; (ii) Newton’s Divided Difference formula.
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(i) Lagrange’s formula. Suppose, the values of function y = f(x) at points
x0, x1, x2, . . . , xn be y0 = f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn). Then, the
Lagrange’s approximated polynomial of degree n is given by:

f(x) =
(x− x1)(x− x2)(x− x3) · · · (x− xn)

(x0 − x1)(x0 − x2)(x0 − x3) · · · (x0 − xn)
y0

+
(x− x0)(x− x2)(x− x3) · · · (x− xn)

(x1 − x0)(x1 − x2)(x1 − x3) · · · (x1 − xn)
y1

+ · · ·+ (x− x0)(x− x1)(x− x2) · · · (x− xn−1)
(xn − x0)(xn − x1)(xn − x3) · · · (xn − xn−1)

yn.

(ii) Newtons divided difference formula. First we define the divided difference
of a function. Suppose x0, x1, x2, . . . , xn be the values of arguments x and y0 =
f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn) be the corresponding values of y.
Then the first divided difference of f is denoted by |4 f(x0) or f [x0, x1] and

|4 f(x0) = f [x0, x1]

=
f(x1)− f(x0)

x1 − x0
.

Similarly, we define

|42 f(x0) = f [x0, x1, x2]

=
f [x1, x2]− f [x0, x1]

x2 − x1
and so on.

Suppose, the values of function y = f(x) at points x0, x1, x2, . . . , xn be y0 =
f(x0), y1 = f(x1), y2 = f(x2), . . . , yn = f(xn). Then, the Newton’s divided differ-
ence approximated polynomial of degree n is given by:

f(x) = f(x0) + (x− x0) |4 f(x0) + (x− x0)(x− x1) |42 f(x0)

+ · · ·+ (x− x0)(x− x1) · · · (x− xn−1) |4n f(x0).

Example 24. Find the Newton’s divided difference approximated polynomial
for the function given below and hence find f(8), f(9) and f(15).

x : 4 5 7 10 11 13
y = f(x) : 48 100 294 900 1210 2028

Solution: The divided difference table for the given function is as follows:
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Therefore, the Newton’s divided difference approximated polynomial will be:

f(x) = f(x0) + (x− x0) |4 f(x0)

+(x− x0)(x− x1) |42
f(x0) + (x− x0)(x− x1)(x− x2) |43

f(x0)

+(x− x0)(x− x1)(x− x2)(x− x3) |44
f(x0)

+(x− x0)(x− x1)(x− x2)(x− x3)(x− x4) |45
f(x0)

= 48 + 52(x− 4) + 15(x− 4)(x− 5) + (x− 4)(x− 5)(x− 7).

Thus,
f(x) = 48 + 52(x− 4) + 15(x− 4)(x− 5) + (x− 4)(x− 5)(x− 7). (1)

Putting x = 8 in (1) we get

f(8) = 48 + 52(8− 4) + 15(8− 4)(8− 5) + (8− 4)(8− 5)(8− 7) = 448.

Similarly, f(9) = 648 and f(15) = 3150. �

Example 25. Given that f(0) = −18, f(1) = 0, f(3) = 0, f(5) =
−248, f(6) = 0, f(9) = 13104, then find f(x).

Solution: Here x0 = 0, x1 = 1, x2 = 3, x3 = 5, x4 = 6, x5 = 9. Therefore, the points
are unequally spaced. We shall use the Newton’s divided difference interpolation
formula for the calculation of f(x). The divided difference table is as follows:
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Therefore, the Newton’s divided difference approximated polynomial will be:

f(x) = f(x0) + (x− x0) |4 f(x0)

+(x− x0)(x− x1) |42 f(x0) + (x− x0)(x− x1)(x− x2) |43 f(x0)

+(x− x0)(x− x1)(x− x2)(x− x3) |44 f(x0)

+(x− x0)(x− x1)(x− x2)(x− x3)(x− x4) |45 f(x0)

= −18 + 18x− 6x(x− 1) + 7.4x(x− 1)(x− 3)

+1.87x(x− 1)(x− 3)(x− 5) + 1.63x(x− 1)(x− 3)(x− 5)(x− 6)

= x5 − 9x4 + 18x3 + 9x− 18.

This is the required polynomial. �

Inverse Interpolation. Sometimes it will be required to find out the value of x
corresponding to a value of y. Keeping in mind x and y are variables representing
independent and dependent variable, in such case we have to treat y as inde-
pendent variable and x as dependent variable so that the interpolation formulae
remain valid in this case also. Since y is considered as the independent variable,
we have to check whether the values of y are equally spaced or not and accordingly
we have to decide which interpolation formula is applicable.

Example 26. Find the value of x for y = 2.2 from the following table:

x : 0 1 2 3 4 5
y : 1 2 3 5 12 30

Solution: Since the values of y are not equidistant, we use the Newton’s inverse
divided difference formula. Then, the divided difference table for y will be:
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Therefore, by Newton’s divided difference formula we have

x = x0 + (y − y0) |4 x0

+(y − y0)(y − y1) |42 x0 + (y − y0)(y − y1)(y − y2) |43 x0

+(y − y0)(y − y1)(y − y2)(y − y3) |44 x0

+(y − y0)(y − y1)(y − y2)(y − y3)(y − y4) |45 x0
= 0 + (2.2− 1)(1) + (2.2− 1)(2.2− 2)(0) + (2.2− 1)(2.2− 2)(2.2− 3)(−0.042)

+(2.2− 1)(2.2− 2)(2.2− 3)(2.2− 5)(0.005)

= 1.2 + 0.008 + 0.003

= 1.211.

This is the required value of x. �

Example 27. From the given table find for what value of x when y = 13.6:

x : 30 35 40 45 50
y : 15.9 14.9 14.1 13.3 12.5

Solution: We will find the value x(13.6) by Lagrange’s inverse interpolation for-
mula. Here x0 = 30, x1 = 35, x2 = 40, x3 = 45, x4 = 50 and y0 = 15.9, y1 =
14.9, y2 = 14.1, y3 = 13.3, y4 = 12.5 and y = 13.6. Then, we have:

x =
(y − y1)(y − y2)(y − y3)(y − y4)

(y0 − y1)(y0 − y2)(y0 − y3)(y0 − y4)
x0 +

(y − y0)(y − y2)(y − y3)(y − y4)
(y1 − y0)(y1 − y2)(y1 − y3)(y1 − y4)

x1

+
(y − y0)(y − y1)(y − y3)(y − y4)

(y2 − y0)(y2 − y1)(y2 − y3)(y2 − y4)
x2 +

(y − y0)(y − y1)(y − y2)(y − y4)
(y3 − y0)(y3 − y1)(y3 − y2)(y3 − y4)

x3

+
(y − y0)(y − y1)(y − y2)(y − y3)

(y4 − y0)(y4 − y1)(y4 − y2)(y4 − y3)
x4.
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Putting all the values we get:

x =
(13.6− 14.9)(13.6− 14.1)(13.6− 13.3)(13.6− 12.5)

(15.9− 14.9)(15.9− 14.1)(15.9− 13.3)(15.9− 12.5)
30

+
(13.6− 15.9)(13.6− 14.1)(13.6− 13.3)(13.6− 12.5)

(14.9− 15.9)(14.9− 14.1)(14.9− 13.3)(14.9− 12.5)
35

+
(13.6− 15.9)(13.6− 14.9)(13.6− 13.3)(13.6− 13.6)

(14.1− 15.9)(14.1− 14.9)(14.1− 13.3)(14.1− 13.6)
40

+
(13.6− 15.9)(13.6− 14.9)(13.6− 14.1)(13.6− 13.6)

(13.3− 15.9)(13.3− 14.9)(13.3− 14.1)(13.3− 13.6)
45

+
(13.6− 15.9)(13.6− 14.9)(13.6− 14.1)(13.6− 13.6)

(12.5− 15.9)(12.5− 14.9)(12.5− 14.1)(12.5− 13.6)
50

= 43.195.

This is the required value of x. �

Exercise (Assignment)

(Q.1) Use Newton’s divided difference formula to find the form of f(x), hence
find f(4):

x : 0 2 3 6
f(x) : 648 704 729 792

Ans. f(x) = −x2 + 30x+ 648.

(Q.2) Given log(654) = 2.8156, log(658) = 2.8182, log(659) = 2.8189 and log(661) =
2.8202. Find log(656).

Ans. Use Lagrange’s interpolation formula log(656) = 2.8169.

(Q.3) Use Lagrange’s formula to find the value of f(9), where:

x : 5 7 11 13 17
f(x) : 150 392 1452 2366 5202

Ans. f(9) = 810.

(Q.4) Apply Lagrange’s formula and find the value of x when f(x) = 15

x : 5 6 9 11
y = f(x) : 12 13 14 16

Ans. Use Lagrange’s inverse interpolation formula x(15) = 9.125.

♣ ♣ ♣ ♣
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UNIT-III

Integral calculus: fundamental theorem of integral calculus, length of curves,
volume, and surface area of revolution of curves.

Riemann Integral

The idea. Suppose, f be a continuous function defined on [a, b] and we want to
calculate the area bounded by this function with the x-axis from point x = a
to point x = b. This area is shown by the shaded (blue) part in the Figure 1.
Riemann suggested that this area can be calculated by dividing this area into
small rectangles of infinitely small width.

To understand this, we need the following definitions:

Definition 2. Consider a closed interval I = [a, b]. By a partition of I
we mean a finite set P = {x0, x1, . . . , xn} of points from I such that
a = x0, xn = b and x0 < x1 < · · · < xn. The interval I1 = [x0, x1], I2 =
[x1, x2], . . . , In = [xn−1, xn] are called the subintervals of the interval I = [a, b].
By ∆1,∆2, . . . ,∆n we denote the length of subintervals I1, I2, . . . , In respec-
tively, i.e., ∆i = xi−1− xi for i = 1, 2, . . . , n. It is obvious that, in a partition
of subintervals of equal length, as we increase the number of points in the
partition P (i.e., the value of n), the length of each subinterval decreases.

Suppose, we divide the interval I = [a, b] into three subintervals (i.e., n = 3)
and we take the partition P = {a = x0, x1, x2, x3 = b} as shown in the following
figure.
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Define mi = inf
x∈Ii

f(x) and Mi = sup
x∈Ii

f(x), where i = 1, 2, 3. Then, in Figure 3:

A1 = area of first rectangle bounded between x0 and x1 = M1(x1 − x0) = M1∆1;

A2 = area of next rectangle bounded between x1 and x2 = M2(x2 − x1) = M2∆2;

A3 = area of third rectangle bounded between x2 and x3 = M3(x3 − x2) = M3∆3.

Then, the sum of all these areas is called the Upper Sum of f over the partition
P and it is denoted by U(P, f), i.e.:

U(P, f) = M1∆1 +M2∆2 +M3∆3 =
3∑
i=1

Mi∆i.

Similarly, in Figure 4 we define the Lower Sum, denoted by L(P, f) and

L(P, f) = m1∆1 +m2∆2 +m3∆3 =
3∑
i=1

mi∆i.
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It is clear that, the value of U(P, f) is some larger than the exact area bounded
by the cure f(x) with the x-axis from a to b; and the value of L(P, f) is some
smaller than the exact area bounded by the curve f(x) with the x-axis from a
to b. Thus, there is an excess of area in U(P, f) and a lack of area in L(P, f).
It is obvious that, as we increase the number of points in the partition P , the
rectangles becomes more narrower and the length of subintervals decreases. As
the rectangles becomes more narrower, the upper sum U(P, f) starts to decreases
and so the excess of area in U(P, f) decreases. Similarly, as the rectangles becomes
more narrower, the lower sum L(P, f) starts to increase and the lack of area in
L(P, f) decreases as well.

Finally, as the number of points (we denote it by “n”) in the partition P tends to
infinite, then the upper sum U(P, f) reaches to a definite value called the Upper

Riemann Integral and denoted by
∫ b
af(x) dx. Similarly, as the number of points in

the partition P tends to infinite, then the lower sum L(P, f) reaches to a definite
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value called the Lower Riemann Integral and denoted by
∫ b
af(x) dx. Thus:

∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

Mi∆i and

∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

mi∆i.

If
∫ b
af(x) dx =
∫ b
af(x) dx, then the function f is called Riemann integrable over

[a, b] and the common value of upper and lower Riemann integrals is denoted by
∫ b
a f(x)dx and it is equal to the area bounded by the curve with the x-axis from
x = a to x = b.

Theorem 3 (First Fundamental Theorem of Integral Calculus).
Let f be an integrable function over [a, x] for each x ∈ [a, b]. Then the
function F defined by:

F (x) =

∫ x

a
f(t)dt, x ∈ (a, b)

is differentiable and F ′(x) = f(x) for all x ∈ (a, b).

Definition 3 (Antiderivative or Primitive of a function). A function
F is called a primitive or antiderivative of a function f on an open interval
(a, b) if F ′(x) = f(x) for all x ∈ (a, b).

For example, the function sinx is a primitive of the function cosx in every
interval. Notice that, the function sinx as well as the function sinx+ c, where c
is any arbitrary constant, a primitive of cosx. Therefore, primitive of a function
are not unique.

Theorem 4 (Second Fundamental Theorem of Integral Calculus).
If F is an anti-derivative (primitive) of a continuous function f on (a, b), then:

∫ x

a
f(t)dt = F (x)− F (a) for all x ∈ [a, b].

List of some fundamental integrals

(a)
∫

xndx =
xn+1

n+ 1
+ c, where n 6= −1;

(b)

∫

1

x
dx = lnx+ c;

(c)

∫

emxdx =
emx

m
+ c, where m 6= 0;

(d)

∫

axdx =
ax

ln a
+ c, where a > 0;



Dr. Satish Shukla 34

(e)

∫

sinxdx = − cosx+ c;

(f)

∫

cosxdx = sinx+ c;

(g)

∫

sec2 xdx = tan +c;

(h)

∫

cosec2xdx = − cot +c;

(i)

∫

secx tanxdx = sec +c;

(j)

∫

secxdx = ln(secx+ tanx) + c;

(k)

∫

cosecx cotxdx = −cosecx+ c;

(l)

∫

cosecxdx = ln(cosec− cotx) + c;

(m)

∫

dx√
1− x2

= sin−1 x+ c, where |x| < 1;

(n)

∫

dx√
1 + x2

= tan−1 x+ c or − cot−1 x+ c;

(o)

∫

dx

x
√
x2 − 1

= sec−1 x+ c or −cosec−1x+ c, where |x| > 1;

(p)

∫

dx

x2 − a2
=

1

2a
ln

∣∣∣∣x− ax+ a

∣∣∣∣+ c;

(q)

∫

dx

x2 + a2
=

1

a
tan−1

(x
a

)
+ c;

(r)

∫

dx√
x2 − a2

= ln
∣∣∣x+

√
x2 − a2

∣∣∣+ c;

(s)

∫

dx√
x2 + a2

= ln
∣∣∣x+

√
x2 + a2

∣∣∣+ c;

(t)

∫

dx√
a2 − x2

= sin−1
(x
a

)
+ c.
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Length of Curves (Rectification)

The finding of the length of a line is quite simple task in geometry. But, in
case of an irregular curve given by an equation y = f(x) it is not such an easy
task. For this purpose, we use the concept of calculus. Suppose, we have to find
the length of arc of the curve given by y = f(x), from point A to the point B,
i.e., the arcAB.

Suppose P (x, y) be any point on arcAB, and Q(x + δx, y + δy) be any point
on this arc in the vicinity of point P . Suppose arcPQ = δs. Now consider the
triangle PRQ. Then it is obvious that: (PQ)2 = (PR)2+(RQ)2, i.e., (PQ)2 =
δx2+δy2. As the point Q tends to the point P , i.e., δx, δy → 0, then arcPQ→ δs.
Therefore, δs2 = δx2 + δy2. Since δx, δy → 0, the small quantities δs, δx, δy now
reduce into the infinitely small quantities ds, dx, dy respectively. Thus, we obtain
(ds)2 = (dx)2 + (dy)2, or:

ds =

√
1 +

(
dy

dx

)2

dx.

Now, the whole length of the arc AB can be obtained by summing (integrating)
ds from x = a to x = b, i.e.:

arc(AB) =

∫ b

x=a
ds =

∫ b

a

√
1 +

(
dy

dx

)2

dx. (2)

The formula (2) is useful when the integral can be performed easily with respect
to x. The following forms can be used as per the convenience and requirement:

(A) Cartesian form: arc(AB) =

∫ d

y=c
ds =

∫ d

c

√
1 +

(
dx

dy

)2

dy.

(B) Parametric form: arc(AB) =

∫ t2

t=t1

ds =

∫ t2

t1

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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(C) Polar form: arc(AB) =

∫ θ2

θ=θ1

ds =

∫ θ2

θ1

√
r2 +

(
dr

dθ

)2

dθ, or:

arc(AB) =

r2
∫

r=r1

ds =

r2
∫

r1

√
1 +

(
r
dθ

dr

)2

dr.

∠POX = θ, ∠QOX = θ+ δθ, OP ′ ≈ OP = r, OQ = r+ δr, PP ′ ≈ rδθ, δs ≈
√
(δr)2 + (rδθ)2.

Example 28. Find the length of the arc of the parabola x2 = 4ay measured
from the vertex to one extremity of the latus-rectum.

Solution: Since x2 = 4ay, we have y =
x2

4a
and

dy

dx
=

x

2a
.

The required length of the arc is the arcOL. Now√
1 +

(
dy

dx

)2

=

√
1 +

( x
2a

)2
=

1

2a

√
(2a)2 + x2.
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Therefore:

arcOL =

∫ 2a

x=0

√
1 +

(
dy

dx

)2

dx =
1

2a

∫ 2a

x=0

√
(2a)2 + x2

=
1

2a

[
x

2

√
(2a)2 + x2 +

(2a)2

2
ln
(
x+

√
(2a)2 + x2

)]2a
0

=
1

2a

[
a
√

8a2 + 2a2 ln
(

2a+
√

8a2
)]
− 1

2a

[
2a2 ln (2a)

]
= a

[√
2 + ln

(
2a+

√
8a2
)
− ln (2a)

]
= a

[√
2 + ln

(
1 +
√

2
)]
.

Thus, the required length, arcOL = a
[√

2 + ln
(
1 +
√

2
)]

. �

Example 29. Find the length of arc of the semi-cubical parabola ay2 = x3

from the vertex to the ordinate x = 5a.

Solution: Given equation of semi-cubical parabola is:

ay2 = x3.

Hence, y =
x3/2√
a

, therefore,
dy

dx
=

3
√
x

2
√
a

. The required length of the arc is the

arcOA.

Now: √
1 +

(
dy

dx

)2

=

√
1 +

(
3
√
x

2
√
a

)2

=
1

2
√
a

√
4a+ 9x.
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Therefore:

arcOA =

∫ 5a

x=0

√
1 +

(
dy

dx

)2

dx =
1

2
√
a

∫ 5a

x=0

√
4a+ 9x

=
1

2
√
a
· 2

3 · 9

[
(4a+ 9x)3/2

]5a
0

=
1

27
√
a

[
73a3/2 − 23a3/2

]
=

335

27
a.

Thus, the required length, arcOB =
335

27
a. �

Example 30. Find the whole length of:

(a) cardioid: r = a(1 + cos θ);

(b) cycloid: x = a(θ − sin θ), y = a(1− cos θ);

(c) astroid: x = a cos3 t, y = a sin3 t (or, x2/3 + y2/3 = a2/3);

(d) circle: x = a cos θ, y = a sin θ (or, x2 + y2 = a2);

Solution: (a) Given equation of cardioid is

r = a(1 + cos θ).

Therefore,
dr

dθ
= −a sin θ (polar form). Hence:√

r2 +

(
dr

dθ

)2

=

√
a2(1 + cos θ)2 + (−a sin θ)2

= 2a cos (θ/2) .

Now, the whole length of the Cardioid

L = 2

∫ 0

−π

√
r2 +

(
dr

dθ

)2

dθ

= 2

∫ 0

−π
2a cos (θ/2) dθ

= 4a [2 sin(θ/2)]0−π
= 8a.
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(b) Here, x = a(θ − sin θ), y = a(1− cos θ) (parametric form), so:

dx

dθ
= a(1− cos θ),

dy

dθ
= a sin θ.

