

THE ROLE OF SCIENCE EDUCATION FOR OUT-OF-SCHOOL CHILDREN IN NIGERIA: CHALLENGES AND SOLUTIONS

¹Zakariyya Dahiru, ²Bello Bashir

^{1,2}Jigawa State College of Education P.M.B. 1002, Gumel.

School of Secondary Education (Sciences)

Department of Physics

zakariyyadahiruks@gmail.com, bbhadejia83@gmail.com

Abstract

This study examines the role of science education in addressing the educational marginalization of out-of-school children (OOSC) in Nigeria, utilizing Constructivist Learning Theory and Human Capital Theory as analytical lenses. A Systematic Literature Review (SLR) of peer-reviewed articles, policy documents, and NGO reports published between 2010 and 2024 was conducted. Findings reveal that Nigeria's 10.5 million OOSC face multifaceted challenges including poverty, gender inequality, regional disparities, and weak policy implementation. The study advocates for constructivist science learning through community-based, hands-on education and emphasizes human capital investments like STEM-focused vocational training. The paper concludes with policy recommendations involving alternative education delivery models, teacher training in constructivist pedagogy, and multisector partnerships to support science education for OOSC.

Keywords: Science education, out-of-school children, Nigeria, constructivism, human capital theory

1. Introduction

Education is widely recognized as a catalyst for individual and societal development, with science education playing a critical role in fostering innovation, critical thinking, and economic growth. In Nigeria, the persistent issue of out-of-school children estimated to be over 10 million represents a significant barrier to national development (Oyekan et al., 2023). This literature review explores the role of science education in addressing the needs of out-of-school children, applying Constructivist Theory and Human Capital Theory to analyze the challenges and propose sustainable solutions.

1.1 Background

Nigeria's education crisis represents one of the most pressing developmental challenges in Sub-Saharan Africa. Despite constitutional guarantees of free basic education (UBE Act, 2004), the country accounts for approximately 20% of the global out-of-school population (UNESCO, 2023). The intersection of rapid population growth (2.6% annually), economic instability, and regional disparities has created a perfect storm that keeps millions of children, particularly girls and rural dwellers, outside formal education systems (World Bank, 2022).

The science education deficit among OOSC has particularly severe implications for Nigeria's development trajectory. As the world transitions toward knowledge-based economies, scientific literacy becomes increasingly crucial for individual empowerment and national competitiveness (National Science Foundation, 2021). Studies demonstrate that populations with basic science competencies exhibit greater resilience to economic shocks, better health outcomes, and higher civic engagement (OECD, 2019).

1.2 Problem Statement

Despite interventions like the Universal Basic Education Commission (UBEC), systemic issues (poverty, cultural biases, weak policy enforcement) persist. Without science literacy, OOSC face limited employability and perpetuated poverty cycles (World Bank, 2019).

The exclusion of 10.5 million Nigerian children from science education represents both a moral failure and a significant economic liability. Recent estimates suggest this education gap costs Nigeria approximately 5.4% of its annual GDP in lost productivity (Ezekwesili & Shah, 2021). The problem exhibits distinct regional and gender dimensions:

- Geographic disparities: Northern states account for 78% of OOSC, with Sokoto and Bauchi having enrollment rates below 40% (NBS, 2023)
- Gender imbalance: 60% of OOSC are girls, with cultural factors and early marriages contributing to dropout rates (Malala Fund, 2023)
- Quality concerns: Even among enrolled students, only 31% achieve basic science proficiency by grade 6 (NEI, 2022)

1.3 Research Objectives

- To assess the role of science education for OOSC in Nigeria.
- To identify challenges using a systematic literature review.
- To propose solutions grounded in constructivist and human capital theories.

1.4 Scope and Limitation

The study focuses on out-of-school children aged 5–14 in Nigeria, particularly in rural and conflict-affected regions. While the findings provide valuable insights, limitations include:

- Limited access to some high-risk areas due to security concerns.
- Potential biases in self-reported data from respondents.
- Generalizability constraints due to Nigeria's diverse sociocultural landscape.

