

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

gaissecurity.com

Microsoft Teams — Cross Site Scripting
(XSS) Bypass CSP Report

Prepared by Numan TURLE

https://gaissecurity.com/

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

MICROSOFT TEAMS — CROSS SITE SCRIPTING (XSS)

BYPASS CSP

During my early stages of employment at Gais Cyber Security in 2021, my manager had

reached out to me over the phone and said with excitement “I think there’s a vulnerability in

Teams, let’s look together!”. Naturally, we got to work, and in the span of 2 hours, I had

discovered my first Microsoft Teams vulnerability (CVE-2021–24114) that ended in an

Account Take Over (ATO).

You can read the report on CVE-2021–24114 here.

Discovery of Vulnerability

I decided after a year since reporting the vulnerability to explore Microsoft Teams again and

see what else I could find. Teams has many features but there is one feature that everyone loves

especially… Sending stickers!

To start this project off, I sent my teammate a sticker and evaluated how this all works.

Selecting Stickers

When you send a sticker on Microsoft Teams, Teams will convert it as an image and then upload

it. The image is sent as “RichText/Html” in the message.

Which looks like this.

https://gaissecurity.com/assets/uploads/Teams_Account_Takeover.pdf

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

Send a sticker — JSON/POST

After minutes of deciding which of my favorite stickers to send, I sent and inspected the HTTP

request.

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

Helpful tip: During application PenTesting, mark HTML attributes to easily follow the

condition in the sections where HTML characters are interpreted. For example in the image

below.

Sample markup

When I clicked on the sticker, the text sent over the alt attribute was shown in the popup that

opened at the bottom.

The popup that opens when you click on the sticker

After collecting the information thus far, I started marking inside of Burp. At this point, I send

simple HTML characters to multiple attributes(alt, width, height, etc….). My preference is

usually <h1> or see. Because it can have a distinctive quality.

I prefer not to use anything element that will trigger javascript directly.

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

Burp Request

In the image above, the area I outlined in the red is the alt tag of the image transmitted in the

JSON data. I placed a tag to leave a mark in this field.

Going back to the chat screen, I clicked on the picture again and saw that the HTML characters

I added were interpreted.

The interpretation of the HTML character I entered in the alt tag

Let’s take a look at what’s in front of us so far… I posted an image and the value in the alt tag

of that image is interpreted as HTML in the popup that opens. So how does this turn into XSS

Vulnerability?

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

Path to XSS Vulnerability

Testing the standard stuff was

leading to nothing successful,

for example <img src=x

onerror=alert(1)>. This is

because of Content Security

Policy (CSP). Here’s what the

current CSP for Microsoft.

If this information means

nothing to you, here’s an

article from PortSwigger to

explain everything you need

to know about CSP.

Tools like Google’s “CSP

Evaluator” help understand if

there’s a defect on the CSP

side and what they include.

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

Here’s what was found using CSP Evaluator, this shows the “script-src” field is unsafe.

CSP Evaluator

So now, there’s an HTML injection and multiple domains that can be included in scripts on the

page. The question is which domains could be used? I took a lot of time on this area and

submitted two reports to Microsoft. The first report highlighted “media services” that aren’t

currently in the CSP. This service, however, is no longer used due to the domain name being

changed by Azure. The result of this report was it being closed immediately.

After more hours of staring at a monitor and more caffeine intake, I thought it might be worth

a try to find angular javascript (js) in this list. Sure enough, it was worth every thought and

every milligram of caffeine that entered my body. Examining Microsoft Teams in a browser

gave me a more detailed look at the javascript that it contains and there it was, staring right at

me. “angular-jquery”.

The angular version I saw was outdated (1.5.14). I knew now that I could pass the CSP with

this version’s vulnerabilities, which started my journey on some local tests. Later, I saw that I

was able to receive alerts successfully.

Alert

https://statics.teams.cdn.office.net/hashed/0.2-angular-jquery.min-eee9041.js

 www.gaissecurity.com
info@gaissecurity.com
+90 216 999 4247

The next task is trying to fit two created elements as both js and div on a single page. I used

<iframe srcdoc> in this.

After everything was crafted, the final payload was sent, making corrections along the way due

to HTML errors. To get around this I used HTML encoding so the characters could be

interpreted correctly. And voila, XSS Vulnerability on Microsoft Teams was obtained through

user interaction.

Disclosure Timeline

Thank you for reading this far. And special thanks to frosted_dolphin who helped me with this

article.

Respects,

Numan Türle

	MICROSOFT TEAMS — CROSS SITE SCRIPTING (XSS) BYPASS CSP
	Discovery of Vulnerability
	Path to XSS Vulnerability
	Disclosure Timeline

