

KOVA PLASTICS GLASSTIC SLIDE 10 con cuadrículas Guía de inicio rápido

87144E, 87144F, 87145E

La KOVA Plastics Glasstic Slide 10 con cuadrícula cuantitativa está diseñada para usarse con el sistema estandarizado e higiénico de análisis microscópico de orina KOVA:

Coloque 12 ml de la muestra de orina del recipiente KOVA Plastics en el tubo KOVA Plastics. Asegure la tapa de KOVA Plastics en el tubo KOVA Plastics y luego centrifugue a 400 fcr (-1500 rpm) durante 5 minutos.

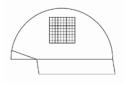
Inserte el decantador **KOVA Plastics** con firmeza en la parte inferior del tubo y asegúrese de que el clip del bulbo esté enganchado en el borde exterior del tubo KOVA Plastics y decante. El decantador KOVA Plastics retendrá 1.0 ml de sedimento.

Resuspenda suavemente usando el decantador KOVA Plastics. Si es necesario, agregue 1 gota de colorante KOVA antes de la resuspensión, para mejorar la cuantificación.

Usando el decantador KOVA Plastics, coloque la muestra en la muesca de corte en la cámara para portaobjetos. Coloque la pipeta paralela al portaobjetos cuando llene la cámara. Evite tocar la barrera en forma de V mientras dispensa el fluido. El posicionamiento incorrecto en la dispensación puede causar el desbordamiento de una cámara a la siguiente. La adición cuidadosa de las muestras garantiza las propiedades de manipulación higiénica del sistema KOVA.

Mediante la acción capilar, se extraerán 6.6 µl de la muestra en la cámara del KOVA Plastics Slide 10, lo que da como resultado una suspensión homogénea del sedimento. No reutilice los productos KOVA.

Cuantifique los cilindros a baja potencia (100x). Cuantifique todas las células a alta potencia (400x). Cuente las células dentro de las líneas de la cuadrícula cuadrada pequeña de 0.33 mm (como se muestra). Consulte la tabla de valores para conocer el recuento celular por µl de la muestra del paciente.


TABLA DE VALORES

Muestras de bajo recuento celular:

Cuente las células totales de un tipo específico incluidas en 10 cuadrículas pequeñas dentro de los diferentes cuadrantes de la cuadrícula de recuento.

Muestras	de recuent	to celular ma	às alto:
totales de un t	ino específ	ico incluidas	en 5 cuadríci

Cuente las células tot culas pequeñas dentro de los diferentes cuadrantes de la cuadrícula de recuento.

KOVA Plastics Glasstic Slide 10 con cámara en cuadrículas Volumen de la cámara: 6.6 µl Profundidad de la cámara: 0.1 mmDimensión de la cuadrícula externa: 3 mm x 3 mm Volumen dentro de la cuadrícula: 0.9 µl Tamaño de la cuadrícula pequeña: 0.33 mm x 0.33 mm Volumen de la cuadrícula pequeña: 0.01111 ul

Total de células	Células/µl
1	1
2	2
3	2
4	3
5	4
6	5
7	5
8	6
9	7
10	8
11	8
12	9
13	10
14	11
15	11
16	12
17	13
18	14
19	15
20	15
21	16
22	17
23	18
24	18
25	19
26	20
27	21
28	21

Total de células	Células/µl
5	8
6	9
7	11
8	12
9	14
10	15
11	17
12	18
13	20
14	21
15	23
16	24
17	26
18	28
19	29
20	31
21	32
22	34
23	35
24	37
25	38
30	46
35	54
40	61
45	69
50	77
60	92
70	107

NOTA: En el caso de las muestras que sean inferiores a 12 ml, reducir la cantidad centrifugada a 6 ml y duplicar los resultados obtenidos antes de usar la tabla (arriba).

Tipo de célula	Normal	
Leucocitos	0-4/μ1	
Eritrocitos	0-2/μl	

En el límite	Patológica*
4-6/μl	>6/µl
2-3/µl	>3/ul

Cálculo alternativo: Determinar la cantidad promedio de células por cuadrícula pequeña y luego usar el siguiente factor de multiplicación para calcular las células por µl. Para calcular las células/µl usando KOVA Plastics Glasstic Slide 10 con cuadrículas:

- Para muestras sin centrifugar o puras, multiplicar las células promedio obtenidas por cuadrícula pequeña x 90.
- Para las muestras de 10 ml concentradas a 1 ml, multiplicar las células promedio obtenidas por cuadrícula pequeña x 9.
- Para las muestras de 10 ml concentradas a 0.5 ml, multiplicar las células promedio obtenidas por cuadrícula pequeña x 4.5.
- Para las muestras de 12 ml concentradas a 1mL (sistema KOVA), multiplicar las células promedio obtenidas por cuadrícula pequeña x 7.5.