Therefore:√(
dx

dθ

)2

+

(
dy

dθ

)2

=

√
[a(1− cos θ)]2 + (a sin θ)2 = 2a sin(θ/2).

Now, the whole length of the cycloid is the arcOA. Note that, at point O, θ = 0
and at point A, θ = 2π. Therefore,

OA =

∫ 2π

0

√(
dx

dθ

)2

+

(
dy

dθ

)2

dθ =

∫ 2π

0
2a sin(θ/2)dθ

= 2a [−2 cos(θ/2)]2π0
= 8a.
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(c) Here, x = a cos3 t, y = a sin3 t (parametric form), so:

dx

dt
= −3a cos2 t sin t,

dy

dt
= 3a sin2 t cos t.

Therefore:√(
dx

dt

)2

+

(
dy

dt

)2

=

√
[−3a cos2 t sin t]2 +

(
3a sin2 t cos t

)2
= 3a sin t cos t.

Now, the whole length of the astroid is the L =arcABA′B′A. Note that, at point
A, t = 0 and at point B, θ = π/2. Therefore,

L = 4× arcAB = 4

∫ π/2

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt = 4

∫ π/2

0
3a sin t cos tdt

= 6a

∫ π/2

0
sin(2t)dt = 3a [− cos(2t)]

π/2
0

= 6a.

(d) Try yourself. �

Exercise (Assignment)

(Q.1) Find the length of the arc of the parabola y2 = 4a(a − x) cut off by the
y-axis.

Ans: arc BA= a[
√

2 + ln(1 +
√

2)].

(Q.2) By finding the length of of the curve show that the curve x = a(θ−sin θ), y =
a(1− cos θ) is divided in the ratio 1 : 3 at θ = 2π

3 .

(Q.3) Find the length of the curve y = ln(secx) from x = 0 to x = π/3.

Ans: ln
(
2 +
√

3
)
.

(Q.4) Find the length of the arc of the parabola y2 = 4ax cut off by the line
3y = 8x.

Ans: a (15/16 + ln 2).
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(Q.5) Find the whole length of the loop of the curve 3ay2 = x(x− a)2

Ans: 4a/
√

3.

(Q.6) Find the length of the curve y2 = (2x− 1)3 cut off by the line x = 4.

Ans. 37.85

Volume of solid generated by the revolution of area of curves

The idea. Suppose, the area enclosed by an arc of the curve y = f(x) from
x = a to x = b with x-axis is revolved about the x-axis. Then a solid shape is
thus generated and we have to find the volume of this solid. For this, we cut
vertically this solid into a large number (say “n”) of thin discs each of thickness
δx. Consider such a disc PP ′QQ′ shown in the figure below. Then, the volume
of the solid can be obtained by adding the volume of all such discs.

Now we obtained the volume of disc PP ′QQ′. Let the coordinate of point Q is
(x, y), then the volume of the disc PP ′QQ′ will be δv = πy2δx. As n → ∞ the
small quantities δx and δv reduce into the infinitely small quantities dx and dv
respectively. Therefore, the volume of disc PP ′QQ′ is dv = πy2dx. Thus, the

volume of the solid generated is V =
∫ b
x=a dv =
∫ b
a πy

2dx.
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Remark 1. (A) If the area bounded by the arc of curve (from y = c to y = d)
with y-axis is revolved about the y-axis, then the volume of generated solid

is given by V =
∫ d
y=c dv =
∫ d
c πx

2dy.

(B) If the area bounded by the arc of curve (from point A to B) with line L
is revolved about the line L, then the volume of generated solid is given by

V =
∫B
A dv =
∫B
A π(R1R2)

2(I1I2).

(C) In polar form the volume of revolution about the initial line is:

V =
2

3

∫ θ2

θ=θ1

πr3 sin θdθ.
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Example 31. Find the volume generated by revolving the area in the first
quadrant bounded by the parabola y2 = 8x and its latus rectum about the
x-axis.

Solution: Given equation of parabola is y2 = 8x
and its latus rectum is the line LL′ whose equa-
tion is x = 2, as shown in the figure. The re-
quired volume is the volume generated by the
area bounded by the arc OL from x = 0 to x = 2
with the x-axis. Therefore, the required volume
is:

V =

∫ 2

0
πy2dx =

∫ 2

0
π(8x)dx = 16π.

Thus the required volume V = 16π. �

Example 32. Find the volume generated by revolving the ellipse
x2

a2
+
y2

b2
= 1,

about the x-axis.

Solution: Given equation of ellipse is
x2

a2
+

y2

b2
= 1. The ellipse is shown the figure. The

required volume is the volume generated by
the area bounded by the arc A′BA from x =
−a to x = a with the x-axis. Therefore, the
required volume is:

V =

∫ a

−a
πy2dx =

∫ a

−a
π
b2

a2
(a2 − x2)dx

=
2πb2

a2

∫ a

0
(a2 − x2)dx =

4π

3
ab2.

Thus the required volume V =
4π

3
ab2. �

Example 33. The curve y2(a+ x) = x2(3a− x) revolves about the axis of x.
Find the volume generated by the loop.
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Solution: Given equation of curve is y2(a+ x) =
x2(3a − x). Given curve is symmetric about the
x-axis and cuts the x-axis at points O(0, 0) and
A(3a, 0), hence a loop OA′AO is formed. The
curve is shown the figure. The required volume
is the volume generated by the area bounded by
the arc OA′A from x = 0 to x = 3a with the
x-axis. Therefore, the required volume is:

V =

∫ 3a

0
πy2dx =

∫ 3a

0
π
x2(3a− x)

a+ x
dx

= π

∫ 3a

0

[
−x2 + 4ax− 4a2 +

4a3

x+ a

]
dx

= π

[
−x

3

3
+ 2ax2 + 4a3 ln(x+ a)

]3a
0

= πa3[8 ln(2)− 3].

Thus the required volume V = πa3[8 ln(2)− 3]. �

Example 34. Find the volume of the solid generated by the revolution of the

curve: x = a cos3 t, y = b sin3 t, or
(x
a

)2/3
+
(y
b

)2/3
= 1, about the x-axis.

Solution: Given equation of curve (astroid) is
x = a cos3 t, y = b sin3 t. The curve is shown
in the figure. The volume generated by revolving
the area bounded by the arc A′BA with x-axis
from x = −a to x = a about the x-axis. From
the figure it is clear that this volume is equal to
the twice of the volume generated by the revolu-
tion area bounded by the arc BA with the x-axis
from x = 0 to x = a about the x-axis.

At point x = 0 we have t =
π

2
and at x = a we have t = 0. Thus, the required

volume:

V = 2

∫ 0

t=π/2
πy2dx = 2

∫ 0

π/2
π(b sin3 t)2d(a cos3 t)

= 6πab2
∫ π/2

0
sin7 t cos2 tdt = 6πab2

Γ(4)Γ(32)

2Γ(112 )

= 6πab2
1
2 ·
√
π · 3!

2 · 92 ·
7
2 ·

5
2 ·

3
2 ·

1
2

√
π

= 32π
ab2

105
.
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Thus the required volume V = 32π
ab2

105
. �

Example 35. Find the volume of the solid generated by the revolution of the
cardioid: r = a(1 + cos θ) about the initial line from θ = 0 to θ = π.

Solution: Given equation of cardioid is
r = a(1 + cos θ). The cardioid is shown
in the figure. It is clear from the figure
that the required volume is formed by
the area bounded by the arc OBA from
θ = 0 to θ = π with the initial line. Thus,
the required volume:

V =
2

3

∫ π

θ=0
πr3 sin θdθ

=
2π

3

∫ π

θ=0
πa3(1 + cos θ)3 sin θdθ.

Putting 1 + cos θ = t we obtain sin θdθ = −dt and

θ → 0 =⇒ t→ 2

θ → π =⇒ t→ 0.

Hence:

V =
2πa3

3

∫ 2

0
t3dt =

2πa3

3

[
t3

3

]2
0

=
8πa3

3
.

Thus the required volume V =
8πa3

3
. �

Exercise (Assignment)

(Q.1) Find the volume of the spindle-shaped solid generated by revolving the area
of astroid x2/3 + y2/3 = a2/3 about x-axis.

Ans.
32πa3

105
.

(Q.2) Find the volume of sphere of radius a.

Hint: revolve the area of upper half of the circle x2 + y2 = a2 about the
x-axis.

(Q.3) Find the volume of the solid generated by the revolution of area of parabola
y2 = 4ax formed by the its arc from x = 0 to x = h and x-axis about the
x-axis.

Ans: 2aπh2.
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(Q.4) Prove that the volume of a right circular cone of height h and base of radius
r is 1

3πr
2h.

Hint: It is generated by the revolution of the line y = h
r (r−x) about y-axis.

Surface of revolution

The idea. Suppose, an arc of the curve y = f(x) from x = a to x = b is revolved
about x-axis. Then a solid shape is thus generated and we have to find the surface
area of this solid. For this, we cut vertically the surface of solid into a large number
(say “n”) of thin rings each of thickness ds. Consider such a ring PP ′QQ′ shown
in the figure below. Then, the surface area of the solid can be obtained by adding
the surface area of all such rings.

Now we obtained the surface area of the ring PP ′QQ′. Let the coordinate of point
Q is (x, y), then the surface area of the ring PP ′QQ′ will be δS = 2πyδs, where
δs is the length of the arc QQ′. As n→∞ the small quantities δs and δS reduce
into the infinitely small quantities ds and dS respectively. Therefore, the surface
area of the ring PP ′QQ′ is dS = 2πyds.

We know that the length of the arc QQ′ = ds =
√

(dx)2 + (dy)2. Therefore,
the surface area of the small ring:

dS = 2πyds = 2πy
√

(dx)2 + (dy)2 = 2πy

√(
1 +

dy

dx

)2

dx.

Now the surface area of the whole revolution can be obtained by integrating dS
from x = a to x = b, i.e., the required surface:

S =

∫ b

x=a
ds =

∫ b

a
2πy

√
1 +

(
dy

dx

)2

dx.



Dr. Satish Shukla 47

Remark 2. (A) If the curve is revolved about the y-axis, then the surface of rev-
olution:

S =

∫ d

y=c
ds =

∫ d

c
2πx

√
1 +

(
dx

dy

)2

dy.

(B) If the curve is revolving about the x-axis or the initial line (polar form), then
the surface of revolution:

S =

∫ θ2

θ=θ1

ds =

∫ θ2

θ1

2πr sin θ

√
r2 +

(
dr

dθ

)2

dθ.

(C) If the curve is revolving about the y-axis or the line θ = π/2 (polar form),
then the surface of revolution:

S =

∫ θ2

θ=θ1

ds =

∫ θ2

θ1

2πr cos θ

√
r2 +

(
dr

dθ

)2

dθ.

Example 36. Find the surface area of the solid generated by the revolution
of ellipse x2 + 4y2 = 1 about x-axis.

Solution. The equation of ellipse is x2 + 4y2 = 1,

i.e.,
dy

dx
= − x

4y
. Therefore:

√
1 +

(
dy

dx

)2

=
1

4y

√
x2 + 16y2

=
1

4y

√
4− 3x2.

Now, the surface area of the revolution of ellipse is equal to the twice the area of
revolution of the arc(BA) about x-axis. On this arc, the value of x varies from
B(x = 0) to A(x = 1). Thus, the required area:

S = 2

∫ 1

x=0
2πy

√
1 +

(
dy

dt

)2

dx

= 4π

∫ 1

0
y · 1

4y

√
4− 3x2 dx = π

√
3

∫ 1

0

√
4

3
− x2 dx

= π
√

3

[
x

2

√
4

3
− x2 +

4

2 · 3
sin−1

(√
3x

2

)]1
0

= π

[
1

2
+

π

3
√

3

]
.
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Thus, the required surface area S = π

[
1

2
+

π

3
√

3

]
. �

Example 37. Find the surface area of the solid generated by the revolution of
the arc of the parabola y2 = 4ax bounded by its latus rectum about x-axis.

Solution. Given equation of parabola is:

y2 = 4ax.

Hence,
dy

dx
=

2a

y
. The equation of latus rec-

tum LL′ of parabola is x = a, and the re-
quired surface of solid is the surface of solid
generated by the revolution of arc OL about
x-axis. Now:√

1 +

(
dy

dx

)2

=

√
x+ a

x
.

The value of x varies from O(x = 0) to L(x =
a). Thus, the required area:

S =

∫ a

x=0
2πy

√
1 +

(
dy

dx

)2

dx

= 2π

∫ a

x=0

√
4ax

√
x+ a

x
dx

= 4π
√
a

∫ a

x=0

√
x+ a dx

=
8πa2

3
[2
√

2− 1].

Thus, the required surface area S =
8πa2

3
[2
√

2− 1]. �

Example 38. Find the surface area of the solid generated by the revolution
of astroid x2/3 + y2/3 = a2/3 about x-axis.
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Solution. The parametric equation of as-
troid is:

x = a cos3 t, y = a sin3 t.

Therefore,√(
dx

dt

)2

+

(
dy

dt

)2

= 3a sin t cos t.

Now, the surface area of the revolution of astroid is equal to the twice the area of
revolution of the Acr(BA) about x-axis. On this arc, the value of t varies from
B(t = 0) to A(t = π/2). Thus, the required area:

S = 2

∫ π/2

t=0
2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt

= 4π

∫ π/2

0
(a sin3 t · 3a sin t cos t) dt = 12πa2

∫ π/2

0
sin4 t cos t dt

= 12πa2
Γ(52)Γ(1)

2Γ(72)

=
12πa2

5
.

Thus, the required surface area S =
12πa2

5
. �

Example 39. Find the surface area of the solid generated by the revolution
of cardioid r = 5(1 + cos θ) about the initial line.

Solution. The equation of cardioid is

r = 5(1 + cos θ), i.e.,
dr

dθ
= −5 sin θ.

Therefore,√
r2 +

(
dr

dθ

)2

= 5
√

2 + 2 cos θ = 10 cos(θ/2).

Now, the surface area of the revolution of cardioid is equal to the area of
revolution of the Acr(OA) about x-axis. On this arc, the value of θ varies from
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A(θ = 0) to O(θ = π). Thus, the required area:

S =

∫ π

θ=0
2πy

√
r2 +

(
dr

dθ

)2

dθ

= 20π

∫ π

0
r sin θ cos(θ/2) dθ

= 40π

∫ π

0
5(1 + cos θ) sin θ cos(θ/2) dθ

= 400π

∫ π

0
sin(θ/2) cos4(θ/2) dθ

= 160π.

Thus, the required surface area S = 160π. �

Example 40. Find the surface area of the solid generated by the revolution
of circle r = 2a cos θ about the initial line.

Solution. The equation of circle is r = 2a cos θ,

i.e.,
dr

dθ
= −2a sin θ. Therefore:√

r2 +

(
dr

dθ

)2

=
√

4a2 cos2 θ + 4a2 sin2 θ

= 2a.

Now, the surface area of the revolution of cardioid is equal to the area of
revolution of the Acr(OA) about x-axis. On this arc, the value of θ varies from
A(θ = 0) to O(θ = π/2). Thus, the required area:

S =

∫ π/2

θ=0
2πy

√
r2 +

(
dr

dθ

)2

dθ

= 2π

∫ π/2

0
r sin θ2a dθ

= 4πa

∫ π/2

0
2a cos θ sin θ dθ

= 8πa2
[

sin2 θ

2

]π/2
0

= 4πa2.
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Home Work (Assignment)

(Q.1) Find the area of the surface generated by the revolution of the cycloid
x = a(t− sin t), y = a(1− cos t) about x-axis.

Ans:
64πa2

3
.

(Q.2) Find the surface area of a right circular cylinder of radius r and hight h.

Hint: Right circular cylinder is generated by the revolution of line y = r
about x-axis, from x = 0 to x = h.

(Q.3) Find the surface area of a cone of hight h and radius r.

Hint: Cone is generated by the revolution of line x =
r

h
(h−y) about y-axis,

from y = 0 to y = h).

♣ ♣ ♣ ♣
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Unit-IV

Evaluation of integrals using gamma function. Multiple integral: double
integral, area by double integral. Evaluation of triple integrals.

Beta and gamma functions

Beta function. For n,m > 0 the beta function of n,m is denoted by β(n,m) and

β(n,m) =

∫ 1

0
xn−1(1− x)m−1dx.

For n > 0, the gamma function of n is denoted by Γ(n) and it is defined by:

Γ(n) =

∫ ∞

0
e−xxn−1dx.

Property I. Prove that β(n,m) = β(m,n). (the beta function is symmetric
in its arguments).

Proof. By the definition we have:

β(n,m) =

∫ 1

0
xn−1(1− x)m−1dx.

On putting 1− x = y, i.e., dx = −dy we have:

x→ 0 =⇒ y → 1

x→ 1 =⇒ y → 0.

Hence:

β(n,m) = −
∫ 0

1
(1− y)n−1ym−1dy =

∫ 1

0
yn−1(1− y)m−1dy.

As, in definite integral variables are dummy, hence we have:

β(n,m) =

∫ 1

0
xm−1(1− x)n−1dx = β(m,n).

This proves the result.

Property II. Prove that β(n,m) = 2

∫ π/2

0
sin2n−1 θ cos2m−1 θdθ.
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Proof. By the definition we have:

β(n,m) =

∫ 1

0
xn−1(1− x)m−1dx.

On putting x = sin2 θ, i.e., dx = 2 sin θ cos θdθ we have:

x→ 0 =⇒ θ → 1

x→ 1 =⇒ θ → π

2
.

Hence:

β(n,m) =

∫ π/2

0
(sin2 θ)n−1

(
1− sin2 θ

)m−1
(2 sin θ cos θdθ)

= 2

∫ π/2

0
sin2n−2 θ cos2m−2 θ · sin θ cos θdθ

= 2

∫ π/2

0
sin2n−1 θ cos2m−1 θdθ.

This proves the required result.

Property III. Prove that Γ(1) = 1.

Proof. By the definition we have:

Γ(n) =

∫ ∞

0
e−xxn−1dx.

On putting n = 1 we have:

Γ(1) =

∫ ∞

0
e−xx1−1dx

=

∫ ∞

0
e−xdx

=
[
−e−x

]∞
0

= −0 + 1

= 1.

This proves the required result.

Property IV. Prove that Γ(n + 1) = nΓ(n) (reduction formula for Γ(n)).
Hence, prove that Γ(n+ 1) = n! if n is a positive integer.
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Proof. By the definition we have:

Γ(n) =

∫ ∞

0
e−xxn−1dx.

On replacing n by n+ 1 we have:

Γ(n+ 1) =

∫ ∞

0
e−xxn+1−1dx =

∫ ∞

0
e−xxndx

=
[
−xne−x

]∞
0
−
∫ ∞

0
n · xn−1

(
−e−x

)
dx

= −0 + 0 + n

∫ ∞

0
xn−1e−xdx

= nΓ(n).

If n is positive integer, then replacing n by n − 1, n − 2, . . . , 2, 1 in the above
formula, we get:

Γ(n) = (n− 1)Γ(n− 1),Γ(n− 1) = (n− 2)Γ(n− 2), . . . ,Γ(2) = 1Γ(1) = 1.

On combining all the above results, we get:

Γ(n+ 1) = nΓ(n) = n · (n− 1)Γ(n− 1) = n · (n− 1) · (n− 2)Γ(n− 2)

= n · (n− 1) · (n− 2) · · · 2 · 1
= n!

This proves the required result.

Property V. Prove that Γ

(
1

2

)
=
√
π.

Proof. By the definition we have:

Γ(n) =

∫ ∞

0
e−xxn−1dx.

On putting n =
1

2
we get:

Γ

(
1

2

)
=

∫ ∞

0
e−xx1/2−1dx =

∫ ∞

0
e−xx−1/2dx.

Putting x = y2, i.e., dx = 2ydy we have:

x→ 0 =⇒ y → 0

x→∞ =⇒ y →∞.



