The Prehospital Management of Head Trauma

Prepared by: John Pakiela, DO, FACEP

Epidemiology

Approximately 500,000 cases of head injury occur in the U.S. each year

- 10% die prior to reaching a hospital
- 100,000 patients suffer a resultant disability from their head injury

Epidemiology

Patients with head injury that reach the hospital:

- Mild 80%
- Moderate 10%
- Severe 10%

Introduction

Adequate oxygenation and maintenance of sufficient blood pressure to perfuse the brain is paramount !!

Avoid secondary brain damage

Scalp

- Skin
- Connective tissue
- Aponeurosis (galea)
- Loose areolar tissue
- Pericranium

****Can be a source of significant blood loss**

Skull

Cranial vault

• Base

Meninges

- Epidural space
- Dura: tough, fibrous membrane that adheres firmly to the internal surface of the skull
 - Subdural space
- Arachnoid: thin, transparent layer
 - Subarachnoid space: CSF
- Pia: firmly attached to the surface of the brain

Brain

- Cerebrum
- Cerebellum
- Brainstem

Cerebrospinal fluid (CSF)

- Produced by the choroid plexus at a rate of 30 ml/hour
- Blood in the CSF can impair absorption and result in increased intracranial pressure (ICP)

Tentorium

- Divides the brain into compartments
- Cranial Nerve III runs along the edge and may become compressed during downward brain herniation
 - Blown pupil

Physiology

Intracranial pressure

- Elevated ICP not only indicates a problem, but contributes to the problem
- Normal ICP = 10 mm Hg
 - > 20 mm Hg = abnormal
 - > 40 mm Hg = severe
- The higher the ICP after head injury, the worse the outcome

Physiology

Monro-Kellie Doctrine:

• The total volume of intracranial contents must remain constant

MONRO-KELLIE DOCTRINE

INTRACRANIAL COMPENSATION FOR EXPANDING MASS

Cerebral Perfusion Pressure

CPP = MAP - ICP

Perfusion pressures < 70 mm Hg are associated with poor outcome

Once compensatory mechanisms are exhaustive and there is an exponential increase in ICP, brain perfusion is compromised

- Hematomas should be evacuated early
- Adequate systemic blood pressure must be maintained

Classification

Mechanism of injury

- Blunt
 - High velocity
 - Low velocity

Classification

Severity of injury

- Mild: GCS 14-15
- Moderate: GCS 9-13
- Severe: GCS 8 or below

Glasgow Coma Scale

Eye Opening Spontaneous To speech To pain None	4 3 2 1
Best Motor Response Obeys commands Localizes pain Normal flexion (Withdrawl) Abnormal flexion (Decorticate) Extension (Decerebrate) None (Flaccid)	6 5 4 3 2 1
Verbal Response Oriented Confused conversation Inappropriate words Incomprehensible sounds None	5 4 3 2 1

* Mercyhealth

Classification

Morphology

- Skull fractures
 - Vault
 - Linear vs stellate
 - Depressed vs nondepressed
 - Open vs closed
 - Basilar
 - With or without CSF leak
 - With or without CN VII palsy

Classification

Morphology

- Intracranial lesions
 - Focal
 - Epidural
 - Subdural
 - Intracerebral
 - Diffuse
 - Mild concussion
 - Classic concussion
 - Diffuse axonal injury

Skull Fractures

A linear vault fracture increases the likelihood of intracranial hematoma by about 20x in a conscious patient, and by 400x in a comatose patient

• Fragments depressed more than the thickness of the skull require surgical elevation

Open fractures require early repair and antibiotic prophylaxis

Skull Fractures

Signs of basilar skull fracture:

- Raccoon eyes
- Battle's sign
- Hemotympanum
- •CSF leaks
- •CN VII palsy

**Avoid passing anything through the nares in these patients

Raccoon Eyes

Battle's Sign

ΤM

Intracranial Lesions

Epidural hematoma

- Located outside the dura but within the skull
- Typically biconvex or lenticular in shape
- Most often located in the temporal or temporoparietal region
- Usually arterial in origin
 - Middle meningeal artery

