Black Swans & Bayesian Networks

Stefan Conrady | stefan.conrady@bayesia.us | +1 888-386-8383 Webinar on July 19, 2019

"Black Swan"

According to Taleb:

"What we call here a Black Swan (and capitalize it) is an event with the following three attributes.

First, it is an outlier, as it lies outside the realm of regular expectations, because nothing in the past can convincingly point to its possibility.

Second, it carries an extreme 'impact'.

Third, in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the fact, making it explainable and predictable."

"Black Swan"

DECIMVS IVNIVS IVVENALIS SATVRA VI

'Nullane de tantis gregibus tibi digna videtur?' sit formosa decens dives fecunda, vetustos porticibus disponat avos, intactior omni crinibus effusis bellum dirimente Sabina, rara avis in terris nigroque simillima cycno: quis feret uxorem cui constant omnia? malo, malo Venusinam quam te, Cornelia, mater Gracchorum, si cum magnis virtutibus adfers grande supercilium et numeras in dote triumphos, tolle tuum, precor, Hannibalem victumque Syphacem in castris et cum tota Carthagine migra.

"Do you say no worthy wife is to be found among all these crowds?" Well, let her be handsome, charming, rich and fertile; let her have ancient ancestors ranged about her halls; let her be more chaste than the disheveled Sabine maidens who stopped the war—*a prodigy as rare upon the earth as a black* swan! yet who could endure a wife that possessed all perfections? I would rather have a Venusian wench for my wife than you, O Cornelia, mother of the Gracchi, if, with all your virtues, you bring me a haughty brow, and reckon up Triumphs as part of your marriage portion. Away with your Hannibal, I beseech you! Away with Syphax overpowered in his camp! Take yourself off, Carthage and all!

Translated by G. G. Ramsay

Today's Agenda

General Research Question

- How to manage risks related to never-seenbefore events?
- How to represent common and rare events jointly?

Specific Research Question

 How to find the optimal composition of a "pureplay" portfolio of maritime stocks, considering common and extreme events?

Today's Agenda (cont'd)

Analysis & Optimization Workflow with BayesiaLab

- Collect historical data from maritime shipping companies.
- Machine-learn Bayesian network to approximate the joint probability distribution of the underlying data.
- Select stocks and optimize portfolio given historical volatility.
- Hypothesize about potential risks and elicit assessments.

- Augment learned network with expert judgments.
- Optimize portfolio given common and hypothetical extreme events.

BAYESIALAB

A desktop software for:

- encoding
- learning
- editing
- performing inference
- analyzing
- simulating
- optimizing
- with Bayesian networks.

Slides, networks, and video will be available

1 *	2 *	3 *	4 *	5	6	T	8 *	9	10 *	11 *	12 *	13 *	14	15 ★	16 *	17 *
>90% 18	19 *	-1% 20 *	21 *	Incentives	23 *	24 *	25 *	26 ★	27	28 ★	29 *	30 *	31 ★	32 *	33 *	34 *
35 *	36	37	== ≥ 38 *	39 *	Now what? 40 *	41 *	42 *	13	<u> </u>	45	46 *	47 ★	48 *	1 49 ★	50 *	1 ○ 51 ★
52 *	53 *	1 54 ★	<u>1</u> 55 ★	56 ★	57 *	58 *	59 *	60 *	61 *	62 *	63 *	64 *	65	66 *	67 *	68
69	70	71 *	72 *	73 *	74	75 ★	76 ★	77 *	78 *	79	80 ★	81 *	82 *	83 *	84 *	85 *
86	<u>文</u> 豪 87	88	89 *	90 *	91 *	92	93 *	94 *	95	96	97	98	99	100	101	102 *
1 03 ★	104 *	105	106 ★	107 ★	108 *	109	2 110 ★	receive Providenc	112 *	113 *	114 *	115	116 *	117 *	118 *	119 *
120 *	121 *	122 *	123 *	124 *	125 *	126 *	127 *	128 *	<u>+</u> → <u>+</u> → 129 ★	130 *	131 *	132 *	133 *	134 *	135 *	136 *
137 *	138 *	139 *	140 *	141 *	142 *	143	144	 145 ★	● 146 ★	147 *	148	149 *	150	151 *	152 *	153 *