Dr. Satish Shukla 55

Hence:

Γ

(
1

2

)
=

∫ ∞

0
e−y

2

y−1 · (2ydy) = 2

∫ ∞

0
e−y

2

dy.

Since variables are dummy we can write:

Γ

(
1

2

)
= 2

∫ ∞

0
e−y

2

dy, and Γ

(
1

2

)
= 2

∫ ∞

0
e−x

2

dx.

On multiplying these two values we get:[
Γ

(
1

2

)]2
= 4

∫ ∞

0

∫ ∞

0
e−(x

2+y2)dxdy.

Since
∫∞
0

∫∞
0 e−(x

2+y2)dxdy =
π

4
(we will prove it later), hence we get:[

Γ

(
1

2

)]2
= 4 · π

4
= π.

Hence, Γ

(
1

2

)
=
√
π.

Relation between beta and gamma functions

Theorem 5. If n,m are positive integers, then prove that:

β(n,m) =
Γ(n)Γ(m)

Γ(n+m)
.

Proof. By definition we know that

Γ(n) =

∫ ∞

0
e−xxn−1dx.

On putting x = y2, i.e., dx = 2ydy we have:

x→ 0 =⇒ y → 0

x→∞ =⇒ y →∞.

Hence, Γ(n) =
∫∞
0 e−y

2

y2n−2(2ydy), or:

Γ(n) = 2

∫ ∞

0
e−y

2

y2n−1dy. (3)
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Since variables are dummy we can write:

Γ (n) = 2

∫ ∞

0
e−x

2

x2n−1dx, and Γ (m) = 2

∫ ∞

0
e−y

2

y2m−1dy.

On multiplying these two, we get:

Γ (n) Γ (m) =

[
2

∫ ∞

0
e−x

2

x2n−1dx

]
·
[
2

∫ ∞

0
e−y

2

y2m−1dy

]
= 4

∫ ∞

0

∫ ∞

0
e−(x

2+y2)x2n−1y2m−1dxdy.

To evaluate the above double integral, we change the variables into polar coor-
dinates. Then we know by the relation between cartesian and polar coordinates
that

x = r cos θ, y = r sin θ, r2 = x2 + y2, dxdy = rdrdθ.

Since the limits of integration are from x, y → 0 to x, y → ∞, hence the region
of integration is the positive quadrant of xy-plane. We know that in the positive
quadrant, the polar coordinates changes from r → 0 to r → ∞ and θ → 0 to
θ → π/2. Hence:

Γ (n) Γ (m) = 4

∫ π/2

0

∫ ∞

0
e−r

2

(r cos θ)2n−1 (r sin θ)2m−1 rdrdθ

= 4

∫ π/2

0

∫ ∞

0
e−r

2

r2(n+m)−1 cos2n−1 θ sin2n−1 θdrdθ

= 2

∫ π/2

0

[
2

∫ ∞

0
e−r

2

r2(n+m)−1dr

]
cos2n−1 θ sin2n−1 θdθ.

From (3) we get Γ(n + m) = 2

∫ ∞

0
e−r

2

r2(n+m)−1dr. On putting this value in the

above equation we get:

Γ (n) Γ (m) = 2

∫ π/2

0
Γ(n+m) cos2n−1 θ sin2n−1 θdθ

= 2Γ(n+m)

∫ π/2

0
cos2n−1 θ sin2n−1 θdθ.

Also, we know that β(n,m) = 2

∫ π/2

0
cos2n−1 θ sin2n−1 θdθ. On putting this value

in the above equation we get:

Γ (n) Γ (m) = Γ(n+m)β(n,m).

Thus, β(n,m) =
Γ(n)Γ(m)

Γ(n+m)
.
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Corollary 6. If n,m are positive integers, then prove that:

∫ π/2

0
sinp θ cosq θdθ =

Γ

(
p+ 1

2

)
Γ

(
q + 1

2

)
2Γ

(
p+ q + 2

2

) .

Hence, show that

∫ π/2

0
sinp θdθ =

∫ π/2

0
cosp θdθ =

Γ

(
p+ 1

2

)
Γ

(
p+ 2

2

) · √π
2
.

Proof. We know that if m,n are two positive integers then

β(n,m) =
Γ(n)Γ(m)

Γ(n+m)
.

Also, since β(n,m) = 2

∫ π/2

0
sin2n−1 θ cos2m−1 θdθ, hence we obtain:

∫ π/2

0
sin2n−1 θ cos2m−1 θdθ =

Γ(n)Γ(m)

2Γ(n+m)
.

Putting n =
p+ 1

2
,m =

q + 1

2
, or p = 2n − 1, q = 2m − 1 in the above equation

we get:

∫ π/2

0
sinp θ cosq θdθ =

Γ

(
p+ 1

2

)
Γ

(
q + 1

2

)
2Γ

(
p+ q + 2

2

) .

Putting p = 0 and q = 0 respectively in the above relation we get:

∫ π/2

0
sinp θdθ =

Γ

(
p+ 1

2

)
Γ

(
1

2

)
2Γ

(
p+ 2

2

) =

Γ

(
p+ 1

2

)
Γ

(
p+ 2

2

) · √π
2

∫ π/2

0
cosq θdθ =

Γ

(
q + 1

2

)
Γ

(
1

2

)
2Γ

(
q + 2

2

) =

Γ

(
q + 1

2

)
Γ

(
q + 2

2

) · √π
2
.

This proves the result.
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Evaluation of integrals

Example 41. Prove that Γ(n) =

∫ 1

0

(
ln

1

y

)n−1
dy, n > 0.

Solution: We know that:

Γ(n) =

∫ ∞

0
e−xxn−1dx.

Putting x = ln
1

y
, i.e., y = e−x and dx = −dy

y
, also:

x→ 0 =⇒ y → 1

x→∞ =⇒ y → 0.

Hence:

Γ(n) =

∫ 0

1
y

(
ln

1

y

)n−1
·
(
−dy
y

)
=

∫ 1

0

(
ln

1

y

)n−1
dy.

This proves the result. �

Example 42. Prove that β(n,m) =

∫ ∞

0

ym−1

(1 + y)n+m
dy =

∫ 1

0

xn−1 + xm−1

(1 + x)n+m
dx.

Solution: We know that

β(n,m) =

∫ 1

0
xn−1(1− x)m−1dx.

Putting x =
1

1 + y
, i.e., dx = − dy

(1 + y)2
, also:

x→ 0 =⇒ y →∞
x→ 1 =⇒ y → 0.

Hence:

β(n,m) =

∫ 0

∞

(
1

1 + y

)n−1(
1− 1

1 + y

)m−1 [
− dy

(1 + y)2

]
=

∫ ∞

0

ym−1

(1 + y)n+m
dy

=

∫ 1

0

ym−1

(1 + y)n+m
dy +

∫ ∞

1

ym−1

(1 + y)n+m
dy.
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Putting y =
1

z
in the second integral of the above equation we get dy = −dz

z2
, ,

also:

y → 1 =⇒ z → 1

y →∞ =⇒ z → 0.

Therefore:

β(n,m) =

∫ 1

0

ym−1

(1 + y)n+m
dy +

∫ 0

1

(
1

z

)m−1
(

1 +
1

z

)n+m (−dzz2
)

=

∫ 1

0

ym−1

(1 + y)n+m
dy +

∫ 1

0

zn−1

(1 + z)n+m
dz

=

∫ 1

0

xm−1

(1 + x)n+m
dx+

∫ 1

0

xn−1

(1 + x)n+m
dx (variables are dummy)

=

∫ 1

0

xm−1 + xn−1

(1 + x)n+m
dx.

This proves the result. �

Example 43. Prove that

∫ ∞

0

xc

cx
dx =

Γ(c+ 1)

(ln c)c+1
.

Solution: Given integral is
∫ ∞

0

xc

cx
dx =

∫ ∞

0

xc

ex ln c
dx.

On putting x ln c = y, i.e., dx =
dy

ln c
we get y → 0 as x → 0 and y → ∞ as

x→∞. Hence:
∫ ∞

0

xc

cx
dx =

∫ ∞

0

yc

(ln c)cey
· dy

ln c
=

1

(ln c)c+1

∫ ∞

0
yc+1−1e−ydy =

Γ(c+ 1)

(ln c)c+1
.

This proves the result. �

Example 44. Prove that: (i)

∫ 1

0

dx√
1− x4

=

√
π

4
· Γ (1/4)

Γ (3/4)
;

(ii)

∫ π/2

0

√
tan θdθ =

1

2
Γ (1/4) Γ (3/4) .
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Solution: (i) On putting x2 = sin θ, i.e., x =
√

sin θ we have dx =
1

2
sin−1/2 θ cos θdθ

and

x→ 0 =⇒ θ → 0

x→ 1 =⇒ θ → π/2.

Hence:
∫ 1

0

dx√
1− x4

=

∫ π/2

0

1

2
· sin

−1/2 θ cos θdθ√
1− sin2 θ

=
1

2

∫ π/2

0
sin−1/2 θdθ

=
1

2
·

Γ

(
−1/2 + 1

2

)
Γ

(
−1/2 + 2

2

) · √π
2

=

√
π

4
·

Γ

(
1

4

)
Γ

(
3

4

) .

(ii) Since

∫ π/2

0
sinp θ cosq θdθ =

Γ

(
p+ 1

2

)
Γ

(
q + 1

2

)
2Γ

(
p+ q + 2

2

) , hence the given integral

will be:
∫ π/2

0

√
tan θdθ =

∫ π/2

0
sin1/2 θ cos−1/2 θdθ

=

Γ

(
1/2 + 1

2

)
Γ

(
−1/2 + 1

2

)
2Γ

(
1/2− 1/2 + 2

2

)

=
1

2
Γ (1/4) Γ (3/4) .

This proves the result. �
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Example 45. Evaluate: (i)

∫ ∞

0
a−bx

2

dx; (ii)

∫ 1

0
x4
[
ln

(
1

x

)]3
dx.

Solution: (i) Given integral is:

∫ ∞

0
a−bx

2

dx =

∫ ∞

0
e−bx

2 ln adx.

On putting bx2 ln a = y, we have dx =
dy

2
√
by ln a

and

x→ 0 =⇒ y → 0

x→∞ =⇒ y →∞.

Hence:
∫ ∞

0
a−bx

2

dx =

∫ ∞

0
e−y

dy

2
√
by ln a

=
1

2
√
b ln a

∫ ∞

0
e−yy1/2−1dy

=
1

2
√
b ln a

Γ

(
1

2

)
=

√
π

2
√
b ln a

.

(ii) Given integral is:
∫ 1

0
x4
[
ln

(
1

x

)]3
dx.

On putting ln

(
1

x

)
= y, i.e., x = e−y, we have dx = −e−ydy and x → 0 =⇒

y →∞, x→ 1 =⇒ y → 0. Hence:

∫ 1

0
x4
[
ln

(
1

x

)]3
dx =

∫ 0

∞
e−4yy3

(
−e−ydy

)
=

∫ ∞

0
e−5yy3dy.

Again putting 5y = z, we have dy =
dz

5
and limits of integration remains same.

Hence:

∫ 1

0
x4
[
ln

(
1

x

)]3
dx =

∫ ∞

0
e−z

z3

53
· dz

5
=

1

625

∫ ∞

0
e−zz4−1dz

=
Γ(4)

625
=

3!

625
=

6

625
.

This is the required value. �



Dr. Satish Shukla 62

Example 46. Prove that

∫ 1

0

x2dx√
1− x4

×
∫ 1

0

dx√
1 + x4

=
π

4
√

2
.

Solution: Let I1 =

∫ 1

0

x2dx√
1− x4

and I2 =

∫ 1

0

dx√
1 + x4

. Then, on putting x2 = sin θ,

i.e., x = sin1/2 θ in I1, we have dx =
1

2
sin−1/2 θ cos θdθ, and θ → 0 as x → 0 and

θ → π/2 as x→ 1. Hence:

I1 =

∫ π/2

0

sin θ√
1− sin2 θ

· 1
2

sin−1/2 θ cos θdθ

=
1

2

∫ π/2

0
sin1/2 θ cos0 θdθ

=
1

2
·

Γ

(
1/2 + 1

2

)
Γ

(
0 + 1

2

)
2Γ

(
1/2 + 0 + 2

2

) =
1

4
·

Γ

(
3

4

)
Γ

(
1

2

)
Γ

(
5

4

)

=

Γ

(
3

4

)
Γ

(
1

2

)
Γ

(
1

4

) .

On putting x2 = tanφ, i.e., x = tan1/2 φ in I2, we have dx =
tan−1/2 φ sec2 φdφ

2
and φ→ 0 as x→ 0 and φ→ π/4 as x→ 1. Hence:

I2 =

∫ π/4

0

1√
1 + tan2 φ

· tan−1/2 φ sec2 φdφ

2
=

∫ π/4

0

dφ√
2
√

2 sinφ cosφ

=
1√
2

∫ π/4

0
sin−1/2(2φ)dφ =

1

2
√

2

∫ π/2

0
sin−1/2 ψdψ (putting 2φ = ψ)

=
1

2
√

2

∫ π/2

0
sin−1/2 ψ cos0 φdψ

=
1

2
√

2
·

Γ

(
−1/2 + 1

2

)
Γ

(
0 + 1

2

)
2Γ

(
−1/2 + 0 + 2

2

)

=
1

4
√

2

Γ

(
1

4

)
Γ

(
1

2

)
Γ

(
3

4

) .
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Hence, we have

∫ 1

0

x2dx√
1− x4

×
∫ 1

0

dx√
1 + x4

= I1 × I2

=

Γ

(
3

4

)
Γ

(
1

2

)
Γ

(
1

4

) × 1

4
√

2

Γ

(
1

4

)
Γ

(
1

2

)
Γ

(
3

4

)
=

1

4
√

2
· Γ
(

1

2

)
· Γ
(

1

2

)
=

π

4
√

2
.

This is the required result. �

Example 47. Prove that

∫ π/6

0
cos6(3θ) sin2(6θ)dθ =

7π

384
.

Solution: Given integral is:

I =

∫ π/6

0
cos6(3θ) sin2(6θ)dθ

=

∫ π/6

0
cos6(3θ) [2 sin(3θ) cos(3θ)]2 dθ

= 4

∫ π/6

0
sin2(3θ) cos8(3θ)dθ.

Putting 3θ = x, i.e., dθ =
dx

3
, we have θ → 0 =⇒ x → 0 and θ → π/6 =⇒

x→ π/2. Hence:

I = 4

∫ π/2

0
sin2 x cos8 x

dx

3

=
4

3

∫ π/2

0
sin2 x cos8 xdx

=
4

3
·

Γ

(
2 + 1

2

)
Γ

(
8 + 1

2

)
2Γ

(
2 + 8 + 2

2

)

=
4

3
·

Γ

(
3

2

)
Γ

(
9

2

)
2Γ (6)

.
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Since, Γ(n+ 1) = nΓ(n), Γ(1) = 1 and Γ

(
1

2

)
=
√
π, hence we get:

I =
4

3
·

1

2
·
√
π · 7

2
· 5

2
· 3

2
· 1

2
·
√
π

2 · 5 · 4 · 3 · 2 · 1
=

7π

384
.

This is the required result. �

Example 48. Evaluate

∫ 2a

0
x3
√

2ax− x2dx.

Solution: Given integral is:

I =

∫ 2a

0
x3
√

2ax− x2dx =

∫ 2a

0
x7/2
√

2a− xdx.

Putting x = 2a sin2 θ, i.e., dx = 4a sin θ cos θdθ, we have x → 0 =⇒ θ → 0 and
x→ 2a =⇒ θ → π/2. Hence:

I =

∫ π/2

0
(2a sin2 θ)7/2

√
2a− 2a sin2 θ · 4a sin θ cos θdθ

= 64a5
∫ π/2

0
sin8 θ cos2 θdθ

= 64a5 ·
Γ

(
8 + 1

2

)
Γ

(
2 + 1

2

)
2Γ

(
8 + 2 + 2

2

)

= 64a5 ·
Γ

(
3

2

)
Γ

(
9

2

)
2Γ (6)

.

Since, Γ(n+ 1) = nΓ(n), Γ(1) = 1 and Γ

(
1

2

)
=
√
π, hence we get:

I = 64a5 ·

1

2
·
√
π · 7

2
· 5

2
· 3

2
· 1

2
·
√
π

2 · 5 · 4 · 3 · 2 · 1

=
7πa5

8
.

This is the required result. �
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Example 49. Prove that

∫ 1

0
x3/2 (1− x)3/2 dx =

3π

128
.

Solution: Given integral is:

I =

∫ 1

0
x3/2 (1− x)3/2 dx.

Putting x = sin2 θ, i.e., dx = 2 sin θ cos θdθ, we have θ → 0 as x→ 0, and θ → π/2
as x→ 2a. Hence:

I =

∫ π/2

0
(sin2 θ)3/2

(
1− sin2 θ

)3/2
2 sin θ cos θdθ

= 2

∫ π/2

0
sin4 θ cos4 θdθ

= 2 ·
Γ

(
4 + 1

2

)
Γ

(
4 + 1

2

)
2Γ

(
4 + 4 + 2

2

)

=

Γ

(
5

2

)
Γ

(
5

2

)
Γ (5)

.

Since, Γ(n+ 1) = nΓ(n), Γ(1) = 1 and Γ

(
1

2

)
=
√
π, hence we get:

I =

3

2
· 1

2
·
√
π · 3

2
· 1

2
·
√
π

4 · 3 · 2 · 1
=

3π

128
.

This is the required result. �

Example 50. If In =
∫

xn(a− x)1/2dx, n ≥ 1, then prove that:

(2n+ 3)In = 2anIn−1 − 2xn(a− x)3/2.

Therefore, prove that

∫ a

0
x2
√
ax− x2dx =

5πa4

28
.

Solution: Given that:

In =

∫

xn(a− x)1/2dx, n ≥ 1.
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Using integration by parts we get:

In = −2

3
xn(a− x)3/2 −

∫

nxn−1 · 2
3

(a− x)3/2(−1)dx

= −2

3
xn(a− x)3/2 +

2n

3

∫

xn−1(a− x)3/2dx

= −2

3
xn(a− x)3/2 +

2n

3

∫

xn−1(a− x)1/2(a− x)dx

= −2

3
xn(a− x)3/2 +

2na

3

∫

xn−1(a− x)1/2dx− 2n

3

∫

xn(a− x)1/2dx

= −2

3
xn(a− x)3/2 +

2na

3
In−1 −

2n

3
In.

Rearranging the terms we get:

(2n+ 3)In = 2anIn−1 − 2xn(a− x)3/2.

This is the required result.

Using the above relation for n = 5/2, 3/2, we obtain:

I5/2 =
1

8

[
5aI3/2 − 2x5/2(a− x)3/2

]
=

5a

8
I3/2 −

1

4
x5/2(a− x)3/2

=
5a

8
· 1

6

[
3aI1/2 − 2x3/2(a− x)3/2

]
− 1

4
x5/2(a− x)3/2

=
5a2

16
I1/2 −

5a

24
x3/2(a− x)3/2 − 1

4
x5/2(a− x)3/2

=
5a2

16

∫

x1/2(a− x)1/2dx− 5a

24
x3/2(a− x)3/2 − 1

4
x5/2(a− x)3/2.

Now, using the above relation we obtain:
∫ a

0
x2
√
ax− x2dx =

∫ a

0
x5/2(a− x)1/2dx

=
[
I5/2
]a
0

=

[
5a2

16

∫

x1/2(a− x)1/2dx− 5a

24
x3/2(a− x)3/2 − 1

4
x5/2(a− x)3/2

]a
0

=
5a2

16

∫ a

0
x1/2(a− x)1/2dx.