KOVA PLASTICS GLASSTIC SLIDE 10 con cuadrículas Guía de inicio rápido

REF 87144E, 87144F, 87145E

Ejemplo de cálculo (utilizando el método de KOVA de 12 ml a 1ml):

<u>Células</u>	Cuadrículas contadas	Total de células	<u>Promedio de</u> células/cuadrículas	Factor múltiple x (7.5)	Células por µl de muestras
Leucocitos	10	5	0.5	0.5 x 7.5	3.8
Eritrocitos	10	14	1.4	1.4 x 7.5	10.5

* Referencia: Aiken, C.D. and Sokeland, J. (1983). Urologie. Thiems, Stuttgart, Ninth Edition, p.79

TABLA DE VALORES MUESTRAS DE ORINA O FLUIDOS CORPORALES SIN DILUIR Y SIN CENTRIFUGAR

MUESTRAS DE RECUENTO CELULAR BAJO

Cuente las células totales de un tipo específico incluidas en 36 cuadrículas pequeñas o 4 cuadrantes completos de la cuadrícula de recuento.

Total de células	Células/µl	Células/ml
1	3	2,500
2	5	5,000
3	8	7,500
4	10	10,000
5	13	12,500
6	15	15,000
7	18	17,500
8	20	20,000
9	23	22,500
10	25	25,000
11	28	27,500
12	30	30,000
13	33	32,500
14	35	35,000
15	38	37,500
16	40	40,000
17	43	42,500
18	45	45,000
19	48	47,500
20	50	50,000
25	63	62,500
30	75	75,000
40	100	100,000
50	126	125,500

Cálculo alternativo:

Multiplique la cantidad promedio de células por cuadrícula pequeña por 90 para obtener células por μl; multiplique por 90,000 para obtener células por ml.

MUESTRAS DE RECUENTO ALTO DE CÉLULAS

Cuente las células totales de un tipo específico incluidas en 10 cuadrículas pequeñas en los diferentes cuadrantes de la cuadrícula de recuento.

Total de células	Células/µl	Células/ml
1	9	9,000
2	18	18,000
3	27	27,000
4	36	36,000
5	45	45,000
6	54	54,000
7	63	63,000
8	72	72,000
9	81	81,000
10	90	90,000
20	180	180,000
25	225	225,000
30	270	270,000
35	315	315,000
40	360	360,000
50	450	450,000
60	540	540,000
70	630	630,000
80	720	720,000
90	810	810,000
100	900	900,000
150	1350	1,350,000
200	1800	1,800,000
250	2250	2,250,000

Cálculo alternativo:

Multiplique la cantidad promedio de células por cuadrícula pequeña por 90 para obtener células por µl; multiplique por 90,000 para obtener células por ml.

MÉTODO DE CÁLCULO DE FLUIDOS CORPORALES DILUIDOS:

Células/µl = cantidad promedio de células por cuadrícula pequeña x 90 (factor de multiplicación) x dilución p. ej., líquido cefalorraquídeo diluido 1:10; un total de 50 glóbulos rojos contados en 10 cuadrículas pequeñas

$$GR/\mu l = \frac{50 \text{ c\'elulas}}{10 \text{ cuad\'r\'eulas}} \times 90 \text{ (factor)} \times 10 \text{ (diluci\'en)}$$
$$= 5 \times 900 = 4,500 \text{ GR/}\mu l$$

p. ej., semen diluido 1:20; un total de 150 espermatozoides contados en 5 cuadrículas pequeñas

Esperma/
$$\mu$$
l = $\frac{150}{5}$ x 90 (factor) x 20 (dilución)

= $30 \times 1800 = 54,000 \text{ espermatozoides/}\mu l$

RANGOS NORMALES DEL RECUENTO TOTAL DE CÉLULAS(1)

LÍQUIDO	TIPO DE CÉLULA	NORMAL	ANORMAL	LÍQUIDO	TIPO DE CÉLULA	NORMAL	ANORMAL
Orina (2)	Leucocitos Eritrocitos	0-6/μl 0-3/μl	>6/μl >3/μl	Leucocitos	sinoviales Eritrocitos	<200/μl <2,000/μl	>200/µl >2,000/µl
I CD (names an adultas)	Leucocitos	0-5/μl	>5/µl	Leucocitos	pleurales	<1,000/µl	>1,000/µl
LCR (rango en adultos)				Leucocitos	pericárdicos	<1,000/µl	>1,000/µl
Seminal	Esperma	40,000/μl - 160,000/μl	<40,000/μl	Leucocitos	peritoneales Eritrocitos	<300/μl <100,000/μl	>300/μl >100,000/μl

Referencias: (1) Strasinger, S.K. (1985) Urinalysis and Body Fluids, F.A. Davis, Philadelphia • (2) Alken, C.D., and Sokeland, J. (1983) Urologie, Thiems, Stutgart, Nineth Edition, pg. 79