PORTFOLIO SELECTION*

HARRY MARKOWITZ The Rand Corporation

THE PROCESS OF SELECTING a portfolio may be divided into two stages. The first stage starts with observation and experience and ends with beliefs about the future performances of available securities. The second stage starts with the relevant beliefs about future performances and ends with the choice of portfolio. This paper is concerned with the second stage. We first consider the rule that the investor does (or should) maximize discounted expected, or anticipated, returns. This rule is reThis presumption, that the law of large numbers applies to a portfolio of securities, cannot be accepted. The returns from securities are too intercorrelated. Diversification cannot eliminate all variance.

The portfolio with maximum expected return is not necessarily the one with minimum variance. There is a rate at which the investor can gain expected return by taking on variance, or reduce variance by giving up expected return.

We saw that the expected returns or anticipated returns rule is inadequate. Let us now consider the expected returns—variance of returns (E-V) rule. It will be necessary to first present a few elementary concepts and results of mathematical statistics. We will then show some implications of the E-V rule. After this we will discuss its plausi-

Modern Portfolio Theory

What is Modern Portfolio Theory?

- Modern Portfolio Theory (MPT) is a theory on how investors can construct portfolios to maximize expected return based on a given level of market risk.
- According to the theory, it's possible to construct an "efficient frontier" of optimal portfolios offering the maximum possible expected return for a given level of risk.

Source of Models

Bayesian Networks

Case Study

"Pure-Play Maritime Portfolio"

Case Study Background

WTO Global Trade Forecast (2016-2030, Annualized)

- Worldwide: 5%
- China: 9%
- India: 9%
- ASEAN: 7%
- Sub-Saharan Africa: 7%
- ME & North Africa: 6%

Case Study

Industry Sectors Under Consideration

- Water Transportation & Deep-Sea Foreign Transportation of Freight
 - Ardmore Shipping Corp
 - Brookfield Infrastructure Partners LP
 - Capital Product Part
 - Carnival Corp
 - Carnival Plc ADR
 - Costamare Inc
 - Dht Holdings
 - Diana Containerships Inc
 - Diana Shipping Inc
 - Dorian Lpg Ltd
 - Dryships Inc
 - Dynagas Lng Partners LP
 - Eagle Bulk Ship New
 - Euronav NV
 - Frontline Ltd
 - Gaslog Ltd
 - Gaslog Partners LP

- Genco Shipping & Trading Ltd
- Globus Maritime Limi
- Golar Lng Ltd
- Golar Lng Partners
- Golden Ocean Gp
- Grindrod Shipping Holdings Ltd
- Hoegh Lng Partners LP
- International Seaways Inc
- Kirby Corp
- Knot Offshore Partners LP
- Matson Inc
- Navigator Holdings
- Navios Maritime Acquisition Corp
- Navios Maritime Containers L.P.
- Navios Maritime Holdings Inc
- Navios Maritime Partners LP
- Nordic American Tanker Shipping Ltd

- Norwegian Cruise Ord
- Overseas Shipholding Group Inc
- Royal Caribbean Cruises Ltd
- Safe Bulkers Inc
- Scorpio Bulkers Inc
- Scorpio Tankers Inc
- Seacor Smit Inc
- Seaspan Corp
- Ship Finance International
- Star Bulk Carriers
- Stealthgas Inc
- Teekay Lng Partners LP
- Teekay Offshore Partners LP
- Teekay Shipping Corp
- Teekay Tankers Ltd
- Tidewater Inc
- Tsakos Energy Navigation Ltd

Case Study

"Normal Conditions"