Putting x = a sin2 θ we have dx = 2a sin θ cos θdθ, and

x→ 0 =⇒ θ → 0

x→ a =⇒ θ → π/2.
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Hence, we have:

∫ a

0
x2
√
ax− x2dx =

5a2

16

∫ π/2

0
(a sin2 θ)1/2(a− a sin2 θ)1/2(2a sin θ cos θdθ)

=
5a4

8

∫ π/2

0
sin2 θ(1− sin2 θ)1/2 cos θdθ

=
5a4

8

∫ π/2

0
sin2 θ cos2 θdθ =

5a4

8
·

Γ

(
2 + 1

2

)
Γ

(
2 + 1

2

)
2Γ

(
2 + 2 + 2

2

)

=
5a4

16
·

Γ

(
3

2

)
Γ

(
3

2

)
Γ (3)

.

Since, Γ(n+ 1) = nΓ(n), Γ(1) = 1 and Γ

(
1

2

)
=
√
π, hence, we get:

∫ a

0
x2
√
ax− x2dx =

5a4

16
·

1

2
·
√
π · 1

2
·
√
π

2 · 1

=
5πa4

128
.

This is the required result. �

Example 51. Prove that

∫ a

0
(a− x)m−1 xn−1dx = am+n−1β(m,n), where

a, n,m > 0.

Solution: Given integral is:

I =

∫ a

0
(a− x)m−1 xn−1dx.

Putting x = ay, i.e., dx = ady, we have y → 0 as x → 0, and y → 1 as x → a.
Hence:

I =

∫ 1

0
(a− ay)m−1 (ay)n−1ady

= am+n−1
∫ 1

0
(1− y)m−1 yn−1dy

= am+n−1β(m,n).

This is the required result. �
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Example 52. Prove that

∫ ∞

0

x8
(
1− x6

)
(1 + x)24

dx = 0.

Solution: Given integral is:

I =

∫ ∞

0

x8
(
1− x6

)
(1 + x)24

=

∫ ∞

0

x8 − x14

(1 + x)24

=

∫ ∞

0

x9−1

(1 + x)9+15
−
∫ ∞

0

x15−1

(1 + x)15+9
.

Since, β(n,m) = β(m,n) =

∫ ∞

0

xm−1

(1 + x)m+n
dx, hence:

I = β(9, 15)− β(15, 9)

= 0.

This is the required result. �

Example 53. Prove that

∫ ∞

0

xn−1

(a+ bx)m+ndx =
β(n,m)

anbm
.

Solution: Given integral is:

I =

∫ ∞

0

xn−1

(a+ bx)m+ndx.

On putting bx = ay, i.e., dx =
a

b
dy, we have:

x→ 0 =⇒ y → 0

x→∞ =⇒ y →∞.

Therefore:

I =

∫ ∞

0

an−1yn−1

bn−1 (a+ ay)m+n ·
a

b
dy

=
1

ambn

∫ ∞

0

yn−1

(1 + y)m+ndy

=
β(n,m)

anbm
.

This is the required result. �
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Exercise (Assignment)

(Q.1) Show that
∫∞
0

x4

4x
dx =

Γ(5)

(ln 4)5
.

(Q.2) It is given that Γ(n)Γ(1−n) =
π

sinnπ
, then show that

∫ π/2
0

√
cot θdθ =

π√
2
.

(Q.3) Show that

∫ π/2

0

√
sin θdθ ×
∫ π/2

0

1√
sin θ

dθ = π.

(Q.4) Prove that

∫ 1

0
xm(lnx)ndx =

(−1)nn!

(m+ 1)n+1
, where n is a positive integer and

m > −1.

(Q.5) Prove that

∫ 2a

0
x3(2ax− x2)3/2dx =

9πa7

16
.

(Q.6) Prove that

∫ 1

0

dx

(1− xn)1/2
=

√
πΓ(1/n)

nΓ (1/n+ 1/2)
.

Hint: Put x = y1/n, i.e., dx =
1

n
y1/n−1dy, the given integral

1

n

∫ 1
0 y

1/n−1(1−

y)1/2−1dy =
1

n
β(1/n, 1/2).

(Q.7) Prove that

∫ π/2

0
tann xdx =

π

2 sec(nπ/2)
.

Hint: Use Γ(n)Γ(1− n) = π
sin(nπ) , then:

I =

∫ π/2

0
sinn x cos−n xdx =

1

2
β

(
1 + n

2
,
1− n

2

)
=

1

2

π

sin(π−πn2 )
=

π

2 cos(πn2 )
.

(Q.8) Prove that

∫ π/2

0
x4(1− x2)3/2dx =

3π

256
.

Hint: Put x = sin θ and then use gamma function.

(Q.9) Express
∫ 1
0 x

m(1− xn)pdx in terms of gamma function, hence evaluate: (i)
∫ 1
0 x

3(1− x2)4dx; (ii)
∫ 1
0 x

5(1− x3)10dx
Ans: 1

nβ
(
m+1
n , p+ 1

)
and (i) 1

60 ; (ii) 1
262 .

(Q.10) Prove that

∫ 1

0

x9/2√
2a− x

dx =
63πa5

8
.

Hint: Put x = 2a sin2 θ and then use gamma function.
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Double Integral

A

C D

R

B

S
Z

X

Y
O

δxi

δyi

P (xi,yi,zi)

P ′(xi,yi)

Z

X

Y
O

zi

(a) (b)

The idea

(I) Double integral as volume. Suppose, z = f(x, y) represents a surface S,
as shown in the figure (a). Suppose, the region R, i.e., the rectangle ABCD
be the region of integration. We divide this region R into a large number of
small rectangles (say “n”) of areas ∆1 = δx1δy1, ∆2 = δx2δy2, . . . ,∆n = δxnδyn.
Let P ′(xi, yi) be a point in the ith area ∆i. Let P (xi, yi, zi) be a point on the
surface S, so that, zi = f(xi, yi) and P ′(xi, yi) is its projection of point P on the
region R. Then, the volume of the rectangular solid of hight zi, i.e., f(xi, yi) and
the base area ∆i = δxiδyi will be δvi = ziδxiδyi = f(xi, yi)δxiδyi. Similarly, we
calculate the each volume v1, v2, . . . , vn, and calculate the sum of volumes of all

such rectangular solids thus obtained, i.e., the sum
∑
i

vi =
n∑
i=1

f(xi, yi)δxiδyi. It

is clear that this sum of volumes is not exactly the volume bounded by the surface
S with region R. Now, when n→∞, each small value (i.e., δ) transform into the
infinitely small quantity (i.e., d). In this case, the value of the sum of volumes is
called the double integral of the function f over the region R, and it is denoted

by

∫∫

R

f(x, y)dxdy, i.e.,

∫∫

R

f(x, y)dxdy = lim
n→∞

n∑
i=1

f(xi, yi)δxiδyi.

It is clear that the quantity

∫∫

R

f(x, y)dxdy represents the exact volume bounded

by the surface S (i.e., z = f(x, y)) with the region R.
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(II) Double integral as area. Suppose R be a given region in XY -plane and we
have to find the area of this region. We consider the function z = f(x, y) = 1. Now
it is obvious that the double integral of function z = f(x, y) = 1 over this region
will be equal to the volume of the lamina L shown in the figure (c). Since the hight
of lamina is 1, its volume, i.e., the double integral of function z = f(x, y) = 1
over the region R will be equal to the area of region R. Therefore:

Area of region R =

∫∫

R

f(x, y)dxdy =

∫∫

R

dxdy.

R
1

L
X

Y

Z

O

(c)

(III) Double integral as mass of lamina. Again, suppose the lamina L has a
uniform surface density (mass per unit area) ρ = ρ(x, y). Then the mass of the
infinitely small area dxdy will be ρ(x, y)dxdy. Therefore, the mass of the whole
lamina

M =

∫∫

R

ρ(x, y)dxdy.

Similarly, for different meanings of the function f(x, y) the double integral of
this function over a region R can be describe in different ways. Actually, the
significance of double integral is directly related to the meaning of function f(x, y).

Solving double integral and limits of x and y. If the double integral is of the

type
d
∫

c

b
∫

a

f(x, y)dxdy, then we first solve the inner integral, i.e.,

d
∫

c

b
∫

a

f(x, y)dxdy =

∫ d

c

[
∫ b

a
f(x, y)dx

]
dy.

Note that, when we integrate with respect to variable x, then y must be treated as
a constant and vise versa. In case, when the limit of integration is not constant,
then the order of integration is decided by the variable present in the limit and
we perform the first integral with respect to that variable, which is not present in

the limits of inner integral. For example, in the double integral
b
∫

a

x2
∫

x

f(x, y)dxdy,

we first integrate with respect to y (since y is not present in the limits of inner



Dr. Satish Shukla 72

integral), i.e.,
b
∫

a

x2
∫

x

f(x, y)dxdy =

b
∫

a

 x2
∫

x

f(x, y)dy

 dx.
Finding the limits when the region of integration R is given.

We understand this with an example. Suppose we have to calculate the integral
∫∫

R

f(x, y)dxdy, where R is the given region of integration bounded by the lines

x = a, x = b and the curves y = f(x) and y = g(x) as shown in figure. Since
we are obtaining the limits from region R, we can integrate with respect to any
variable first. Suppose, we integrate first with respect to y then x is treated as
constant and we move the elementary area dxdy from the bottom to the top and
parallel to y axis (or along to a line parallel to y axis) in such a way that it always
lies inside the region of integration. Thus, a strip PQ is formed which is parallel
to y axis (if you integrate first with respect to x, then a strip parallel to y is
formed). The lower end P decides the lower limit of y, and since the lower end P
is situated on the curve y = g(x), the lower limit of y is y = g(x). Similarly, the
upper end P decides the upper limit of y, and since the upper end P is situated
on the curve y = f(x), the upper limit of y is y = f(x).

Now, we integrate with respect to x therefore y is treated as constant and now
the strip PQ will move from left to right and along a line parallel to x axis in
such a way that the strip always remains inside the region R and its lower end P
always lie on the lower limit curve g(x) and the upper end Q always lie on the
upper limit curve f(x). The strip moves from x = a to x = b to cover the whole
region R, and so, the limits of x are from x = a to x = b. Thus,

∫∫

R

f(x, y)dxdy =

b
∫

a

 f(x)
∫

g(x)

f(x, y)dy

 dx.
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Example 54. Evaluate:
2
∫

0

1
∫

0

(
x2 + y2

)
dxdy.

Solution: The given integral is:

2
∫

0

1
∫

0

(
x2 + y2

)
dxdy =

2
∫

0

 1
∫

0

(
x2 + y2

)
dx

 dy
=

2
∫

0

[
x3

3
+ xy2

]1
0

dy

=

2
∫

0

[
1

3
+ y2

]
dy

=
10

3
.

Thus,
2
∫

0

1
∫

0

(
x2 + y2

)
dxdy = 10

3 . �

Example 55. Evaluate:
1
∫

0

√
x
∫

x

(
x2 + y2

)
dxdy.

Solution: The given integral is:

1
∫

0

√
x
∫

x

(
x2 + y2

)
dxdy =

1
∫

0


√
x
∫

x

(
x2 + y2

)
dy

 dx
=

1
∫

0

[
x2y +

y3

3

]√x
x

dx

=

1
∫

0

[
x5/2 +

x3/2

3
− x3 − x3

3

]
dx

=
3

35
.

Thus,
1
∫

0

√
x
∫

x

(
x2 + y2

)
dxdy = 3

35 . �
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Example 56. Evaluate:
1
∫

0

√
1+x2
∫

0

dxdy

1 + x2 + y2
.

Solution: The given integral is:

1
∫

0

√
1+x2
∫

0

dxdy

1 + x2 + y2
=

1
∫

0


√
1+x2
∫

0

dy

1 + x2 + y2

 dx

=

1
∫

0

[
1√

1 + x2
tan−1

y√
1 + x2

]√1+x2
0

dx

=
π

4

1
∫

0

dx√
1 + x2

=
π

4

[
ln
(
x+

√
1 + x2

)]1
0

=
π

4
ln(1 +

√
2).

Thus,
1
∫

0

√
1+x2
∫

0

dxdy

1 + x2 + y2
=
π

4
ln(1 +

√
2). �

Example 57. Evaluate:
∫∫

R

xydxdy, where R is the positive quadrant of the

circle x2 + y2 = a2.

Solution: The region of integration R is the
shaded part OAB in the figure. We integrate first
with respect to y. Then we consider a strip PQ
parallel to Y -axis lying inside the region OAB.
The lower end P of strip PQ is situated on the
X-axis, therefore the lower limit of y is y = 0
(the equation of X-axis). The upper end Q is
situated on the circle x2 + y2 = a2, therefore the
upper limit of y is y =

√
a2 − x2. Now, to com-

plete the region of integration, this strip moves
from x = 0 (i.e., the Y -axis) to the point x = a
(i.e., the point A), and so, the limits of x are from
x = 0 to x = a. Therefore:
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∫∫

R

xydxdy =

∫ a

0

∫

√
a2−x2

0
xydxdy =

∫ a

0

[
∫

√
a2−x2

0
ydy

]
xdx

=

∫ a

0

[
y2

2

]√a2−x2
0

xdx =
1

2

∫ a

0
x(a2 − x2)dx

=
a4

8
.

Thus,
∫∫

R

xydxdy =
a4

8
. �

Example 58. Evaluate:
∫∫

R

(x+ y)2dxdy, where R is bounded by
x2

a2
+
y2

b2
= 1.

Solution: The region of integration R is
the area of ellipse as shown in the fig-
ure. We integrate first with respect to
y. Then we consider a strip PQ par-
allel to Y -axis lying inside ellipse. The
lower end P of strip PQ is situated on

the the ellipse
x2

a2
+
y2

b2
= 1 below the X-

axis, therefore the lower limit of y is y =
− b
a

√
a2 − x2. The upper end Q is again

situated on the same ellipse but this time
on the above of X-axis, therefore the up-
per limit of y is y = b

a

√
a2 − x2. Now, to

complete the region of integration, this
strip moves from x = −a (i.e., the point
A′) to the point x = a (i.e., the point A),
and so, the limits of x are from x = −a
to x = a. Therefore:

∫∫

R

(x+ y)2dxdy =

∫ a

−a

∫
b
a

√
a2−x2

− b
a

√
a2−x2

(x+ y)2dxdy =

∫ a

−a

∫
b
a

√
a2−x2

− b
a

√
a2−x2

(x2 + 2xy + y2)dxdy

= 2

∫ a

−a

∫
b
a

√
a2−x2

0
(x2 + y2)dxdy = 2

∫ a

−a

[
x2y +

y3

3

] b
a

√
a2−x2

0

dx

= 2

∫ a

−a

[
bx2

a

√
a2 − x2 +

b3

3a3
(a2 − x2)3/2

]
dx

= 4

∫ a

0

[
bx2

a

√
a2 − x2 +

b3

3a3
(a2 − x2)3/2

]
dx.
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Putting x = a sin θ, the above equation reduces into the following form:

∫∫

R

(x+ y)2dxdy = 4ab

∫ π/2

0

(
a2 sin2 θ cos2 θ +

b2

3
cos4 θ

)
dx

= 4ab

{
a2

Γ (3/2) Γ (3/2)

2Γ(3)
+
b2

3

Γ (5/2) Γ (1/2)

2Γ(3)

}
=

πab

4
(a2 + b2).

Thus,
∫∫

R

(x+ y)2dxdy =
πab

4
(a2 + b2). �

Example 59. Evaluate:
∫∫

R

r2dθdr, where R is the are of the circle r = a cos θ.

Solution: The region of integration R
is the shaded circle as shown in the fig-
ure. We integrate first with respect to r.
Then we consider a strip OP along the
radius vector r lying inside the region R.
The lower end O of strip is situated on
the pole, therefore the lower limit of r
is r = 0. The upper end P is situated
on the circle r = a cos θ, therefore, the
upper limit of r is r = a cos θ. Now, to
complete the region of integration, this
strip rotates from θ = −π/2 to θ = π/2,
and so, the limits of θ are from θ = −π/2
to θ = π/2. Therefore:

∫∫

R

r2dθdr =

∫ π/2

−π/2

∫ a cos θ

0
r2dθdr =

∫ π/2

−π/2

[
∫ a cos θ

0
r2dr

]
dθ

=
2a3

3

∫ π/2

0
cos3 θdθ =

2a3

3

Γ(2)Γ(1/2)

2Γ(5/2)

=
4a3

9
.

Thus,
∫∫

R

r2dθdr = 4a3

9 .

Example 60. Evaluate:
∫∫

R

r sin θdθdr, where R is the region bounded by

r = a(1 + cos θ) above the initial line.
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Solution: The region of integration R is the
shaded cardioid as shown in the figure. We
integrate first with respect to r. Then we
consider a strip OP along the radius vector
r lying inside the region R. The lower end
O of strip is situated on the pole, therefore
the lower limit of r is r = 0. The upper
end P is situated on the cardioid r = a(1 +
cos θ) therefor the upper limit of r is r =
a(1 + cos θ). Now, to complete the region of
integration, this strip rotates from θ = 0 to
θ = π, and so, the limits of θ are from θ = 0
to θ = π. Therefore:

∫∫

R

r sin θdθdr =

∫ π

0

∫ a(1+cos θ)

0
r sin θdθdr =

∫ π

0

[
∫ a(1+cos θ)

0
rdr

]
sin θdθ

=

∫ π

0

[
r2

2

]a(1+cos θ)

0

sin θdθ =
a2

2

∫ π

0

[
(1 + cos θ)2 sin θ

]
dθ.

Substitute 1 + cos θ = t we obtain sin θdθ = −dt and now the new limits of t are
from t = 2 to t = 0. Therefore

∫∫

R

r sin θdθdr = −a
2

2

∫ 0

2
t2dt = −a

2

2

[
t3

3

]0
2

=
4a2

3
.

Thus,
∫∫

R

r sin θdθdr = 4a2

3 .

Example 61. Evaluate
∫∞
0

∫∞
0 e−(x

2+y2)dxdy by transforming it into polar co-
ordinates.

Solution:
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Here, in the limits of integration, x and y both varies from 0 to ∞, therefore the
region of integration is the first quadrant as shown in the figure (a). Now, to
change the integral into polar coordinates, we note that the elementary area in
polar coordinates is dxdy = rdrdθ. Also, since x = r cos θ, y = r sin θ, we have
x2+y2 = r2. For the new limits of r and θ we see the figure (b). We first integrate
with respect to r. Then we consider a strip OP along the radius vector r and its
lower end O is situated on pole and the upper end in on ∞, therefore, the limits
of r are from r = 0 to r = ∞. To complete the region of integration (i.e., the
first quadrant) this strip rotates from θ = 0 to θ = π/2, which are the limits of θ.
Therefore:
∫ ∞

0

∫ ∞

0
e−(x

2+y2)dxdy =

∫ π/2

0

∫ ∞

0
e−r

2

rdrdθ =

∫ π/2

0

[
∫ ∞

0
e−r

2

rdr

]
dθ

=

∫ π/2

0

[
−e
−r2

2

]∞
0

dθ =
1

2

∫ π/2

0
dθ

=
π

4
.

Thus,
∫∞
0

∫∞
0 e−(x

2+y2)dxdy =
π

4
. �

Exercise (Assignment)

(Q.1) Evaluate
1
∫

0

1
∫

0

dydx√
(1− x2)(1− y2)

dxdy.

Ans: π2

4 .

(Q.2) Evaluate
1
∫

0

x2
∫

0

ey/xdxdy.

Ans: 1
2 .

(Q.3) Evaluate
a
∫

0

a
∫

y

xdxdy

x2 + y2
.

Ans: aπ
4 .

(Q.4) Evaluate
∫∫

R

xydxdy over the region R, where x + y ≤ 1 in the positive

quadrant.

Ans: 1
24 .

(Q.5) Evaluate
∫∫

R

xy(x+ y)dxdy over the region R bonded by the curves y = x2

and y = x.

Ans: 3
56 .
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(Q.6) Prove that

∫ a

0

∫ b

0

dxdy

xy
= ln(a) ln(b).

(Q.7) Prove that

∫ 1

0

∫

√
1+x2

0

dxdy

1 + x2 + y2
=
π

4
ln(1 +

√
2).

(Q.8) Prove that

∫ a

0

∫

√
a2−y2

0

√
a2 − x2 − y2dxdy =

a3π

6
.

Area by Double Integral

Example 62. Find the area between the curves y2 = 4ax and x2 = 4ay.