Epidural Hematoma

Relatively uncommon

- •0.5% of all head-injured patients
- 9% of those that are comatose

Outcome is directly related to the neuro status before surgery

Classic "lucid interval"

Subdural Hematoma

Much more common than epidural hematomas

• 30% of severe head injuries

Most frequently due to tearing of a bridging vein between the cerebral cortex and a draining venous sinus

Subdural Hematoma

Cover the entire surface of the hemisphere Underlying brain damage is usually more severe and the prognosis is much worse than epidural hematomas

Acute Subdural Hematoma

* Mercyhealth

Cerebral Contusions/Intracerebral Hematomas

Pure cerebral contusions are common Most occur in the frontal and temporal lobes Distinction between contusions and hematomas remains ill-defined

Contusions can coalesce to form hematomas

Mild Concussion

- Consciousness is preserved but there is a noticeable degree of temporary neurologic dysfunction
- Mildest form: confusion without amnesia
- Slightly greater injury: confusion with both retrograde and antegrade amnesia

Classic Cerebral Concussion

Positive LOC with amnesia

- Length of amnesia is a good measure of the severity of injury
- Transient with return to full consciousness by six hours
- Can develop post-concussion syndrome
 - Memory difficulties, dizziness, nausea, and depression

Diffuse Axonal Injury

Prolonged post-traumatic coma that is not due to a mass lesion or ischemic results Patient often demonstrates posturing Remain severely disabled if they survive Can exhibit autonomic dysfunction: •Hypertension, hyperpyrexia, etc.

Management of Mild Head Injury

GCS 14-15

80% of patients with head injury

Awake, but may be amnestic with brief loss of consciousness

- Define LOC
- Was it true LOC?
- Important to differentiate

Management of Mild Head Injury

Clinical signs of basilar skull fracture should be sought out Monitor and transport

Management of Moderate Head Injury

GCS 9-13

Can follow simple commands, but usually confused

- May have focal neurologic deficits
- 10 to 20% lapse into coma
- Managed like severely head injured patients, but are not routinely intubated

Management of Severe Head Injury

GCS 3-8

Unable to follow simple commands

Prompt diagnosis and treatment is required

ALS resources should be requested, if not already dispatched

<u>**Goal</u>**: prevent secondary damage to an already injured brain</u>

Management of Severe Head Injury

Primary Survey

- Cardiopulmonary stabilization must be achieved rapidly
 - Hypotension with severe head injury results in double the mortality compared to patients with no hypotension (60% vs. 27%)
 - The presence of hypoxia increases the mortality to 75%

Primary Survey

Airway and Breathing

- Manage the airway to your certification level
- Early intubation (*if RSA Credentialed)
- Hyperventilation may be used cautiously
 PCO2 30-35

Circulation

- Hypotension is usually not due to brain injury itself until later stages of herniation occur
- Volume replacement with IVF

Primary Survey

Circulation

- Hypotension is usually not due to brain injury itself until later stages of herniation occur
- Maintain normovolemia
- Avoid fluid overload
- Avoid hypotonic fluids and fluids that contain glucose

Secondary Survey

Once the primary survey is completed

Look for other injuries

• 50% of patients have additional major systemic injuries

Neurologic Examination

Rapid and directed neurological examination

- GCS based on best response
- Pupillary light response
- Prior to sedation

Frequent serial examinations should occur

Role of TXA

Use TXA as part of the treatment regimen in hemorrhagic shock

Note: TXA is not currently indicated in isolated head trauma without associated hemorrhagic shock

Summary

Manage the primary survey, especially in comatose patients

- Treat hypoxia and shock aggressively and look for its cause
- Avoid hypovolemia and overhydration

Frequently reassess the patient's neurologic status

Sources

- Emergency Care in the Streets by Nancy Caroline, Seventh Edition.
- Advanced Trauma Life Support Course Manual by the American College of Surgeons Committee on Trauma, Tenth Edition.
- Emergency Medicine: A Comprehensive Study Guide by Tintinalli, et al. Eighth Edition.
- Emergency Medicine: Concepts and Clinical Practice by Rosen, et al. Ninth Edition.

Images from google.com