23

Historical Data

	A	В	С	D	E	F	G	н	1	J	К	L	M	N	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z	AA	AB	P
1	DateTime	ASC	BIP	CCL	СКН	CMRE	CPLP	CUK	DCIX	DHT	DLNG	DRYS	DSX	EGLE	EURN	FRO	GLBS	GLNG	GLOP	GLOG	GMLP	GNK	GOGL	HMLP	INSW	KEX	KNOP	LPG MA	Ŀ
2	2019-01-14T09:40	-0.78741	0	-0.09805	-0.45945	0.199001	-0.1542	-0.07871	2.134942	0.709292	0.180037	0.651468	-0.88627	3.003037	0.400642	0.49942	-0.01393	0.714289	0.498528	0.44832	0.688923	1.496862	0.630554	0.503811	0.551809	-0.04466	-0.05616	0 0.5	Ł
3	2019-01-14T09:50	-0.79365	0	0.332975	-0.15791	0.198606	-0.27687	0.275211	-1.06698	0	0.285277	0.810022	0.886269	-1.19757	0.531704	0.364299	2.631188	0.399557	0.276516	0.19861	-0.14723	1.249306	0.312999	0.501285	1.006479	0.297354	-0.3151	0.950879 0.6	l
4	2019-01-14T10:00	-0.09965	-0.05478	0.214865	0.93689	0.200275	0	0.156924	0.550451	0	0.284465	0.141604	-0.58997	0	0.132485	-0.18198	-1.50921	-0.57765	-0.05637	0	-0.01637	-0.79321	0	-0.47027	0.028608	0	-0.05637	0-0	6
5	2019-01-14T10:10	-0.09975	-0.08223	0.155976	0.318511	-0.39888	0.860303	0.21537	-0.0518	-0.11705	0.503727	-1.27683	0.295421	0.19861	0.13231	0.181984	0	0	-0.77548	-0.14892	0.163599	-0.57045	0	-0.29816	0.171478	0.222437	0	0.157604 -0	l
6	2019-01-14T10:20	-0.6006	-0.02742	0.21407	0.317499	0	0	0.175867	0	-0.59469	0.248304	-1.30984	-0.88889	-0.19861	-0.39746	0.181653	2.985296	0	0.498811	-0.29851	-0.53268	0.114351	-0.15717	0.118126	-0.20009	0.000148	-0.21451	0	
7	2019-01-14T10:30	0.800004	0.027424	0.174808	-0.48888	-0.40048	0	0.234009	-1.4614	0	-0.2483	-0.1668	0.297177	0	0.132661	0.181324	0	0.222569	-0.16411	0.248818	-0.31273	-0.11435	0.625631	-0.3548	-0.20049	0.516954	0.541029	-0.63191 0.:	l
8	2019-01-14T10:40	0	0.109619	-0.07765	-0.81191	-0.1998	-0.21759	0	0.419728	-0.23838	0.245694	-0.4971	-0.10391	-0.39841	0.132485	-0.18132	0	0.177699	-0.02266	-0.34852	-0.07421	-0.80414	0.156192	0.118406	0	-0.30994	-0.14061	0.316456 0.2	l
9	2019-01-14T10:50	-0.1994	0.054765	0	0	-0.20229	-0.64272	-0.11694	-0.52494	0	0.245092	0.497101	0.103912	-0.1998	-0.26515	-0.18165	-0.84581	0.265958	0.130205	0.249066	0.386943	-0.34662	0.465549	0	-0.02867	-0.13313	-0.12954	0.157853 -0	l
10	2019-01-14T11:00	-0.1998	0.218759	0.232784	-0.09268	0.402088	-0.43294	0.330965	-3.65548	0.120489	-0.24248	0	0	0	0.132661	0	1.112836	0.221092	0.169578	0	-0.23858	0	-0.46555	-0.53706	0.057339	0.088771	0.050709	-0.31596 0.2	1