Solution: The required area is the area OPAQO.
Consider the elementary area dxdy in the region
OPAQO. We first integrate with respect to y.
Then, this elementary area moves along the y
axis in the region OPAQO and forms the strip
PQ. The lower end P of strip is situated on the
parabola x2 = 4ay and the upper end Q on the
parabola y2 = 4ax. Therefore, the limits of y are
from y = x2

4a to y = 2
√
ax. Now, to complete the

region, this strip moves along the X-axis from
point O, i.e., from x = 0 to the point A, i.e., to
x = 4a, therefore, the limits of x are from x = 0
to x = 4a. Thus, the required area:

Area OPAQO =

∫ 4a

0

∫ 2
√
ax

x2

4a

dxdy =

∫ 4a

0

[
∫ 2
√
ax

x2

4a

dy

]
dx =

∫ 4a

0
[y]

2
√
ax

x2

4a

dx

=

∫ 4a

0

(
2
√
ax− x2

4a

)
dx =

16a2

3
.

Hence, Area OPAQO =
16a2

3
. �

Example 63. Find the whole area the ellipse
x2

a2
+
y2

b2
= 1.
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Solution: The required area is the shaded area
and is equal to 4 × area OABO. Consider the
elementary area dxdy in the region OABO. We
first integrate with respect to y. Then, this ele-
mentary area moves along the y axis in the region
OABO and forms the strip PQ. The lower end
P of strip is situated on the X-axis, i.e., y = 0
and the upper end Q on the arc AB of ellipse
x2

a2
+
y2

b2
= 1.

Therefore, the limits of y are from y = 0 to y = b
a

√
a2 − x2. Now, to complete

the region, this strip moves along the X-axis from the line OB, i.e., from x = 0
to the point A, i.e., to x = a, therefore, the limits of x are from x = 0 to x = a.
Thus, the required area:

= 4

∫ a

0

∫
b
a

√
a2−x2

0
dxdy = 4

∫ a

0

[
∫

b
a

√
a2−x2

0
dy

]
dx = 4

∫ a

0
[y]

b
a

√
a2−x2

0 dx

= 4

∫ a

0

(
b

a

√
a2 − x2

)
dx = 4

b

a

∫ a

0

(√
a2 − x2

)
dx

=

[
x

2

√
a2 − x2 +

a2

2
sin−1

(x
a

)]a
0

= πab.

Hence, the required area = πab. �

Example 64. Find the whole area of the astroid x2/3 + y2/3 = a2/3.

Solution: The required area is the shaded area
and is equal to 4 × area OABO. Consider the
elementary area dxdy in the region OABO. We
first integrate with respect to y. Then, this ele-
mentary area moves along the y axis in the region
OABO and forms the strip PQ. The lower end
P of strip is situated on the X-axis, i.e., y = 0
and the upper end Q on the arc AB of the as-
troid x2/3 + y2/3 = a2/3 Therefore, the limits of y

are from y = 0 to y =
(
a2/3 − x2/3

)3/2
. Now, to

complete the region, this strip moves along the
X-axis from the line OB, i.e., from x = 0 to the
point A, i.e., to x = a, therefore, the limits of x
are from x = 0 to x = a. Thus, the required area:
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= 4

∫ a

0

∫ (a2/3−x2/3)
3/2

0
dxdy = 4

∫ a

0

∫ (a2/3−x2/3)3/2

0
dy

 dx
= 4

∫ a

0
[y]

(a2/3−x2/3)
3/2

0 dx = 4

∫ a

0

(
a2/3 − x2/3

)3/2
dx.

Putting x = a sin3 θ, we obtain dx = 3a sin2 θ cos θ and the new limits of θ are
from θ = 0 to θ = π/2. Therefore, the required area is:

= 12a2
∫ π/2

0
sin2 θ cos4 θdθ = 12a2 ·

1
2

√
π · 32 ·

1
2

√
π

2 · 3!
=

3πa2

8
.

Hence, the required area =
3πa2

8
. �

Example 65. Find the whole area of the cardioid r = a(1 + cos θ).

Solution: The required area is the shaded area
and is equal to 2 × area OACO. Consider the
elementary area rdrdθ in the region OACO. We
first integrate with respect to r. Then, this ele-
mentary area moves along the radial vector r in
the region OACO and forms the strip OP. The
lower end O of strip is situated on the pole, i.e.,
r = 0 and the upper end P on the arc ACO of
the cardioid r = a(1 + a cos θ). Therefore, the
limits of r are from r = 0 to r = a(1 + a cos θ).

Now, to complete the region, this strip rotates from the line OX, i.e., from
θ = 0 to the point O, i.e., to θ = π, therefore, the limits of θ are from θ = 0 to
θ = π. Thus, the required area:

= 2

∫ π

0

∫ a(1+cos θ)

0
rdrdθ = 2

∫ π

0

[
∫ a(1+cos θ)

0
rdr

]
dθ

= 2

∫ π

0

[
r2

2

]a(1+cos θ)

0

dθ = a2
∫ π

0
(1 + cos θ)2 dθ

= 4a2
∫ π

0
cos4

(
θ

2

)
dθ.

Putting θ
2 = φ, we obtain dθ = 2dφ and the new limits of φ are from φ = 0 to
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φ = π/2. Therefore, using gamma function, the required area is:

= 8a2
∫ π/2

0
cos4 φdφ = 8a2

∫ π/2

0
sin0 φ cos4 φdφ

=
Γ(1+0

2 )Γ(4+1
2 )

2Γ(0+4
2 )

= 8a2 ·
√
π · 32 ·

1
2

√
π

2 · 2

=
3πa2

2
.

Hence, the required area =
3πa2

2
. �

Example 66. Find the area between the curves y = 4x− x2 and y = x.

Solution: The required area is the shaded
area OPBQO. Consider the elementary area
dxdy in the region OPBQO. We first inte-
grate with respect to y. Then, this elemen-
tary area moves along the Y -axis in the re-
gion OPBQO and forms the strip PQ. The
lower end P of strip is situated on the line
y = x and the upper end Q on the arc OQB
of the parabola y = 4x − x2 Therefore, the
limits of y are from y = x to y = 4x − x2.
Now, to complete the region, this strip moves
from the pointO, i.e., from x = 0 to the point
B, i.e., to x = 3, therefore, the limits of x are
from x = 0 to x = 3. Thus, the required area:

=

∫ 3

0

∫ 4x−x2

x
dxdy =

∫ 3

0

[
∫ 4x−x2

x
dy

]
dx

= 2

∫ 3

0
[y]4x−x

2

x dx

=

∫ 3

0

(
3x− x2

)
dx

=

[
3x2

2
− x3

3

]3
0

=
9

2
.

Hence, the required area = 9
2 . �
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Exercise (Assignment)

(Q.1) Find the area of a circle of radius a.

(Q.2) Find the area of cardioid r = a(1− cos θ).

(Q.3) Find the area between the curves y = x2 and y = x3.

Hint: The limits of y are from y = x3 to y = x2

and those of x are from x = 0 to x = 1.

Triple integrals

Triple integral as mass of a solid. Suppose, the mass per unit volume (i.e.,
the volume density of mass) of a solid is given by its mass distribution function
w = f(x, y, z), where (x, y, z) represent the coordinates of points inside the solid.
Let V represents the volume of the solid. Then, we divide the whole volume V
into n small volumes δvi = δxiδyiδzi, i = 1, 2, . . . , n. Suppose, P (xi, yi, zi) be a
point in the small volume δvi. If we choose the small volume δvi sufficiently small,
then we can assume that the volume density of mass in the volume δvi is constant
and is equal to f(xi, yi, zi), and so, the mass of this ith small volume is given by
δmi = f(xi, yi, zi)δvi = f(xi, yi, zi)δxiδyiδzi. We calculate all such small masses
δmi of small volumes δvi, where i = 1, 2, . . . , n and then sum up them and get
the sum

n∑
i=1

δmi =
n∑
i=1

f(xi, yi, zi)δvi =
n∑
i=1

f(xi, yi, zi)δxiδyiδzi.

It is clear that this sum masses of all small volumes is not exactly the mass of
solid. Now, when n → ∞, each small value (i.e., δ) transform into the infinitely
small quantity (i.e., d). In this case, the value of the sum of masses is called
the triple integral of the function f over the volume R, and it is denoted by
∫∫∫

V

f(x, y, z)dxdydx, i.e.,

∫∫∫

V

f(x, y, z)dxdydz = lim
n→∞

n∑
i=1

f(xi, yi, zi)δxiδyiδzi.

It is clear that the quantity

∫∫∫

V

f(x, y, z)dxdydz represents the exact mass of the

solid.
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Triple integral as Volume:

Suppose, we have to find the volume of a rectangular parallelepiped (cuboid)
ABCDEFGH formed by the planes x = 0, x = α, y = 0, y = β, z = 0, z =
γ, i.e., EA = α,EF = β and EH = γ. Consider an infinitely small volume,
i.e., the elementary volume dv = dxdydz inside this cuboid (see, figure (a)).
We sum up such elementary volumes along the Z-axis (i.e., during the addition
the coordinates x and y remain constant), in such a way that the elementary
volume remains inside the cuboid. Thus, the integration with respect to z is
completed and a vertical column PQ is formed inside the cuboid ABCDEFGH
(see, figure (b)). The volume of this column PQ is obviously γdxdy. Now, we
sum up this column along the Y -axis (i.e., during the addition the coordinate
x remains constant), in such a way that the column remains inside the cuboid.
Thus, the integration with respect to y is completed and a rectangular lamina
is formed inside the cuboid ABCDEFGH (see, figure (c)). The volume of this
rectangular lamina is obviously βγdx. Finally, we sum up this rectangular lamina
along the X-axis in such a way that the rectangular lamina remains inside the
cuboid. Thus, the integration with respect to x is completed and the whole cuboid
ABCDEFGH is formed and we get the volume of cuboid, i.e., V = αβγ. Thus:

V =

∫∫∫

V

dv

=

∫ α

x=0

∫ β

y=0

∫ γ

z=0
dxdydz.

Example 67. Evaluate:
∫ 4
2

∫ x
y=0

∫ x+y
z=0 zdxdydz.



Dr. Satish Shukla 85

Solution: Given integral can be solved as follows:

∫ 4

2

∫ x

y=0

∫ x+y

z=0
zdxdydz =

∫ 4

2

∫ x

y=0

[
∫ x+y

z=0
zdz

]
dxdy

=

∫ 4

2

∫ x

y=0

[
z2

2

]x+y
0

dxdy

=

∫ 4

2

[
∫ x

0

(x+ y)2

2
dy

]
dx

=

∫ 4

2

[
(x+ y)3

6

]x
0

dx

=

∫ 4

2

[
8x3

6
− x3

6

]
dx

= 70.

Thus,
∫ 4
2

∫ x
y=0

∫ x+y
z=0 zdxdydz = 70. �

Example 68. Evaluate:
∫ e
1

∫ ln(y)
1

∫ ex

1 ln(z)dxdydz.

Solution: Given integral can be solved as follows:

I =

∫ e

1

∫ ln y

1

∫ ex

1
ln zdxdydz

=

∫ e

1

∫ ln y

1

[
∫ ex

1
ln zdz

]
dxdy

=

∫ e

1

∫ ln y

1
[z ln z − z]e

x

1 dxdy

=

∫ e

1

∫ ln y

1
[(x− 1)ex + 1] dxdy

=

∫ e

1

[
∫ ln y

1
(x− 1)ex + 1dx

]
dy

=

∫ e

1
[(x− 1)ex − ex + x]ln y1 dy

=

∫ e

1
[(y + 1) ln y − 2y + e− 1] dy

=

[(
y2

2
+ y

)
ln y − 1

y

(
y2

2
+ y

)
− y2 + (e− 1)y

]e
1

=
1

4
(e2 − 8e+ 13).
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Thus,
∫ e
1

∫ ln(y)
1

∫ ex

1 ln(z)dxdydz = 1
4(e2 − 8e+ 13). �

Spherical coordinates. The spherical coordinates of a point P in the space are
given by P (r, θ, φ) (see the figure below). The relation between cartesian and
spherical coordinates is given by:

x = r cosφ sin θ

y = r sinφ sin θ

z = r cos θ.

The elementary volume in spherical coordinates is given by dV = r2 sin θdrdθdφ
(see the figure below). Some times it is easy to solve the integral by changing the
cartesian coordinates into spherical coordinates. There is no hard and fast rule
to decide whether it is easy to use the spherical coordinates, we can decide only
by observations. Although, converting to spherical coordinates can make triple
integrals much easier to work out when the region you are integrating over has
some spherical symmetry.

Cylindrical coordinates. The cylindrical coordinates of a point P in the space
are given by P (r, φ, z) (see the figure below). The relation between cartesian and
spherical coordinates is given by:

x = r cosφ

y = r sinφ

z = z.

The elementary volume in cylindrical coordinates is given by dV = rdrdφdz (see
the figure below). Some times it is easy to solve the integral by changing the
cartesian coordinates into cylindrical coordinates. There is no hard and fast rule
to decide whether it is easy to use the cylindrical coordinates, we can decide only
by observations. Although, converting to cylindrical coordinates can make triple
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integrals much easier to work out when the region you are integrating over has
some cylindrical symmetry.

Example 69. Find the volume of the sphere x2 + y2 + z2 = a2.

Solution: The volume of the given sphere is: V = 8
∫∫∫

Vp
dxdydz where Vp is the

volume of the sphere in the positive octant. Changing the coordinates into the
spherical coordinates we get:

dxdydz = r2 sin θdrdθdφ

and in the volume Vp, r changes from r = 0 to a, θ changes from θ = 0 to π/2
and φ changes from φ = 0 to π/2. Thus, the required volume:

V = 8

∫ π/2

φ=0

∫ π/2

θ=0

∫ a

φ=0
r2 sin θdrdθdφ =

8a3

3

∫ π/2

φ=0

∫ π/2

θ=0
sin θdθdφ

=
8a3

3

∫ π/2

φ=0
dφ =

4πa3

3
.

Thus, the volume of a sphere of radius a is
4πa3

3
. �

Example 70. Find the volume of the tetrahedron bounded by the co-ordinate

planes and the plane
x

a
+
y

b
+
z

c
= 1.
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Solution: The required volume is the
volume of the tetrahedron as shown in
the figure. The value of z changes from

z = 0 to z = c
(

1− x

a
− y

b

)
so that a

bar from z = 0 to z = c
(

1− x

a
− y

b

)
is created. Then y changes from y = 0

to y = b
(

1− x

a

)
and a triangular plane

is thus created. Finally, x changes from
x = 0 to x = a and the volume is com-
pleted. Thus, the required volume:

V =

∫ a

x=0

∫ b

(
1−
x

a

)
y=0

∫ c(1−x
a
− y

b)

z=0
dxdydz =

∫ a

x=0

∫ b

(
1−
x

a

)
y=0

[z]
c(1−x

a
− y

b)
z=0 dxdy

=

∫ a

x=0

∫ b

(
1−
x

a

)
y=0

c
(

1− x

a
− y

b

)
dxdy =

∫ a

x=0
c

[(
1− x

a

)
y − y2

2b

]b(1−x
a

)
y=0

dx

=
bc

2

∫ a

x=0

(
1− x

a

)2
dx =

abc

6
. �

Example 71. Find the volume bounded by the cylinder x2 + y2 = 4 and the
planes y + z = 4 and z = 0.

Solution: Suppose the required volume is V
which is the dark shaded part in the figure. Then
V =
∫∫∫

V

dxdydz. The limits of z are from z = 0

to z = 4−y and then x and y varies according to
the limits of circle C : x2 + y2 = 4. The variable
y varies from y = −

√
4− x2 to y =

√
4− x2, and

then x varies from x = −2 to x = 2. Thus, the
required volume:

V =

2
∫

−2

√
4−x2
∫

−
√
4−x2

4−y
∫

z=0

dxdydz

=

2
∫

−2

√
4−x2
∫

−
√
4−x2

(4− y)dxdy =

2
∫

−2


√
4−x2
∫

−
√
4−x2

(4− y)dy

 dx = 2

2
∫

−2


√
4−x2
∫

0

4dy

 dx
= 8

2
∫

−2

[√
4− x2

]
dx = 16

[
x

2

√
4− x2 +

4

2
sin−1

(x
2

)]2
0

dx = 16π.
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Thus, the required volume V = 16π. �

Example 72. Find the volume cut from the sphere x2 + y2 + z2 = a2 by the
cylinder x2 + y2 = ax.

Solution:

The required volume V is the 2 times of the volume V1 shown in the figure by
shaded part (half of the volume is above of the xy-plane and half is below). To
make easy, we will use cylindrical coordinates. The cylindrical coordinates are:

x =r cos θ;

y =r sin θ;

z =z.

and the volume element dV = rdrdθdz. The equation of sphere will become
r2 + z2 = a2, and the equation of cylinder will become r = a cos θ. In the shaded
part, the limits of z are from z = 0 to z =

√
a2 − r2 and the r and θ varies

throughout the circle r = a cos θ (see the figure). Therefore, r varies from r = 0
to r = a cos θ and θ from θ = −π/2 to θ = π/2. Thus, the limits of r, θ and z are:

z = 0 to z =
√
a2 − r2;

r = 0 to r = a cos θ;

θ =
π

2
to θ =

π

2
.

Therefore, the required volume:

V = 2

∫∫∫

V1

dxdydz =

∫∫∫

V1

rdrdθdz.



Dr. Satish Shukla 90

Applying the limits for r, θ and z we get:

V = 2

π/2
∫

−π/2

a cos θ
∫

0

√
a2−r2
∫

0

rdrdθdz = 2

π/2
∫

−π/2

a cos θ
∫

0

r
√
a2 − r2drdθ

= 2

π/2
∫

−π/2

[
−1

3

(
a2 − r2

)3/2]a cos θ
0

dθ =
2a3

3

π/2
∫

−π/2

(
1− sin3 θ

)
dθ

=
4a3

3

π/2
∫

0

(
1− sin3 θ

)
dθ =

4a3

3

π/2
∫

0

[
1− sin θ

(
1− cos2 θ

)]
dθ

=
4a3

3

π/2
∫

0

[
1− sin θ + sin θ cos2 θ

]
dθ =

4a3

3

[
θ + cos θ − cos3 θ

3

]π/2
0

=
4a3

3

(
π

2
− 2

3

)
.

Thus, the required volume V = 4a3

3

(
π
2 −

2
3

)
. �

Example 73. Find the volume bounded by the xy-plane, the paraboloid 2z =
x2 + y2 and the cylinder x2 + y2 = 4.

Solution:

Suppose the required volume is V . Then V = 4
∫∫∫

V dxdydz. The limits of z are
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from z = 0 to z =
x2 + y2

2
and then x and y varies according to the limits of

circle C : x2 + y2 = 4. The variable y varies from y = −
√

4− x2 to y =
√

4− x2,
and then x varies from x = −2 to x = 2. Thus, the required volume:

V =

2
∫

−2

√
4−x2
∫

−
√
4−x2

x2+y2

2
∫

z=0

dxdydz =

2
∫

−2

√
4−x2
∫

−
√
4−x2

x2 + y2

2
dxdy =

2
∫

−2


√
4−x2
∫

0

(x2 + y2)dy

 dx
=

2
∫

−2

[
x2y +

y3

3

]√4−x2
0

dx = 2

∫ 2

0

[
x2
√

4− x2 +
1

3

(
4− x2

)3/2]
dx.

Putting x = 2 sin θ, the limits now changed to θ = 0 to θ = π/2, and dx =
2 cos θdθ. Therefore:

V = 16

∫ π/2

0
sin2 θ cos2 θdθ +

16

3

∫ π/2

0
sin0 θ cos4 θdθ

= 16 · Γ(3/2)Γ(3/2)

2 · Γ(3)
+

16

3
· Γ(1/2)Γ(5/2)

2 · Γ(3)
= 4π.

Thus, the required volume is V = 4π. �

Example 74. Find the volume between the paraboloid x2 + y2 = az, cylinder
x2 + y2 = 2ay and the plane z = 0.