2. Literature Reviewed

2.1 Constructivist Theory

Constructivist Theory, advanced by Jean Piaget and Lev Vygotsky, posits that learners actively construct knowledge through experiences and social interactions. In the context of science education, this theory underscores the importance of hands-on, inquiry-based learning, where students build understanding through exploration and reflection. For out-of-school children, constructivist approaches offer pathways for experiential learning that connect with their lived realities (Ahmed et al., 2021).

2.2 Human Capital Theory

Human Capital Theory, popularized by economists such as Gary Becker, argues that investments in education enhance individuals' productivity and contribute to economic development. Science education is a strategic investment in this context, equipping children with the skills needed in a knowledge-based economy (Okonkwo et al., 2022). For Nigeria, leveraging science education for out-of-school children can be pivotal in breaking the cycle of poverty and enhancing national competitiveness.

2.3 Science Education in Nigeria: Current Landscape

The Nigerian science education system faces systemic challenges, including inadequate infrastructure, underqualified teachers, and limited access to modern pedagogical tools. These issues are exacerbated for out-of-school children, who often come from marginalized backgrounds with limited exposure to formal learning environments (Ahmed et al., 2021). While science education is part of the national curriculum, its practical delivery remains limited, especially outside traditional classroom settings.

2.4 Challenges Facing Out-of-School Children in Accessing Science Education

2.4.1 Socio-Economic Barriers: Poverty, child labor, and gender inequality are primary barriers preventing access to education. Many families prioritize income-generating activities over schooling, particularly in rural and underserved areas (Ogunode et al., 2021).

2.4.2 Infrastructural Deficits: Lack of science labs, instructional materials, and digital tools make it difficult to offer meaningful science education in non-formal settings where out-of-school children might be reached (Ahmed et al., 2021).

2.4.3 Teacher Availability and Capacity: Qualified science teachers are scarce, and many educators lack training in constructivist pedagogy. Moreover, there are few incentives for teachers to work in alternative or informal education programs (Okonkwo et al., 2022).

2.4.4 Policy Gaps and Implementation Failures: Although Nigeria has policies addressing inclusive education (e.g., the Universal Basic Education Act), poor implementation and monitoring have limited their effectiveness, especially in delivering science content to out-of-school populations (Oyekan et al., 2023).

3. Research Framework

The theoretical framework for this study integrates **Constructivist Learning Theory** and **Human Capital Theory**, creating a dual lens to understand both the pedagogical and economic imperatives of science education for out-of-school children.

Component	Description
Input (Barriers)	Poverty, gender disparities, poor infrastructure, weak teacher capacity, policy gaps
Process (Theories)	Constructivist experiential learning; Human Capital investment in education
Intervention Strategies	Community-based science education, digital learning, STEM vocational training
Outcomes	Improved science literacy, increased employability, enhanced national productivity

This framework supports a **systems-level analysis** of the science education ecosystem for OOSC and informs data synthesis from the literature review.

4. Results and Discussion

4.1 Key Barriers Identified

- **Economic constraints** (Ahmed et al., 2021; Ogunode et al., 2021): Many OOSC are engaged in child labor or informal work to support household incomes.
- **Gender inequality** (Malala Fund, 2023): Cultural norms restrict girls' access to formal education, especially in northern Nigeria.
- **Infrastructure and teacher shortages** (Okonkwo et al., 2022): Non-formal education centers are often under-resourced and lack qualified science educators.
- **Policy-implementation gaps** (Oyekan et al., 2023): Despite national strategies, poor governance and monitoring hinder results.

4.2 Constructivist Solutions

Constructivist learning models emphasize **hands-on and contextualized science education**. This is especially relevant for OOSC whose learning must be flexible and engaging:

- **Mobile science labs and community learning hubs** have proven effective in other low-income contexts.
- **Peer-learning groups**, aligned with Vygotsky's social constructivism, improve knowledge transfer and retention among marginalized learners (Ahmed et al., 2021).