11	2019-01-14T11:10	-1.00503	-0.08198	-0.27163	-0.10514	-1.41128	-0.86502	-0.23351	0	0	-1.50181	-0.82988	-1.04401	-0.80322	0	-0.3935	-1.04545	-0.75372	-0.72554	-0.34887	-0.93509	-0.58038	0	0	-0.53165	-0.48714	-0.2651	-0.63492 -0	1
12	2019-01-14T11:20	-0.40486	-0.10941	0	-0.02476	-0.20476	0.651086	-0.07796	1.635209	-0.35944	-0.50477	-0.6689	-0.15004	-0.60668	-0.13266	0.211517	0.778423	-0.35667	-0.50188	-0.32504	-0.46667	-0.11648	-0.31263	-0.42042	-0.18747	-0.25504	-0.64593	-0.47885 -0	l
13	2019-01-14T11:30	0	-0.05475	0.077685	0	0.204756	-0.22089	-0.0195	0.972698	0.359438	1.004368	0.668899	0.150038	1,609693	0.397457	0.181984	-0.08025	0.534522	0.393735	0.175153	0.450038	0.116482	0.312629	0.244937	0.345822	0.193496	0.011368	0 0.6	L
14	2019-01-14T11:40	0.404859	-0.16443	0.213323	0.123716	0.404058	0	0.253189	1.047573	0.11789	-0.15569	1.159914	-0.01199	0.597017	0	-0.18198	3.303149	0.133185	-0.11397	0.1998	0.563849	1.15742	0	-0.03137	0.459243	0.08918	-0.01137	0.319489 0.4	į.
15	2019-01-14T11:50	0	-0.13723	-0.1745	0	-0.20182	0	-0.2142	-0.52771	-0.47733	-0.17181	0.209007	-0.36954	-0.19861	-0.13231	-0.54795	-1.63136	-0.13319	-0.1141	-0.1998	-0.23179	-0.34582	0.319512	-0.03138	-0.25806	0.103942	0.18741	-0.15962 -0	1
16	2019-01-14T12:00	0	0.054915	0.019404	-0.12372	0	0	0.019491	-1.60003	0	-0.1721	-1.03614	-0.37091	-0.59821	0	0.182983	2.080831	0.177541	0.199584	-0.08003	0.074562	-0.23121	0	0.119186	0.143451	-0.29727	0.136078	0.478089 0.	l
17	2019-01-14T12:10	0.403226	-0.05491	-0.0194	0.666258	0	0	0	-0.90733	0.359438	0	0	0.301659	0.1998	0.264445	0	-1.24225	0.044336	1.025824	0.727929	0.314206	0.577036	0.146037	0.181642	0.229095	0.534443	0.322444	0.475814 0.1	į.
18	2019-01-14T12:20	0.201005	0.1098	0.116369	0	0.405339	0	0.155794	0.832032	0.238092	0	0.165975	0	0.597017	0.131961	0.182648	-0.05221	1.014342	0.332123	0.198511	0.469465	0.34463	0.076859	0.237515	0.171478	0.310444	0.372062	0.0.4	l
19	2019-01-14T12:30	0.400802	0.219238	-0.01939		-0.40534	0.220894	-0.05839	-1.22342	0.11761	1,253506	0.1657	0	-0.39761	0	0	1,436114	0.262927	0.162844	-0.34765	-0.78367	0	-0.38803	0.236952	0.171184	0.250608	0	0.237061 -0	1
20	2019-01-14T12:40	0	0.054735	-0.05818		0	0	-0.03895	-3.09759	0.119917	-0.25155	0.330579	-0.30166	0	0.250247	0	0.118322	-0.04377	-0.24718	0.198807	-0.23215	-0.22962	0.311174	0.416421	0.11396	-0.01472	-0.42856	0.2365 -0	1