Solution:

The required volume V is shown in the figure by shaded part. To make easy, we
will use cylindrical coordinates. The cylindrical coordinates are: x = r cos θ, y =
r sin θ, z = z and the volume element dV = rdrdθdz. The equation of paraboloid
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will become r2 = az, and the equation of cylinder will become r = 2a sin θ. In
the shaded part, the limits of z are from z = 0 to z = r2

a and the r and θ varies
throughout the circle r = 2a sin θ (see the figure). Therefore, r varies from r = 0
to r = 2a sin θ and θ from θ = 0 to θ = π. Therefore, the required volume:

V =

∫∫∫

V

dxdydz =

∫∫∫

V

rdrdθdz =

π
∫

0

2a sin θ
∫

0

r2/a
∫

0

rdrdθdz

=

π
∫

0

2a sin θ
∫

0

r3

a
drdθ =

1

4a

π
∫

0

[
r4
]2a sin θ
0

dθ

= 4a3
π
∫

0

(
sin4 θ

)
dθ = 8a3

π/2
∫

0

(
sin4 θ cos0 θ

)
dθ

= 8a3 · Γ(5/2)Γ(1/2)

2 · Γ(3)
= 8a3 ·

3
2 ·

1
2 ·
√
π ·
√
π

2 · 2

=
3πa3

3
.

Thus, the required volume V =
3πa3

3
. �

Exercise (Assignment)

(Q.1) Evaluate:
1
∫

−1

z
∫

0

x+z
∫

x−z
(x+ y + z)dxdydz.

Ans. 0

(Q.2) Evaluate:
ln 2
∫

0

x
∫

0

x+ln y
∫

0

ex+y+zdxdydz.

Ans.
e4a

8
− 3e2a

4 + ea − 3
8 .

(Q.3) Evaluate:
∫∫∫
R

(x − 2y + z)dxdydz, where R is the region determine by

0 ≤ x ≤ 1, 0 ≤ y ≤ x2, 0 ≤ z ≤ x+ y.

Ans.
29

105
.

(Q.4) Evaluate:
1
∫

0

√
1−x2
∫

0

√
1−x2−y2
∫

0

dxdydz√
1− x2 − y2 − z2

. (Hint: From the limits of

integration, it is clear that the region of integration is the part of sphere
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x2 +y2 +z2 = 1 in the positive quadrant. Change the cartesian coordinates
into the spherical coordinates, the new limits will be r = 0 to 1, φ = 0 to
π/2 and θ = 0 to π/2.)

Ans. π2

8 .

(Q.5) Find the volume cut from the sphere x2+y2+z2 = a2 by the cone x2+y2 =
z2. (A filled Ice-cream cone)

Hint. Suppose the required volume is V .
Then V = 8

∫∫∫
V1
dxdydz where V1 is part

of volume in the positive octant and it is
the shaded part in the figure. The spher-
ical coordinates are x = r cosφ sin θ, y =
r sinφ sin θ, z = r cos θ. Equation of sphere
r2 = a2 and of cone is tan2 θ = 1, i.e.,
θ = ±π

4 . The limits of r are from r = 0
to r = a and then φ varies from φ = 0 to
2π and θ varies from θ = 0 to π

4 . Thus, the

required volume is 2πa2

3 (2−
√

2).

X

Y
O

Z

Part V1

♣ ♣ ♣ ♣
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Unit-V

Linear differential equations of nth order: Linear differential equations of
nth order, method of variation of parameter and Cauchys homogenous linear
equations.

Linear differential equations of nth order

The following differential equation:

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = φ(x). (4)

is called an ordinary linear differential equations of nth order.
There are two parts of solution of differential equation (4). One is called the

Complementary function or C.F., which is the solution of the following homoge-
neous equation:

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = 0. (5)

The second part is the particular solution or P.I., which is a solution of differential
equation (4) with no arbitrary constant, and the complete solution of differential
equation (4) is given by:

y = C.F.+P.I.

Definition 4. The solution of homogeneous equation (5) which consist n arbitrary
constant is called the complementary function (C.F.) of equation (4).

Rules for finding C.F.: There are n linearly independent solutions of differential
equation (5), say, y1, y2, . . . , yn and the C.F. will be the linear combination of all
these solutions, i.e.,

C.F. = c1y1 + c2y2 + · · ·+ cnyn.

To find the solutions y1, y2, . . . , yn, we denote
d

dx
by D, i.e., D ≡ d

dx
, differential

equation (4) will be

(a0D
n + a1D

n−1 + a2D
n−2 + · · ·+ an−1D + an)y = φ(x)

=⇒ F (D)y = φ(x) (6)

where F (D) ≡ a0D
n + a1D

n−1 + a2D
n−2 + · · · + an−1D + an. Now find the roots

of equation:
F (m) = 0 (auxiliary equation).

Suppose, m1,m2, . . . ,mn are the roots of auxiliary equation. Then:

(A) If all the roots of auxiliary equation are real and distinct, then

C.F. = c1e
m1x + c2e

m2x + · · ·+ cne
mnx.
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(B) If roots are real but k roots are equal, i.e., m1 = m2 = · · · = mk and
remaining roots are distinct, then

C.F. = (c1 + c2x+ c3x
2 + · · ·+ ckx

k−1)em1x + ck+1e
mk+1x + · · ·+ cne

mn.

(C) If there is any pair of complex roots, say, α± iβ, then the corresponding part
of C.F. will be

= eαx[c1 cos(βx) + c2 sin(βx)].

(D) If we get two pair of complex roots equal, i.e., α1 ± iβ1 = α2 ± iβ2 = α± iβ
(say), then the corresponding C.F. will be

= eαx[(c1 + c2x) cos(βx) + (c3 + c4x) sin(βx)].

If k pair of complex roots are equal, then the above formula can be generalized
in similar way.

Next, we consider techniques for finding the P.I.

Definition 5. The function
1

F (D)
φ(x) satisfies the equation (6), therefore it is a

solution of equation (4), and since it is free of arbitrary constant, it is called a
particular solution.

Example 75. Prove the following results:

(I)
1

D
φ(x) =
∫

φ(x)dx.

(II)
1

D −m
φ(x) = emx
∫

e−mxφ(x)dx.

Solution: (I) Let
1

D
φ(x) = y

then we have φ(x) = Dy, i.e.,
dy

dx
= φ(x). On integrating with respect to x, we

obtain

y =

∫

φ(x)dx

=⇒ 1

D
φ(x) =

∫

φ(x)dx.

(II) Let
1

D −m
φ(x) = y

then we have φ(x) = (D−m)y, i.e.,
dy

dx
−my = φ(x). It is a linear equation in y.
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Here, I.F.= e
∫

−mdx = e−mx and the solution will be:

ye−mx =

∫

e−mxφ(x)dx (without constant c because P.I. consists no constant)

=⇒ y = emx
∫

e−mxφ(x)dx

=⇒ 1

D −m
φ(x) = emx
∫

e−mxφ(x)dx.

This is the required value. �

Short-cut Methods for finding P.I.: The P.I. of differential equation (4) is given
by:

P.I. =
1

F (D)
φ(x).

(a) If φ(x) = eax, then

P.I. =
1

F (D)
φ(x) =

1

F (D)
eax =

1

F (a)
eax

provided F (a) 6= 0.

Note. If in the case (a) we have F (a) = 0, it implies that D − a is a
factor of F (D), then we write

P.I. =
1

F (D)
φ(x) =

1

(D − a)G(D)
eax =

1

(D − a)G(a)
eax

=
1

G(a)
· 1

D − a
eax.

provided G(a) 6= 0. If G(a) = 0, we again repeat this process.

(b) If φ(x) = eax · f(x), then

P.I. =
1

F (D)
φ(x) =

1

F (D)
eax · f(x) = eax

1

F (D + a)
f(x).

(c) If φ(x) = sin(ax) (or φ(x) = cos(ax)) then

P.I. =
1

F (D2)
φ(x) =

1

F (D2)
sin(ax) =

1

F (−a2)
sin(ax)

provided F (−a2) 6= 0. The formula for cos(ax) is same.
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Note. If F (D) ≡ D2 + a2, then F (−a2) = 0. In this case we can use the
following direct formula:

1

D2 + a2
sin(ax) = − x

2a
cos(ax),

1

D2 + a2
cos(ax) =

x

2a
sin(ax).

(d) If φ(x) = xn, then we write F (D) in form of 1 ± G(D) and then we use one
of the following expressions:

(1− a)−1 = 1 + a+ a2 + a3 + · · ·
(1 + a)−1 = 1− a+ a2 − a3 + · · · , then

P.I. =
1

F (D)
φ(x) =

1

1±G(D)
xn = [1±G(D)]−1 xn.

Now, use the expansion of [1±G(D)]−1.

(e) If φ(x) = x · f(x), then

P.I. =
1

F (D)
x · f(x) = x ·

[
1

F (D)
· f(x)

]
+

d

dD

[
1

F (D)

]
· f(x).

Example 76. Solve:
d2x

dt2
+ 5

dx

dt
+ 6x = 0.

Solution: Putting D ≡ d

dt
, given differential equation can be written as:

(D2 + 5D + 6)x = 0 =⇒ F (D)x = 0

where F (D) ≡ D2 + 5D + 6. The auxiliary equation of the above equation will
be:

F (m) = 0 =⇒ m2 + 5m+ 6 = 0

=⇒ (m+ 2)(m+ 3) = 0

=⇒ m = −2,−3.

Therefore, the roots of the auxiliary equation are real and distinct, and so, the
complementary function will be:

C.F. = c1e
−2x + c2e

−3x.

Since the given equation is homogeneous, therefore, C.F. is the solution of given
equation, i.e., y = c1e

−2x + c2e
−3x. �

Example 77. Solve: (D4 − 4D + 4)y = 0.
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Solution: Given differential equation can be written as:

F (D)x = 0

where F (D) ≡ D4 − 4D + 4. The auxiliary equation of the above equation will
be:

F (m) = 0 =⇒ m4 − 4m2 + 4 = 0

=⇒ (m2 − 2)2 = 0

=⇒ m2 = 2, 2

=⇒ m = ±
√

2,±
√

2

=⇒ m =
√

2,
√

2,−
√

2,−
√

2.

Therefore, the roots of the auxiliary equation are real and in two pairs of equal
roots, and so, the complementary function will be:

C.F. = (c1 + c2x)e
√
2x + (c3 + c4x)e−

√
2x.

Since the given equation is homogeneous, therefore, C.F. is the solution of given

equation, i.e., y = (c1 + c2x)e
√
2x + (c3 + c4x)e−

√
2x. �

Example 78. Solve:
d4y

dx4
+m4y = 0.

Solution: Given differential equation can be written as:

(D4 +m4)y = 0 =⇒ F (D)x = 0

where F (D) ≡ D4 +m4. The auxiliary equation of the above equation will be:

F (M) = 0 =⇒ M4 +m4 = 0

=⇒ (M2 +m2)2 = 2M2m2

=⇒ M2 +m2 = ±
√

2Mm

=⇒ M2 +m2 −
√

2Mm = 0, M2 +m2 +
√

2Mm = 0

=⇒ M =
m√

2
± i m√

2
, M = − m√

2
± i m√

2
.

Therefore, the roots of the auxiliary equation are complex, and so, the comple-
mentary function will be:

C.F. = emx/
√
2

(
c1 cos

mx√
2

+ c2 sin
mx√

2

)
+ e−mx/

√
2

(
c3 cos

mx√
2

+ c4 sin
mx√

2

)
.

Since the given equation is homogeneous, therefore, C.F. is the solution of given
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equation, i.e.:

y = emx/
√
2

(
c1 cos

mx√
2

+ c2 sin
mx√

2

)
+ e−mx/

√
2

(
c3 cos

mx√
2

+ c4 sin
mx√

2

)
. �

Example 79. Solve: (D2 + 5D + 6)y = ex.

Solution: Given differential equation can be written as:

F (D)y = ψ(x)

where F (D) ≡ D2 + 5D + 6 and ψ(x) = ex. The auxiliary equation of the above
equation will be:

F (m) = 0 =⇒ m2 + 5m+ 6 = 0

=⇒ (m+ 2)(m+ 3) = 0

=⇒ m = −2,−3

Therefore, the roots of the auxiliary equation are real and distinct, and so, the
complementary function will be:

C.F. = c1e
−2x + c2e

−3x.

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

D2 + 5D + 6
ex

=
1

12 + 5 · 1 + 6
ex

=
1

12
ex.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−5x + c2e

−6x +
1

12
ex.

This is the required solution. �

Example 80. Solve: (D + 2)(D − 1)2y = e−2x + 2 sinhx.

Solution: Given differential equation can be written as:

F (D)x = ψ(x)

where F (D) ≡ (D+2)(D−1)2 and ψ(x) = e−2x+2 sinh x. The auxiliary equation
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of the above equation will be:

F (m) = 0 =⇒ (m+ 2)(m− 1)2 = 0

=⇒ m = −2, 1, 1.

Therefore, one root of the auxiliary equation is real and the other two are real
but equal, and so, the complementary function will be:

C.F. = c1e
−2x + (c2 + c3x)ex.

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

(D + 2)(D − 1)2
[ e−2x + 2 sinhx]

=
1

(D + 2)(D − 1)2
e−2x + 2

1

(D + 2)(D − 1)2
ex − e−x

2

=
1

(D + 2)

[
1

(D − 1)2
e−2x

]
+

1

(D − 1)2

[
1

(D + 2)
ex
]
− 1

(D + 2)(D − 1)2
e−x

=
1

(D + 2)

[
1

(−2− 1)2
e−2x

]
+

1

(D − 1)2

[
1

(1 + 2)
ex
]
− 1

(−1 + 2)(−1− 1)2
e−x

=
1

9

1

D + 2
1 · e−2x +

1

3

1

(D − 1)2
1 · ex − 1

4
e−x

=
e−2x

9

1

D − 2 + 2
1 +

ex

3

1

(D + 1− 1)2
1− 1

4
e−x

=
e−2x

9

1

D
1 +

ex

3

1

D2
1− 1

4
e−x

=
xe−2x

9
+
x2ex

6
− 1

4
e−x.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−2x + (c2 + c3x)ex +

xe−2x

9
+
x2ex

6
− 1

4
e−x.

This is the required solution. �

Example 81. Solve:
d3y

dx3
− 3

d2y

dx2
+ 4

dy

dx
− 2y = ex + cosx.

Solution: Given differential equation can be written as:

(D3 − 3D2 + 4D − 2)y = ex + cosx =⇒ F (D)y = ψ(x)

where F (D) ≡ D3− 3D2 + 4D− 2 and ψ(x) = ex + cos x. The auxiliary equation
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of the above equation will be:

F (m) = 0 =⇒ m3 − 3m2 + 4m− 2 = 0.

Since the above equation is satisfied by m = 1, therefore, (m−1) will be a factor,
and so, we write:

m2(m− 1)− 2m(m− 1) + 2(m− 1) = 0

=⇒ (m− 1)(m2 − 2m+ 2) = 0

=⇒ m = 1, 1± i.

Therefore, the complementary function will be:

C.F. = c1e
x + ex(c2 cosx+ c3 sinx).

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

D3 − 3D2 + 4D − 2
[ex + cosx]

=
1

D3 − 3D2 + 4D − 2
ex +

1

D3 − 3D2 + 4D − 2
cosx

=
1

D − 1

[
1

D2 − 2D + 2

]
ex +

1

D ·D2 − 3D2 + 4D − 2
cosx

=
1

D − 1

[
1

12 − 2 · 1 + 2

]
ex +

1

D · (−12)− 3(−12) + 4D − 2
cosx

=
1

D − 1
(1 · ex) +

1

3D + 1
cosx

= ex
1

D + 1− 1
· 1 +

3D − 1

9D2 − 1
cosx

= ex
1

D
· 1 +

3D − 1

9(−12)− 1
cosx

= xex − 1

10
[3D(cosx)− cosx]

= xex +
1

10
[3 sinx+ cosx].

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
x + ex(c2 cosx+ c3 sinx) + xex +

1

10
[3 sinx+ cosx].

This is the required solution. �
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Example 82. Solve:
d2y

dx2
+ 3

dy

dx
+ 2y = 4 cos2 x.

Solution: Given differential equation can be written as:

(D2 + 3D + 2)y = 4 cos2 x =⇒ F (D)y = ψ(x)

where F (D) ≡ D2 + 3D + 2 and ψ(x) = 4 cos2 x. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m2 + 3m+ 2 = 0

=⇒ m = −1,−2.

Therefore, the roots are real and distinct, and so, the complementary function
will be:

C.F. = c1e
−x + c2e

−2x.

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

D2 + 3D + 2
[4 cos2 x]

= 4 · 1

D2 + 3D + 2
cos2 x

= 2 · 1

D2 + 3D + 2
[1 + cos(2x)]

= 2

[
1

D2 + 3D + 2
1 +

1

D2 + 3D + 2
cos(2x)

]
= 2

[
1

D2 + 3D + 2
e0 +

1

−22 + 3D + 2
cos(2x)

]
= 2

[
1

0 + 3 · 0 + 2
e0 +

1

3D − 2
cos(2x)

]
= 2

[
1

2
+

3D + 2

9D2 − 4
cos(2x)

]
= 2

[
1

2
+

1

9(−22)− 4
(3D + 2) cos(2x)

]
= 1− 1

20
[−6 sin(2x) + 2 cos(2x)].

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−x + c2e

−2x + 1− 1

20
[−6 sin(2x) + 2 cos(2x)].

This is the required solution. �
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Example 83. Solve:
d2y

dx2
+ 4y = ex + sin(2x).

Solution: Given differential equation can be written as:

(D2 + 4)y = ex + sin(2x) =⇒ F (D)x = ψ(x)

where F (D) ≡ D2 + 4 and ψ(x) = ex + sin(2x). The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m2 + 4 = 0

=⇒ m = ±2i.

Therefore, the roots are complex, and so, the complementary function will be:

C.F. = e0·x[c1 cos(2x) + c2 sin(2x)] = c1 cos(2x) + c2 sin(2x).

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

D2 + 4
[ex + sin(2x)]

=
1

D2 + 4
ex +

1

D2 + 4
sin(2x)

=
1

12 + 4
ex − x

2 · 2
cos(2x) (since F (−a2) = 0)

=
ex

5
− x

4
cos(2x).

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1 cos(2x) + c2 sin(2x) +
ex

5
− x

4
cos(2x).

This is the required solution. �

Example 84. Solve:
d3y

dx3
+ 3

d2y

dx2
+ 2

dy

dx
= x2.

Solution: Given differential equation can be written as:

(D3 + 3D2 + 2D)y = x2 =⇒ F (D)y = ψ(x)

where F (D) ≡ D3+3D2+2D and ψ(x) = x2. The auxiliary equation of the above
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equation will be:

F (m) = 0 =⇒ m3 + 3m2 + 2m = 0

=⇒ m(m2 + 3m+ 2) = 0

=⇒ m = 0,−1,−2.

Therefore, the roots are real and distinct, and so, the complementary function
will be:

C.F. = c1e
0·x + c2e

−x + c2e
−2x = c1 + c2e

−x + c2e
−2x.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D3 + 3D2 + 2D
x2

=
1

2D
· 1

1 + D2

2 + 3D
2

x2

=
1

2D

[
1 +

D2

2
+

3D

2

]−1
x2.

Using the formula (1 + a)−1 = 1− a+ a2 − · · · we get:

P.I. =
1

2D

[
1−

(
D2

2
+

3D

2

)
+

(
D2

2
+

3D

2

)2

+ · · ·

]
x2

=
1

2D

[
1− D2

2
− 3D

2
+
D4

4
+

9D2

4
+

3D3

2
+ · · ·

]
x2

=
1

2D

[
x2 − 3x+

7

2

]
=

x3

6
− 3x2

4
+

7x

4
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1 + c2e
−x + c2e

−2 +
x3

6
− 3x2

4
+

7x

4
.

This is the required solution. �

Example 85. Solve:
d2y

dx2
− 4

dy

dx
+ 4y = 8(e2x + sin 2x+ x2).