4.3 Human Capital Development

Science education contributes directly to workforce readiness:

- **STEM-focused vocational training** prepares OOSC for employment in tech, health, and green energy sectors (Okonkwo et al., 2022).
- Investing in OOSC through education can mitigate productivity losses, currently costing Nigeria an estimated 5.4% of GDP annually (Ezekwesili & Shah, 2021).

5. Summary of Findings

- **Out-of-school children in Nigeria face systemic barriers** to science education, particularly girls in northern states.
- **Constructivist models offer a promising path** for engagement, particularly when adapted to community and informal settings.
- **Investing in science education for OOSC strengthens human capital**, improves employability, and reduces national economic losses.
- **Multilevel interventions are needed**, involving government, private sector, and civil society actors.

6. Conclusion

The science education crisis among out-of-school children in Nigeria is a **multidimensional issue** with implications for poverty reduction, gender equity, and national development. Constructivist pedagogy provides a **learner-centered solution** adaptable to non-formal environments, while human capital theory highlights the **long-term returns of educational investment**. A coordinated response, leveraging local context and international best practices, is essential to reverse the current exclusion of millions of Nigerian children from science education.

7. Recommendations

1. **Policy Implementation and Funding**
 - Strengthen the enforcement of inclusive education policies.
 - Increase public investment in informal science education initiatives.
2. **Teacher Training**
 - Upskill educators in constructivist science teaching methods.
 - Incentivize science teaching in marginalized and rural communities.
3. **Community-Based Science Learning**
 - Deploy mobile laboratories and local learning hubs.
 - Use indigenous knowledge to contextualize science content.
4. **Public-Private Partnerships**
 - Partner with NGOs and edtech companies to deliver blended learning.
 - Leverage CSR from technology and energy firms for science education programs.

8. Future Research Directions

- **Empirical studies** assessing the impact of community-based science programs on OOSC learning outcomes.
- **Gender-focused interventions** exploring strategies to enhance science participation among out-of-school girls.
- **Technology integration** research to determine the feasibility of mobile and app-based science curricula in rural Nigeria.
- **Cost-benefit analysis** of government investment in non-formal STEM education.

References

Becker, G. S. (1964). *Human Capital*. University of Chicago Press.

UNESCO. (2022). *Global Education Monitoring Report*.

World Bank. (2019). *Learning to Realize Education's Promise*.

Okebukola, P. (2020). *STEM Education in Nigeria: Challenges and Prospects*.

Ahmed, F. M., Ajemba, H. E., & Ogunode, N. J. (2021). Science education in primary school education in Nigeria: Problems and the way forward. *“International Journal of Discoveries and Innovations in Applied Sciences”*, 1(5), 13–18. <https://doi.org/10.47631/ijdias.v1i5.275>

Okonkwo, E., Okwuchukwu, A. S., & Oranika-Umeasiegbu, L. C. (2022). Out-of-school children and human capital development in Nigeria: Issues and prospects. *“ResearchGate”*. <https://www.researchgate.net/publication/365184040>

Okonkwo, O. A., Uzonwanne, M. C., & Florence, E. N. (2022). Impact of educational sector on human capital development in Nigeria. *“Asian Journal of Economics, Business and Accounting”*, 22(21), 42–52. <https://doi.org/10.9734/ajeba/2022/v22i2130757>

Ogunode, N. J., Adanna, C. M., & Ayoko, V. O. (2021). Out of school children in Nigeria: Causes, implications and way forward. *“International Journal on Integrated Education”*, 5(12), 156–161. <https://doi.org/10.31149/ijie.v5i12.3757>

Oyekan, K., Ayorinde, A., & Adenuga, O. (2023). The problem of out-of-school children in Nigeria. *“RISE Programme”*. <https://riseprogramme.org/publications/problem-out-school-children-nigeria.html>