21	2019-01-14T12:50	0.09995	-0.02736	-0.11646	0	0	0.272197	-0.11694	0	0.825716	0.165148	0	0.301659	-0.3992	-0.11846	0	-1.81587	-0.26304	0.028119	-0.09935	0.38938	0	0.076859	-0.05584	-0.11396	0.095669	0	-0.1576 0.3	l
22	2019-01-14T13:00	-0.50075	0	0	-0.51578	-0.20223	0.161671	-0.03901	2.233302	0	-0.20713	-0.16515	-0.15072	0.09995	-0.13179	0	-1.38919	-0.13178	-0.41133	-0.79841	-0.30641	-1.03987	0.0768	-0.36058	0	-0.21354	0.535409	-0.15785 -0	l
23	2019-01-14T13:10	0.400802	-0.05475	0.310258	0.184513	0.303196	0	0.311648	-1.51677	0	-0.20756	0	-0.15094	-0.30015	0	0.364299	2.145481	0.438597	0.304431	0.698954	0.1823	0.57904	-0.15366	0.242605	0.056996	0.022112	-0.10685	-0.1581 -0	l
24	2019-01-14T13:20	0	0.109469	0.309299	0.018433	0.100862	0	0.291291	-0.60423	0	-0.75241	0.166803	0	0	0	-0.18198	-1.01842	-0.08757	0.219292	-0.14937	0.281085	-0.11554	0	0.012425	0.056964	0.272309	0	0.158103 0.0	l
25	2019-01-14T13:30	0.598207	-0.05472	-0.0193	0.018429	0	0.213006	0	0.403226	-0.23557	-0.50477	0	-0.60606	-0.2006	0	0	-0.52632	0.306145	0.106661	0.199104	-0.07433	0.230947	0.076859	-0.37344	0.056931	0.014698	-0.42856	0.157853 0.1	ł
26	2019-01-14T13:40	0	-0.02737	-0.25128	-0.12293	0	0.006448	-0.2524	0	-0.71006	0.827547	0.16323	0.15186	0.999009	0	0.181984	0.279293	0.305211	0.16818	-0.14929	0.15685	0	0	0.236672	-0.1139	0.044082	0.214508	0 -0	1
27	2019-01-14T13:50	-0.41837	0	0.096721	0.307031	-0.20182	0.148182	0.07773	0.044703	0	0	0.328948	-0.15186	-0.59821	0	0	0.647795	-0.30521	-0.16818	-0.09965	0.074212	-0.11541	-0.03842	-0.2242	-0.17109	-0.19116	-0.21451	-0.47431 -0	1
28	2019-01-14T14:00	0.418369	-0.05476	-0.30984	-0.15831	-0.10107	-0.15463	-0.27232	-0.0447	-0.23781	-0.32013	0.231259	0	-0.2002	-0.13196	-0.18198	0.643625	0	-0.05051	-0.09975	-0.15673	0	-0.03844	-0.2497	0.11409	-0.08835	0	-0.1586 -0	1
29	2019-01-14T14:10	-0.99901	-0.0822	-0.33026	-0.07495	-0.10117	0.218988	-0.31213	0	1.066944	0	-0.23126	0.30349	0.798407	0.131961	-0.18232	0	-0.13109	-0.27544	0.099751	-0.31421	-0.34702	-0.31117	-0.06252	-0.02851	0.132499	0.039549	0.316957 -0	1
30	2019-01-14T14:20	0	-0.02742	-0.13631	0.049152	0	-0.65193	-0.07819	-0.51552	-0.11907	-0.00265	0	0	-0.19901	-0.2641	-0.36563	0	-0.04373	-0.05631	0	0.082781	0	0.078671	0	-0.1998	-0.10304	-0.25452	0.315956 0.0	l
31	2019-01-14T14:30	0.100351	-0.16465	-0.05847	-0.06144	0	-0.43483	-0.09782	0.74999	0.119069	0.362391	0.164069	0	-0.3992	0	0	0.340976	-0.17513	0	0.049838	0	-0.11594	-0.07867	-0.0876	0	0.014726	-0.05098	-0.31596 0.1	