Solution: Given differential equation can be written as:

(D2 − 4D + 4)y = x2 =⇒ F (D)y = ψ(x)

where F (D) ≡ D2−4D+4 and ψ(x) = 8(e2x+sin 2x+x2). The auxiliary equation
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of the above equation will be:

F (m) = 0 =⇒ m2 − 4m+ 4 = 0

=⇒ m = 2, 2.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = (c1 + c2x)e2x.

The particular integral will be:

P.I. =
1

F (D)
ψ(x) =

1

D2 − 4D + 4
8(e2x + sin 2x+ x2)

= 8

[
1

D2 − 4D + 4
e2x +

1

D2 − 4D + 4
sin 2x+

1

D2 − 4D + 4
x2
]

= 8

[
1

D2 − 4D + 4

(
1 · e2x

)
+

1

−22 − 4D + 4
sin 2x+

1

4
· 1

1 + D2

4 −D
x2

]

= 8

[
e2x

1

(D + 2)2 − 4(D + 2) + 4
· 1

− 1

4D
sin 2x+

1

4

{
1 +

(
D2

4
−D

)}−1
x2

]

= 8

[
e2x

1

D2
· 1 +

1

8
cos 2x+

1

4

{
1−

(
D2

4
−D

)
+

(
D2

4
−D

)2

+ · · ·

}
x2

]

= 8

[
x2e2x

2
+

cos 2x

8
+

1

4

{
x2 + 2x+ 3/2

}]
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2x)e2x + 4x2e2x + cos 2x+ 2
{
x2 + 2x+ 3/2

}
.

This is the required solution. �

Example 86. Solve:
d3y

dx3
+ 2

d2y

dx2
+
dy

dx
= e2x + x2 + x.

Solution: Given differential equation can be written as:

(D3 + 2D2 +D)y = e2x + x2 + x. =⇒ F (D)x = ψ(x)

where F (D) ≡ D3 + 2D2 +D and ψ(x) = e2x + x2 + x. The auxiliary equation of
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the above equation will be:

F (m) = 0 =⇒ m3 + 2m2 +m = 0

=⇒ m(m2 + 2m+ 1) = 0

=⇒ m(m+ 1)2 = 0

=⇒ m = 0,−1,−1.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = c1 + (c2 + c3x)e−x.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D3 + 2D2 +D
[e2x + x2 + x]

=
1

D3 + 2D2 +D
e2x +

1

D3 + 2D2 +D
(x2 + x)

=
1

23 + 2 · 22 + 2
e2x +

1

D3 + 2D2 +D
(x2 + x)

=
e2x

18
+

1

D

[
1

1 +D2 + 2D
(x2 + x)

]
=

e2x

18
+

1

D

[
{1 + (D2 + 2D)}−1(x2 + x)

]
=

e2x

18
+

1

D

[
{1− (D2 + 2D) + (D2 + 2D)2 − · · · }(x2 + x)

]
=

e2x

18
+

1

D

[
{1− 2D + 3D2 − · · · }(x2 + x)

]
=

e2x

18
+

1

D

[
x2 + x− 2(2x+ 1) + 3 · 2

]
=

e2x

18
+

1

D

[
x2 − 3x+ 4

]
=

e2x

18
+
x3

3
− 3x2

2
+ 4x.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1 + (c2 + c3x)e−x +
e2x

18
+
x3

3
− 3x2

2
+ 4x.

This is the required solution. �

Example 87. Solve: (D3 − 3D + 2)y = 540x2e−x.
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Solution: Given differential equation can be written as:

F (D)y = ψ(x)

where F (D) ≡ D3 − 3D + 2 and ψ(x) = 540x2e−x. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m3 − 3m+ 2 = 0

=⇒ m2(m− 1) +m(m− 1)− 2(m− 1) = 0

=⇒ (m− 1)(m2 +m− 2) = 0

=⇒ m = 1, 1,−2.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = c1e
−2x + (c2 + c3x)ex.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D3 − 3D + 2
540x2e−x

= 540

[
1

D3 − 3D + 2
x2e−x

]
= 540e−x

[
1

(D − 1)3 − 3(D − 1) + 2
x2
]

= 540e−x
[

1

D3 − 3D2 + 4
x2
]

=
540e−x

4

[{
1 +

D3 − 3D2

4

}−1
x2

]

= 135e−x
[{

1− D3

4
+

3D2

4
+ · · ·

}
x2
]

= 135e−x
[
x2 +

3

2

]
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−2x + (c2 + c3x)ex + 135e−x

[
x2 +

3

2

]
.

This is the required solution. �

Example 88. Solve:
d2y

dx2
− 2

dy

dx
+ y = xex sinx.
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Solution: Given differential equation can be written as:

(D2 − 2D + 1)y = xex sinx =⇒ F (D)y = ψ(x)

where F (D) ≡ D2 − 2D + 1 and ψ(x) = xex sinx. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m2 − 2m+ 1 = 0

=⇒ (m− 1)2 = 0

=⇒ m = 1, 1.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = (c1 + c2x)ex.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D2 − 2D + 1
xex sinx

=
1

D2 − 2D + 1
ex · x sinx

= ex
[

1

(D + 1)2 − 2(D + 1) + 1
x sinx

]
= ex

[
1

D2
x sinx

]
= ex

[
1

D

∫

x sinxdx

]
= ex

[
1

D
(−x cosx+ sinx)

]
= ex

[
∫

(−x cosx+ sinx)dx

]
= −ex(x sinx+ 2 cosx).

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2x)ex − ex(x sinx+ 2 cosx).

This is the required solution. �

Example 89. Solve:
d2y

dx2
− 2

dy

dx
+ y = x sinx.

Solution: Given differential equation can be written as:

(D2 − 2D + 1)y = x sinx =⇒ F (D)y = ψ(x)
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where F (D) ≡ D2 − 2D + 1 and ψ(x) = x sinx. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m2 − 2m+ 1 = 0

=⇒ (m− 1)2 = 0

=⇒ m = 1, 1.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = (c1 + c2x)ex.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D2 − 2D + 1
x sinx

=
1

D2 − 2D + 1
x · sinx

= x
1

(D2 − 2D + 1)
sinx+

d

dD

[
1

D2 − 2D + 1

]
sinx

= x
1

(D2 − 2D + 1)
sinx−

[
2D − 2

(D2 − 2D + 1)2

]
sinx

= x
1

(−12 − 2D + 1)
sinx−

[
2D − 2

(−12 − 2D + 1)2

]
sinx

= −x 1

2D
sinx−

[
2D − 2

4D2

]
sinx

=
x cosx

2
−
[
D − 1

2(−12)

]
sinx

=
x cosx

2
+

cosx− sinx

2
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2x)ex +
x cosx

2
+

cosx− sinx

2
.

This is the required solution. �

Example 90. Solve: (D2 − 4D + 4)y = 8x2e2x sin 2x.

Solution: Given differential equation can be written as:

F (D)y = ψ(x)

where F (D) ≡ D2 − 4D + 4 and ψ(x) = 8x2e2x sin 2x. The auxiliary equation of
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the above equation will be:

F (m) = 0 =⇒ m2 − 4m+ 4 = 0

=⇒ (m− 2)2 = 0

=⇒ m = 2, 2.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = (c1 + c2x)e2x.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D2 − 4D + 4
8x2e2x sin 2x

= 8

[
1

D2 − 4D + 4
e2x · x2 sin 2x

]
= 8e2x

[
1

(D + 2)2 − 4(D + 2) + 4
· x2 sin 2x

]
= 8e2x

[
1

D2
· x2 sin 2x

]
.

Operating
1

D
we obtain:

P.I. = 8e2x
[

1

D

∫

x2 sin 2xdx

]
= 8e2x

[
1

D

(
−x

2 cos 2x

2
+

2x sin 2x

4
+

2 · cos 2x

8

)]
= 8e2x

[
1

D

(
−x

2 cos 2x

2
+
x sin 2x

2
+

cos 2x

4

)]
= 8e2x

[
−
∫

(
x2 cos 2x

2

)
dx+

∫

(
x sin 2x

2

)
dx+

∫

(
cos 2x

4

)
dx

]
= 8e2x

[
−1

2

(
x2 sin 2x

2
+

2x cos 2x

4
− 2 · sin 2x

8

)
+

1

2

(
−x cos 2x

2
+

sinx

4

)
+

(
sin 2x

8

)]
= e2x

[
(3− 2x2) sin 2x− 4x cos 2x

]
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2x)e2x + e2x
[
(3− 2x2) sin 2x− 4x cos 2x

]
.

This is the required solution. �
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Example 91. Solve:
d2y

dx2
+ 3

dy

dx
+ 2y = ee

x

.

Solution: Given differential equation can be written as:

(D2 + 3D + 2)y = ee
x

=⇒ F (D)y = ψ(x)

where F (D) ≡ D2 + 3D + 2 and ψ(x) = ee
x

. The auxiliary equation of the above
equation will be:

F (m) = 0 =⇒ m2 + 3m+ 2 = 0

=⇒ (m+ 1)(m+ 2) = 0

=⇒ m = −1,−2.

Therefore, the roots are real and distinct, and so, the complementary function
will be:

C.F. = c1e
−x + c2e

−2x.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D2 + 3D + 2
ee

x

=
1

(D + 1)(D + 2)
ee

x

=

[
1

D + 1
− 1

D + 2

]
ee

x

=
1

D + 1
ee

x − 1

D + 2
ee

x

.

Applying the general formula
1

D −m
f(x) = emx
∫

f(x)e−mxdx we obtain:

P.I. = e−x
∫

ee
x

exdx− e−2x
∫

ee
x

e2xdx

= e−x
∫

etdt− e−2x
∫

tetdt (put ex = t)

= e−xet − e−2x(tet − et)
= e−xee

x − e−2x(exeex − eex)
= e−2xee

x

.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−x + c2e

−2x + e−2xee
x

.

This is the required solution. �
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Example 92. Solve: (D4 + 2D2 + 1)y = x2 cosx.

Solution: Given differential equation can be written as:

F (D)y = ψ(x)

where F (D) ≡ D4 + 2D2 + 1 and ψ(x) = x2 cosx. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m4 + 2m2 + 1 = 0

=⇒ (m2 + 1)2 = 0

=⇒ m = ±i.± i.

Therefore, the roots are complex and repeated, and so, the complementary func-
tion will be:

C.F. = (c1 + c2x) cosx+ (c3 + c4x) sinx.

The particular integral will be

P.I. =
1

F (D)
ψ(x) =

1

D4 + 2D2 + 1
x2 cosx

= Real part of

[
1

(D2 + 1)2
x2eix

]
= Real part of

[
eix
{

1

((D + i)2 + 1)2
x2
}]

= Real part of

[
eix
{

1

(D2 + 2iD)2
x2
}]

= Real part of

[
eix

{
− 1

4D2

(
1 +

D

2i

)−2
x2

}]

= Real part of

[
eix

{
− 1

4D2

(
1− 2

iD

2
+ 3

(
iD

2

)2

+ · · ·

)
x2

}]

= Real part of

[
−e

ix

4

{
1

D2

(
x2 − 2ix− 3

2

)}]
.

Applying
1

D2
we obtain:

P.I. = −1

4
Real part of

[
eix
{(

x4

12
− ix

3

3
− 3x2

4

)}]
= − 1

48
Real part of

[
(cosx+ i sinx)

{(
x4 + 4ix3 − 9x2

)}]
= − 1

48

[
(x4 − 9x2) cosx− 4x3 sinx

]
.
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The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2x) cosx+ (c3 + c4x) sinx− 1

48

[
(x4 − 9x2) cosx− 4x3 sinx

]
.

This is the required solution. �

Exercise (Assignment)

(Q.1) Solve: (D − 1)2(D − 3)3y = e3x

Ans. y = (c1 + c2x)ex + (c3 + c4x+ c5x
2)e3x + x3e3x

24 .

(Q.2) Solve:
d3y

dx3
+ y = 3 + e−x + 5e2x.

Ans. y = c1e
−x + ex/2

[
c2 cos

√
3x
2 + c3 sin

√
3x
2

]
+ 3 + 5

9e
2x + xe−x

3 .

(Q.3) Solve:
d3y

dx3
+
d2y

dx2
− dy

dx
− y = cos(2x).

Ans. y = c1e
x + (c2 + c3x)e−x − 1

25 [cos(2x) + 2 sin(2x)].

(Q.4) Solve:
d4y

dx4
−m4y = cos(mx).

Ans. y = c1e
mx + c2e

−mx + c3 cos(mx) + c4 sin(mx)− x
4m3 sin(mx).

(Q.5) Solve:
d2y

dx2
+ 4y = x2 + cos2 x.

Ans. y = c1 cos(2x) + c2 sin(2x) + x2

4 + x
8 sin(2x).

(Q.6) Solve:
d4y

dx4
− a4y = x4.

Ans. y = c1e
−ax + c2e

ax + c3 cos(ax) + c4 sin(ax)− 1
a4 (x

4 + 24/a4).

(Q.7) Solve: (D2 + 2D + 4)y = ex sin 2x.

Ans. y = e−x
[
c1 cos

(√
3x
)

+ c2 sin
(√

3x
)]

+ ex

73(3 sin 2x− 8 cos 2x).

(Q.8) Solve:
d2y

dx2
+ 5

dy

dx
+ 6y = e−2x sin 2x.

Ans. y = c1e
−2x + c2e

−3x − e−2x

10 (cos 2x+ 2 sin 2x).

(Q.9) Solve:
d2y

dx2
− 4y = x sinhx.

Ans. y = c1e
2x + c2e

−2x − x
3 sinhx− 2

9 coshx.



Dr. Satish Shukla 114

(Q.10) Solve: (D2 + 1)(D2 − 1)y = e2xx+ x2.

Ans. y = c1e
x + c2e

−x + c2 cosx+ c4 sinx+ e2x

255(15x− 32) + x2.

(Q.11) Solve:
d2y

dx2
+ 4y = x sinx.

Ans. y = c1 cos(2x) + c2 sin(2x) + x
3 sinx− 2

9 cosx.

(Q.12) Solve:
d2y

dx2
− 4

dy

dx
+ 3y = 2xe3x + 3ex cos 2x.

Ans. y = c1e
x + c2e

3x + 1
2xe

3x(x− 1)− 3
8e
x(sin 2x− cos 2x).

(Q.13) Solve:
d2y

dx2
+ a2y = sin ax.

Ans. y = c1 cos ax+ c2 sin ax− x
2x cos ax.

(Q.14) Solve:
d2y

dx2
− 2

dy

dx
+ y =

4ex

x2
.

Ans. y = (c1 + c2x)ex − 4ex ln(x).

(Q.15) Solve: (D2 + 2D + 1)y = x cosx.

Ans. y = (c1 + c2x)e−x + 1
2 cosx+ 1

2(x− 1) sinx.

(Q.16) Solve: (D2 − 3D + 2)y = sin(ex).

Ans. y = c1e
x + c2e

2x − e2x sin(ex).

Method of variation of parameters

This method is applied on the differential equations of the form:

d2y

dx2
+ p

dy

dx
+ qy = ψ(x)

where p, q and ψ(x) are the functions of x. Suppose, the complementary function
of this equation is

C.F. = c1y1 + c2y2.

Then, the particular integral of this equation is given by:

P.I. = −y1
∫

y2ψ(x)

W
dx+ y2

∫

y1ψ(x)

W
dx

where W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y′1y2 is the Wronskian of y1 and y2.

Example 93. Solve:
d2y

dx2
+ 4y = tan 2x.
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Solution: Given differential equation can be written as:

(D2 + 4)y = tan 2x =⇒ F (D)y = ψ(x)

where F (D) ≡ D2 + 4 and ψ(x) = tan 2x. The auxiliary equation of the above
equation will be:

F (m) = 0 =⇒ m2 + 4 = 0

=⇒ m = ±2i.

Therefore, the roots are complex, and so, the complementary function will be:

C.F. = c1 cos 2x+ c2 sin 2x = c1y1 + c2y2.

Here y1 = cos 2x, y2 = sin 2x. Now the Wornskian of y1 and y2 will be:

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ cos 2x sin 2x
−2 sin 2x 2 cos 2x

∣∣∣∣ = 2.

Therefore, the particular integral will be:

P.I. = −y1
∫

y2ψ(x)

W
dx+ y2

∫

y1ψ(x)

W
dx

= − cos 2x

∫

sin 2x tan 2x

2
dx+ sin 2x

∫

cos 2x tan 2x

2
dx

= −cos 2x

2

∫

(1− cos2 2x) sec 2xdx+
sin 2x

2

∫

sin 2xdx

= −cos 2x

2

∫

(sec 2x− cos 2x) dx− sin 2x cos 2x

4

= −cos 2x

4
[ln(sec 2x+ tan 2x)− sin 2x]− sin 2x cos 2x

4

= −1

4
cos 2x · ln(sec 2x+ tan 2x).

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1 cos 2x+ c2 sin 2x− 1

4
cos 2x · ln(sec 2x+ tan 2x).

This is the required solution. �

Example 94. Solve:
d2y

dx2
+ a2y = sec ax.

Solution: Given differential equation can be written as:

(D2 + a2)y = sec 2x =⇒ F (D)y = ψ(x)
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where F (D) ≡ D2 + a2 and ψ(x) = sec ax. The auxiliary equation of the above
equation will be:

F (m) = 0 =⇒ m2 + a2 = 0

=⇒ m = ±ia.

Therefore, the roots are complex, and so, the complementary function will be:

C.F. = c1 cos ax+ c2 sin ax = c1y1 + c2y2.

Here y1 = cos ax, y2 = sin ax. Now the Wornskian of y1 and y2 will be:

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ cos ax sin ax
−a sin ax a cos ax

∣∣∣∣ = a.

Therefore, the particular integral will be:

P.I. = −y1
∫

y2ψ(x)

W
dx+ y2

∫

y1ψ(x)

W
dx

= − cos ax

∫

sin ax sec ax

a
dx+ sin ax

∫

cos ax sec ax

a
dx

= −cos ax

a

∫

tan axdx+
sin ax

a

∫

dx

= −cos ax

a2
[ln(sec ax)] +

x sin ax

a

=
1

a2
cos ax · ln(cos ax) +

1

a
x sin ax.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1 cos 2x+ c2 sin 2x+
1

a2
cos ax · ln(cos ax) +

1

a
x sin ax.

This is the required solution. �

Example 95. Solve: y ′′ − 6y ′ + 9y =
e3x

x2
.

Solution: Given differential equation can be written as:

(D2 − 6D + 9)y =
e3x

x2
=⇒ F (D)y = ψ(x)

where F (D) ≡ D2− 6D+ 9 and ψ(x) =
e3x

x2
. The auxiliary equation of the above
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equation will be:

F (m) = 0 =⇒ m2 − 6m+ 9 = 0

=⇒ (m− 3)2 = 0

=⇒ m = 3, 3.

Therefore, the roots are real and equal, and so, the complementary function will
be:

C.F. = c1e
3x + c2xe

3x = c1y1 + c2y2.

Here y1 = e3x, y2 = xe3x. Now the Wornskian of y1 and y2 will be:

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ =

∣∣∣∣ e3x xe3x

3e3x e3x + 3xe3x

∣∣∣∣ = e6x.

Therefore, the particular integral will be:

P.I. = −y1
∫

y2ψ(x)

W
dx+ y2

∫

y1ψ(x)

W
dx

= −e3x
∫

xe3x e3x

x2e6x
dx+ xe3x
∫

e3xe3x

x2
e6xdx

= −e3x
∫

1

x
dx+ xe3x
∫

1

x2
dx

= −e3x(lnx+ 1).

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
3x + c2xe

3x − e3x(lnx+ 1).

This is the required solution. �

Exercise (Assignment)

(Q.1) Solve by the method of variation of parameter:
d2y

dx2
+ y = tanx

Ans. y = c1 cosx+ c2 sinx− cosx · ln(secx+ tanx).

(Q.2) Solve by the method of variation of parameter:
d2y

dx2
+ a2y = cosecax

Ans. y = (c1 − x/a) cos ax+ [c2 + (1/a2) ln(sin ax)] sin ax.

(Q.3) Solve by the method of variation of parameter: y ′′ − 2y ′ + y = ex ln(x).