32	2019-01-14T14:40	0	0,19207	0.077958	0.257811	0	0.434826	0.078263	0.755475	0	0.069946	-0.82305	0.302572	-0.10005	0.264096	0	0.339818	0.087604	0.33175	0.049813	0	0	0.155708	-0.21306	0.085678	-0.11787	0.050981	0.315956 -0	1
33	2019-01-14T14:50	-0.30136	-0.10971	0.01948	0.29383	-0.20476	0.432943	0	-1.50546	0.116502	0.069897	0.120588	-0.15117	-0.10015	-0.13196	0.182983	0.609546	-0.04379	-0.11233	0.149291	0.157096	-0.23229	-0.15571	0.062712	0	-0.04424	-0.05098	0.157604 -0	1
34	2019-01-14T15:00	0	0.027439	-0.11694	-0.20804	-0.40865	-0.43294	-0.11742	0	0	0.250175	-0.45171	0.302115	0	-0.13214	0.364964	-0.7722	-0.13149	-0.16311	0.049714	0.15685	0	0.108549	-0.07526	0.142633	0.132655	0.480458	-0.12606 -0	1
35	2019-01-14T15:10	-0.60545	-0.13727	-0.05852	-0.25759	0	0	-0.09795	0	0	0	0	-0.15094	0	0	-0.30465	-0.25873	-0.2635	-0.28185	-0.29866	-0.09903	0.232288	-0.02988	-0.07532	-0.17118	-0.19167	-0.15801	-0.3475 -0	1
36	2019-01-14T15:20	-0.66007	0.082384	0	-0.23363	-0.10189	0	0.058783	0.112296	0	-0.25017	0	0	-0.2006	-0.13231	-0.06031	-1.85387	0.087912	-0.10731	0	0.016513	-0.11608	0	-0.27035	-0.05713	-0.10336	-0.10737	-0.47581 0	
37	2019-01-14T15:30	-0.56194	0.054885	0	0.209064	0.510546	0	0.078324	-1.24225	0	0	0	0.150943	0.600602	0.13231	-0.18298	0.81219	-0.08791	0.107311	0.199203	-0.07433	-0.11621	0	-0.05668	0	-0.08868	0.107366	0.0.0	ſ
38	2019-01-14T15:40	-1.02988	-0.13727	-0.05855	-0.46792	-0.20306	-0.43483	-0.01958	0	-0.23557	0	-0.16598	0.301205	0.199402	-0.13231	-0.36697	-1.05264	-0.35242	-0.38459	-0.24907	0.0413	-0.34945	-0.07867	-0.06301	-0.17158	-0.30358	-0.10737	-0.31847 -0	l
39	2019-01-14T15:50	-0.83161	-0.02748	-0.09767	0	-0.40948	0	-0.09793	0.068159	0.235571	0.250175	0	-0.15049	0	-0.13249	0.366973	0	-0.35367	0.028329	0.099701	0.033028	0	0	0.031511	-0.05726	-0.03709	0.050872	0.477328 -0	1
40	2019-01-15T09-30	-0.62827	0.054945	0.312195	0.492491	0.104121	0.441301	0.410678	-1.21103	0.471899	0.971047	-1.00168	-0.90772	-0.1994	1.041882	5.348868	0.937392	0.044277	0.305447	-0.0997	-0.69589	-2.60062	-2.83045	0.421292	0.28596	-0.4014	-0.48149	0.256813 -0	l
-+0	2015 01 15105.50		0.004040	0.012100	0.492491	0.104121	0.441501	0.410070	1.21105	0.471000	0.071047	1.00100	0.50772	0.1334	1.0-11002	51540000	0.537352	0.0-44277	0.000447	0.0007	0.05505	2.00002	2.03040	0.421252	0.20000	0.4014	0.40145	0.250015 -0	Ľ
	ship	ping_compa	inies_2_m	(+)														4											

Data Import

	nniuon								
Separators			Encoding		C	ptions			
Tab [Semicolon	∠ Comma				🗹 Title Line			
Space E	Other		UTF-8	`	/	End of Line Cl	haracter		
							ntical Consecuti	ve separators	
lissing Values -		F	Filtered Values –			as a Unique C	One		
N/R NR	^	Add	VF FV	^	Add	Consider Diffe	erent Consecuti	ve Separators	
NC	✓ R	emove	N/A	✓ Re	move		0.0		
ampling			earning/Test				es O Remove	e 🕜 as String	Delimiters
De	fine Samole		Define L	arning/Test Set		Simple Quote:	s 🕜 Remove	🔵 as String [Delimiters
	nine sample		Denne Lo	arring/reaciser		Transpose			
Data									
DateTime	ASC	BIP	CCL	СКН	CMRE	CPLP	СИК	DCIX	DHT
2019-01-14	-0.7874056	0	-0.0980488	-0.4594487	0.19900091		-0.0787091	2.13494180	0.70929221
2019-01-14	-0.7936549	0	0.33297455	-0.1579133	0.19860568	0.2768747	0.27521149	-1.0669806	0
					0.00007467				
2019-01-14	-0.0996512	-0.0547795	0.21486481	0.93689048	0.2002/40/	. 0	0.15692431	0.55045057	0
2019-01-14	-0.0996512	-0.0547795	0.21486481	0.93689048	-0.3988803	. 0 0.86030320	0.15692431	0.55045057	0 -0.1170531
2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024	-0.0547795 -0.0822255 -0.0274235	0.21486481 0.15597585 0.21407033	0.93689048 0.31851062 0.31749935	-0.3988803 0	. 0 . 0.86030320 0	0.15692431 0.21536963 0.17586716	0.55045057 -0.0518000 0	0 -0.1170531 -0.5946935
2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426	-0.0547795 -0.0822255 -0.0274235 0.02742355	0.21486481 0.15597585 0.21407033 0.17480824	0.31851062 0.31749935 -0.4888789	-0.3988803 0 -0.4004777	. 0 0.86030320 0	0.15692431 0.21536963 0.17586716 0.23400946	0.55045057 -0.0518000 0 -1.4614038	0 -0.1170531 -0.5946935 0
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426	-0.0547795 -0.0822255 -0.0274235 0.02742355 0.10961908	0.21486481 0.15597585 0.21407033 0.17480824 -0.0776548	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124	-0.3988803 0 -0.4004777 -0.1998002	. 0 0.86030320 0 0 -0.2175861	0.15692431 0.21536963 0.17586716 0.23400946 0	0.55045057 -0.0518000 0 -1.4614038 0.41972779	0 -0.1170531 -0.5946935 0 -0.2383791
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426 0 -0.1994018	-0.0547795 -0.0822255 -0.0274235 0.02742355 0.10961908 0.05476451	0.21486481 0.15597585 0.21407033 0.17480824 -0.0776548	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124	-0.3988803 0 -0.4004777 -0.1998002 -0.2022877	. 0 0.86030320 0 . 0 0.2175861 -0.6427170	0.15692431 0.21536963 0.17586716 0.23400946 0 -0.1169362	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355	0 -0.1170531 -0.5946935 0 -0.2383791 0
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426 0 -0.1994018 -0.1998002	-0.0547795 -0.0822255 -0.0274235 0.10961908 0.05476451 0.21875863	0.21486481 0.15597585 0.21407033 0.17480824 -0.0776548 0 0.23278381	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124 0 -0.0926812	-0.3988803 0 -0.4004777 -0.1998002 -0.2022877 0.40208806	. 0 0.86030320 0 . 0 -0.2175861 -0.6427170 -0.4329430	0.15692431 0.21536963 0.17586716 0.23400946 0 -0.1169362 0.33096496	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355 -3.6554796	0 -0.1170531 -0.5946935 0 -0.2383791 0 0.12048934