Ans. y = c1e
x + c2xe

x + 1
4x

2ex(2 lnx− 3).
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Problems on operator method

Example 96. Prove the following result:

If (D −m1)(D −m2)y = 0, then y = c1e
m1x + c2e

m2x, where m1 6= m2.

Solution: Putting (D −m2)y = z in the given equation we get:

(D −m1)z = 0 =⇒ dz

dx
−m1z = 0 =⇒ dz

dx
= m1z

=⇒ dz

z
= m1dx

=⇒ ln(z) = ln(c) +m1x

=⇒ z = cem1x.

Putting this value of z in (D −m2)y = z we get:

(D −m2)y = z =⇒ (D −m2)y = cem1x

=⇒ dy

dx
−m2y = cem1x.

The above equation is linear in y, and I.F.= e
∫

−m2dx = e−m2x and the solution of
it will be:

ye−m2x = c2 +

∫

cem1xe−m2xdx =⇒ ye−m2x = c2 +
c

m1 −m2
e(m1−m2)x

=⇒ y = c2e
m2x + c1e

m1x

where c1 =
c

m1 −m2
. �

Example 97. Prove the following result:

If (D −m)2y = 0, then y = (c1 + c2x)emx.

Solution: Putting (D −m)y = z in the given equation we get:

(D −m)z = 0 =⇒ dz

dx
−mz = 0 =⇒ dz

dx
= mz

=⇒ ln(z) = ln(c1) +mx

=⇒ z = c1e
mx.

Putting this value of z in (D −m)y = z we get:

(D −m)y = z =⇒ (D −m)y = c1e
mx

=⇒ dy

dx
−my = c1e

mx.
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The above equation is linear in y, and I.F.= e
∫

−mdx = e−mx and the solution of
it will be:

ye−mx = c2 +

∫

c1e
mxe−mxdx =⇒ ye−mx = c2 + c1x

=⇒ y = (c2 + c1x)emx. �

Example 98. Prove the following result:

If [D − (α + iβ)][D − (α− iβ)]y = 0, then y = eαx[c1 cos(βx) + c2 sin(βx)]

Solution: Put m1 = α + iβ and m2 = α − iβ in Example 96 and then use the
Euler’s formula eiθ = cos θ + i sin θ.

Example 99. Solve by operator method: (x+3)y′′−(2x+7)y′+2y = (x+3)2ex.

Solution: The given equation can be written as:[
(x+ 3)D2 − (2x+ 7)D + 2

]
y = (x+ 3)2ex.

To apply the operator method, we have to factorize the expression

(x+ 3)D2 − (2x+ 7)D + 2.

Then the above equation can be written as:[
(x+ 3)D2 − (2x+ 6)D −D + 2

]
y = (x+ 3)2ex

=⇒ [(x+ 3)D (D − 2)− (D − 2)] y = (x+ 3)2ex

=⇒ [(x+ 3)D − 1] (D − 2)y = (x+ 3)2ex.

Putting (D − 2)y = z we obtain:

[(x+ 3)D − 1] z = (x+ 3)2ex

=⇒ (x+ 3)
dz

dx
− z = (x+ 3)2ex

=⇒ dz

dx
− 1

x+ 3
z = (x+ 3)ex.

It is linear differential equation in z. Now:

I.F. = e
∫

− 1
x+3

dx =
1

x+ 3
.

The solution of the above equation will be:

z

x+ 3
= c1 +

∫

(x+ 3)ex · 1

x+ 3
=⇒ z = c1(x+ 3) + ex(x+ 3).
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Putting z = (D − 2)y =
dy

dx
− 2y we get

dy

dx
− 2y = c1(x+ 3) + ex(x+ 3).

It is again linear in y, and

I.F. = e
∫

−2dx = e−2x.

The solution will be:

ye−2x = c2 +

∫

[c1(x+ 3) + ex(x+ 3)] e−2xdx

=⇒ ye−2x = c2 +

∫ [
c1(x+ 3)e−2x + e−x(x+ 3)

]
dx

=⇒ ye−2x = c2 −
1

2
c2(x+ 3)e−2x − 1

4
c1e
−2x − (x+ 3)e−x − e−x

=⇒ y = c2e
2x − 1

2
c2(x+ 3)− 1

4
c1 − (x+ 3)ex − ex.

This is the required solution. �

Equations reducible to linear equation with constant coefficients (Cauchy
homogeneous linear equation)

A differential equation of the following form:

a0x
n d

ny

dxn
+ a1x

n−1d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ · · ·+ an−1x

dy

dx
+ any = φ(x). (7)

is called Cauchy homogeneous linear equation or homogeneous linear equation.
To solve this type of equations we use the substitution x = ez, so that dx

dz = ez = x.

Hence, if we denote D ≡ d
dz we have:

x
dy

dx
= x

dy

dz
· dz
dx

=
dy

dz
= Dy.

On comparing we get:

x
d

dx
≡ D.

Similarly, we can show that:

x2
d2

dx2
≡ D(D − 1), x3

d3

dx3
≡ D(D − 1)(D − 2) and so on.

Now equation (7) reduces into the equation with costant coefficients and can be
solved by the methods we have already discussed.
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Example 100. Solve: x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1.

Solution: Given differential equation is:

x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1.

On dividing by x we get:

x3
d3y

dx3
+ 2x2

d2y

dx2
− x dy

dx
+ y =

1

x
.

The above equation is Cauchy homogeneous linear equation, hence putting

x = ez, x
d

dx
≡ D, x2

d2

dx2
≡ D(D − 1), and

x3
d3

dx3
≡ D(D − 1)(D − 2)

(where D ≡ d
dz ) we get:

D(D − 1)(D − 2)y + 2D(D − 1)y −Dy + y =
1

x
=⇒

[
D
(
D2 − 3D + 2

)
+ 2D2 − 2D −D + 1

]
y = e−z

=⇒
(
D3 −D2 −D + 1

)
y = e−z

=⇒ F (D)y = ψ(z)

where:
F (D) ≡ D3 −D2 −D + 1 and

ψ(z) = e−z.

The auxiliary equation of the above equation will be:

F (m) = 0

=⇒ m3 −m2 −m+ 1 = 0

=⇒ m2(m− 1)− (m− 1) = 0

=⇒ (m− 1)(m2 − 1) = 0

=⇒ (m− 1)(m− 1)(m+ 1) = 0

=⇒ m = −1, 1, 1.

Therefore, all the roots are real, one root is distinct and other are equal, and so,
the complementary function will be:

C.F. = c1e
−z + (c2 + c3z)ez.
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The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D3 −D2 −D + 1
e−z

=
1

(D + 1)(D − 1)2
e−z

=
1

(D + 1)

[
1

(D − 1)2
e−z
]

=
1

(D + 1)

[
1

(−1− 1)2
e−z
]

=
1

4

1

(D + 1)
e−z · 1

=
e−z

4

1

(D − 1 + 1)
1

=
e−z

4

1

D
1

=
ze−z

4
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−z + (c2 + c3z)ez +

ze−z

4

=⇒ y = c1x
−1 + (c2 + c3 ln(x))x+

1

4
x−1 ln(x).

This is the required solution. �

Example 101. Solve: x3
d3y

dx3
+ 3x2

d2y

dx2
+ x

dy

dx
+ 8y = 13 cos(lnx).

Solution: Given differential equation is:

x3
d3y

dx3
+ 3x2

d2y

dx2
+ x

dy

dx
+ 8y = 13 cos(ln x).

The above equation is Cauchy homogeneous linear equation, hence putting x = ez,
x d
dx ≡ D, x2 d2

dx2 ≡ D(D − 1), and x3 d3

dx3 ≡ D(D − 1)(D − 2) (where D ≡ d
dz ) we

get:

D(D − 1)(D − 2)y + 3D(D − 1)y +Dy + 8y = 13 cos z

=⇒
(
D3 + 8

)
y = 13 cos z

=⇒ F (D)y = ψ(z)
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where F (D) ≡ D3 + 8 and ψ(z) = 13 cos z. The auxiliary equation of the above
equation will be:

F (m) = 0 =⇒ m3 + 8 = 0

=⇒ (m+ 2)(m2 − 2m+ 4) = 0

=⇒ m = −2,
2±
√

4− 16

2
=⇒ m = −2, 1± i

√
3.

Therefore, one root is real and two roots are complex, and so, the complementary
function will be:

C.F. = c1e
−2z + ez

[
c2 cos(

√
3z) + c3 sin(

√
3z)
]
.

The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D3 + 8
13 cos z

= 13 · 1

D ·D2 + 8
cos z

= 13 · 1

−12D + 8)
cos z

= 13 · 8 +D

64−D2
cos z

= 13 · 8 +D

64− (−12)
cos z

=
1

5
[8 cos z − sin z] .

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−2z + ez

[
c2 cos(

√
3z) + c3 sin(

√
3z)
]

+
1

5
[8 cos z − sin z]

=⇒ y = c1x
−2 + x

[
c2 cos(

√
3 lnx) + c3 sin(

√
3 lnx)

]
+

1

5
[8 cos(lnx)− sin(lnx)] .

This is the required solution. �

Example 102. Solve: x2
d2y

dx2
+ x

dy

dx
− y =

x3

1 + x2
.

Solution: Given differential equation is:

x2
d2y

dx2
+ x

dy

dx
− y =

x3

1 + x2
.
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The above equation is Cauchy homogeneous linear equation, hence putting

x = ez, x
d

dx
≡ D, x2

d2

dx2
≡ D(D − 1), and

x3
d3

dx3
≡ D(D − 1)(D − 2)

(where D ≡ d
dz ) we get:

D(D − 1)y +Dy − y =
x3

1 + x2

=⇒
(
D2 − 1

)
y =

x3

1 + x2

=⇒ F (D)y = ψ(z)

where F (D) ≡ D2 − 1 and ψ(z) =
x3

1 + x2
. The auxiliary equation of the above

equation will be:

F (m) = 0 =⇒ m2 − 1 = 0

=⇒ (m− 1)(m+ 1) = 0

=⇒ m = 1,−1.

Therefore, one root are real distinct, and so, the complementary function will be:

C.F. = c1e
z + c2e

−z.

The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D2 − 1

x3

1 + x2

=
1

(D − 1)(D + 1)

e3z

1 + e2z

=
1

2
·
[

1

D − 1
− 1

D + 1

]
e3z

1 + e2z

=
1

2
·
[

1

D − 1

e3z

1 + e2z
− 1

D + 1

e3z

1 + e2z

]
=

1

2
·
[
ez
∫

e−z
e3z

1 + e2z
dz − e−z
∫

ez
e3z

1 + e2z
dz

]
=

1

2
·
[
ez
∫

e2z

1 + e2z
dz − e−z
∫

e4z

1 + e2z
dz

]
.
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Putting e2z = u, i.e., e2zdz =
1

2
du, we get:

P.I. =
1

4
·
[
ez
∫

1

1 + u
du− e−z
∫

u

1 + u
du

]
=

1

4
·
[
ez ln (1 + u)− e−z {u− ln (1 + u)}

]
=

1

4
·
[
ez ln

(
1 + e2z

)
− e−z

{
e2z − ln

(
1 + e2z

)}]
=

1

4
·
[
ez ln

(
1 + e2z

)
− ez + e−z ln

(
1 + e2z

)]
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
z + C2e

−z +
1

4
·
[
ez ln

(
1 + e2z

)
− ez + e−z ln

(
1 + e2z

)]
=⇒ y = c1x+ c2x

−1 +
1

4
·
[
x ln

(
1 + x2

)
− x+ x−1 ln

(
1 + x2

)]
.

This is the required solution. �

Example 103. Solve: x2
d2y

dx2
− 2x

dy

dx
− 4y = x2 + 2 lnx.

Solution: Given differential equation is

x2
d2y

dx2
− 2x

dy

dx
− 4y = x2 + 2 lnx.

The above equation is Cauchy homogeneous linear equation, hence putting x = ez,
x d
dx ≡ D, x2 d2

dx2 ≡ D(D − 1), (where D ≡ d
dz ) we get:

D(D − 1)y − 2Dy − 4y = x2 + 2 lnx

=⇒
(
D2 − 3D − 4

)
y = e2z + 2z

=⇒ F (D)y = ψ(z)

where F (D) ≡ D2 − 3D − 4 and ψ(z) = e2z + 2z. The auxiliary equation of the
above equation will be:

F (m) = 0 =⇒ m2 − 3m− 4 = 0

=⇒ (m+ 1)(m− 4) = 0

=⇒ m = −1, 4.

Therefore, one root are real distinct, and so, the complementary function will be:

C.F. = c1e
−z + c2e

4z.
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The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D2 − 3D − 4

[
e2z + 2z

]
=

1

D2 − 3D − 4
e2z + 2 · 1

D2 − 3D − 4
z

=
1

22 − 3 · 2− 4
e2z − 1

2
· 1

1− D2 − 3D

4

z

= −1

6
e2z − 1

2
·
(

1 +
D2 − 3D

4
+ · · ·

)
z

= −1

6
e2z − 1

2
·
(
z +

0− 3

4

)
= −1

6
e2z − 1

2
·
(
z − 3

4

)
.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−z + c2e

4z − 1

6
e2z − 1

2
·
(
z − 3

4

)
=⇒ y = c1x

−1 + c2x
4 − 1

6
x2 − 1

2
·
(

lnx− 3

4

)
.

This is the required solution. �

Example 104. Solve: x2
d2y

dx2
− 3x

dy

dx
+ 4y = 3x2.

Solution: Given differential equation is

x2
d2y

dx2
− 3x

dy

dx
+ 4y = 3x2.

The above equation is Cauchy homogeneous linear equation, hence putting x = ez,
x d
dx ≡ D, x2 d2

dx2 ≡ D(D − 1), (where D ≡ d
dz ) we get:

D(D − 1)y − 3Dy + 4y = 3x2

=⇒
(
D2 − 4D + 4

)
y = 3e2z

=⇒ F (D)y = ψ(z)

where F (D) ≡ D2− 4D+ 4 and ψ(z) = 3e2z. The auxiliary equation of the above
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equation will be:

F (m) = 0 =⇒ m2 − 4m+ 4 = 0

=⇒ (m− 2)2 = 0

=⇒ m = 2, 2.

Therefore, one root are real equal, and so, the complementary function will be:

C.F. = (c1 + c2z)e2z.

The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D2 − 4D + 4
3e2z

= 3 · 1

(D − 2)2
e2z · 1

= 3e2z · 1

(D + 2− 2)2
1

= 3e2z · 1

D2
1

=
3

2
z2e2z.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2z)e2z +
3

2
z2e2z

=⇒ y = (c1 + c2 lnx)x2 +
3x2

2
(lnx)2.

This is the required solution. �

Example 105. Solve: x3
d3y

dx3
+ 2x2

d2y

dx2
+ 2y = 10

(
x+

1

x

)
.

Solution: Given differential equation is

x3
d3y

dx3
+ 2x2

d2y

dx2
+ 2y = 10

(
x+

1

x

)
.

The above equation is Cauchy homogeneous linear equation, hence putting x = ez,
x d
dx ≡ D, x2 d2

dx2 ≡ D(D − 1), and x3 d3

dx3 ≡ D(D − 1)(D − 2) (where D ≡ d
dz ) we
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get:

D(D − 1)(D − 2)y + 2D(D − 1)y + 2y = 10

(
x+

1

x

)
=⇒

(
D3 −D2 + 2

)
y = 10

(
ez + e−z

)
=⇒ (D + 1)

(
D2 − 2D + 2

)
y = 10

(
ez + e−z

)
=⇒ F (D)y = ψ(z)

where F (D) ≡ (D + 1)
(
D2 − 2D + 2

)
and ψ(z) = 10 (ez + e−z) . The auxiliary

equation of the above equation will be:

F (m) = 0 =⇒ (m+ 1)
(
m2 − 2m+ 2

)
= 0

=⇒ m = −1, 1± i.

Therefore, one root is real and two roots are complex, and so, the complementary
function will be:

C.F. = c1e
−z + ez(c2 cos z + c3 sin z).

The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

(D + 1) (D2 − 2D + 2)
10
(
ez + e−z

)
= 10 · 1

(D + 1) (D2 − 2D + 2)
ez + 10 · 1

(D + 1) (D2 − 2D + 2)
e−z

= 10 · 1

(1 + 1) (12 − 2 · 1 + 2)
ez + 10 · 1

(D + 1) ((−1)2 − 2 · (−1) + 2)
e−z

= 5ez + 2 · 1

D + 1
e−z · 1

= 5ez + 2e−z · 1

D − 1 + 1
· 1

= 5ez + 2e−z · 1

D
· 1

= 5ez + 2ze−z.

The complete solution will be:

y = C.F. + P.I.

=⇒ y = c1e
−z + ez(c2 cos z + c3 sin z) + 5ez + 2ze−z

=⇒ y = c1x
−1 + x [c2 cos(lnx) + c3 sin(lnx)] + 5x+ 2x−1 lnx.

This is the required solution. �

Example 106. Solve: x2
d2y

dx2
+ 3x

dy

dx
+ y =

1

(1− x)2
.
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Solution: Given differential equation is

x2
d2y

dx2
+ 3x

dy

dx
+ y =

1

(1− x)2
.

The above equation is Cauchy homogeneous linear equation, hence putting

x = ez, x
d

dx
≡ D, x2

d2

dx2
≡ D(D − 1)

(where D ≡ d
dz ) we get:

D(D − 1)y + 3D + y =
1

(1− x)2

=⇒
(
D2 + 2D + 1

)
y =

1

(1− ez)2
=⇒ F (D)y = ψ(z)

where

F (D) ≡ D2 + 2D + 1 and ψ(z) =
1

(1− ez)2
.

The auxiliary equation of the above equation will be:

F (m) = 0 =⇒ m2 + 2m+ 1 = 0

=⇒ m = −1,−1.

Therefore, roots are real and equal, and so, the complementary function will be:

C.F. = (c1 + c2z)e−z.

The particular integral will be:

P.I. =
1

F (D)
ψ(z) =

1

D2 + 2D + 1

1

(1− ez)2

=
1

D2 + 2D + 1

1

(1− ez)2

=
1

D + 1
· 1

D + 1

1

(1− ez)2

=
1

D + 1

[
e−z
∫

ez
1

(1− ez)2

]
dz

=
1

D + 1

[
e−z

1− ez

]
= e−z
∫

ez · e−z

1− ez
dz.
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Putting ez = u we get:

P.I. = e−z
∫

1

u(1− u)
du = e−z
∫

[
1

u
+

1

1− u

]
du

= e−z [lnu− ln(1− u)]

= e−z [z − ln(1− ez)] .

The complete solution will be:

y = C.F. + P.I.

=⇒ y = (c1 + c2z)e−z + e−z [z − ln(1− ez)]
=⇒ y = (c1 + c2 lnx)x−1 + x−1 [lnx− ln(1− x)]

=⇒ y = (c1 + c2 lnx)x−1 + x−1 ln

(
x

1− x

)
.

This is the required solution. �

Exercise (Assignment)

(Q.1) Solve: x2
d2y

dx2
+ 7x

dy

dx
+ 5y = x5.

Ans. y = c1x
−5 + c2x

−1 +
1

60
x5.

(Q.2) Solve: x2
d2y

dx2
− 2x

dy

dx
− 4y = x4.

Ans. y = c1x
4 + c2x

−1 +
1

5
x4 lnx.

(Q.3) Solve: x4
d4y

dx4
+ 2x3

d3y

dx3
+ x2

d2y

dx2
− x dy

dx
+ y = x+ lnx.

Ans. y = x
[
c1 + c2 lnx+ c3 (lnx)2 + c4 (lnx)3

]
+
x(lnx)4

4!
+ lnx+ 4.

(Q.4) Solve: x2
d2y

dx2
− 3x

dy

dx
+ y =

lnx · sin(lnx) + 1

x
.

Ans. y = x2
[
c1x
√
3 + c2x

−
√
3

+x−1 [lnx (5 sin lnx+ 6 cos ln x) /61 + (54 sin lnx+ 382 cos ln x) /3721 + 1/6]
]
.