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426 0 -0.1994018 -0.1998002 -1.0050335	-0.0547795 -0.0822255 -0.0274235 0.10961908 0.05476451 0.21875863 -0.0819784	0.21486481 0.15597585 0.21407033 0.17480824 -0.0776548 0 0.23278381 -0.2716338	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124 0 -0.0926812 -0.1051427	-0.3988803 0 -0.4004777 -0.1998002 -0.2022877 0.40208806 -1.4112757	. 0 0.86030320 0 . 0 0.2175861 0.6427170 0.4329430 -0.8650179	0.15692431 0.21536963 0.17586716 0.23400946 0 -0.1169362 0.33096496 -0.2335085	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355 -3.6554796 0	0 -0.1170531 -0.5946935 0 -0.2383791 0 0.12048934 0
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426 0 -0.1994018 -0.1998002 -1.0050335 -0.4048588	-0.0547795 -0.0822255 -0.0274235 0.10961908 0.05476451 0.21875863 -0.0819784 -0.1094092	0.21486481 0.15597585 0.21407033 0.17480824 -0.0776548 0 0.23278381 -0.2716338 0	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124 0 -0.0926812 -0.1051427 -0.0247555	-0.3988803 0 -0.4004777 -0.1998002 -0.2022877 0.40208806 -1.4112757 -0.2047558	. 0 0.86030320 0 -0.2175861 -0.6427170 -0.4329430 -0.8550179 0.65108635	0.15692431 0.21536963 0.17586716 0.23400946 0 -0.1169362 0.33096496 -0.2335085 -0.0779575	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355 -3.6554796 0 1.63520888	0 -0.1170531. -0.5946935. 0 -0.2383791. 0 0.12048934 0 -0.3594380.
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0997506 -0.6006024 0.80000426 0 -0.1994018 -0.1998002 -1.0050335 -0.4048588 0	-0.0547795 -0.0822255 -0.02742355 0.10961908 0.05476451 0.21875863 -0.0819784 -0.1094092 -0.0547495	0.21486481 0.15597585 0.21407033 0.17480824 0.0776548 0 0.23278381 0.2716338 0 0.07768499	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124 0 -0.0926812 -0.1051427 -0.0247555 0	-0.3988803 0 -0.4004777 -0.1998002 -0.2022877 0.40208806 -1.4112757 -0.2047558 0.20475589	. 0 0.86030320 0 -0.2175861 -0.6427170 -0.4329430 -0.8550179 0.65108635 -0.2208940	0.15692431 0.21536963 0.17586716 0.23400946 0.33096496 -0.2335085 -0.0779575 -0.0194988	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355 -3.6554796 0 1.63520888 0.97269753	0 -0.1170531 -0.5946935 0 -0.2383791 0 0.12048934 0 -0.3594380 0.3594380
2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.0996512 -0.0097506 -0.6006024 0.80000426 0 -0.1994018 -1.0998002 -1.0050335 -0.4048588 0	-0.0547795 -0.0822255 0.02742355 0.10961908 0.05476451 0.21875863 -0.0819784 -0.1094092 -0.0547495	0.21486481 0.15597585 0.21407033 0.17480824 0.0776548 0 0.23278381 -0.2716338 0 0.07768499	0.93689048 0.31851062 0.31749935 -0.4888789 -0.8119124 0 -0.0926812 -0.1051427 -0.0247555 0	-0.3928803 0 -0.4004777 -0.1998002 -0.2022877 0.40208806 -1.4112757 0.2047558 0.20475589	. 0 0.86030320 0 -0.2175861 -0.6427170 -0.4329430 -0.8650179 0.65108635 -0.2208940	0.15692431 0.21536963 0.17586716 0.23400946 0 -0.1169362 -0.33096496 -0.2335085 -0.0779575 -0.0194988	0.55045057 -0.0518000 0 -1.4614038 0.41972779 -0.5249355 -3.6554796 0 1.63520888 0.97269753	0 -0.1170531 -0.5946935 0 -0.2383791 0 0.12048934 0 -0.3594380 0.35943808

Variable Type Definition

Туре	Multiple	Typing		Information —					
Oliscrete		Set All Discre	te	Number of Ro	ws 4852	100.00%			
Continuous		Set All Continu	IOUS	Discrete	0	0.00%			
				Continuous	51	98.08%			
 Weight 	Set	Missing Values 1	Threshold	Others	1	1.92%			
O Learning/Te	est			Unused	0	0.00%			
O Daniel Harry	800			Missing Values	8412	3 33%			
Row Identi	nen			Tilkened Velues	0412	0.000/			
O Unused				mitered values	, 0	0.00%			
Data									
Data	1		1	1	1	1	1		1
DateTime	ASC	BIP	CCL	СКН	CMRE	CPLP	CUK	DCIX	DHT
2019-01-14	-0.7874056	0	-0.0980488	-0.4594487	0.19900091	-0.1542020	-0.0787091	2.13494180	0.7092922
2019-01-14	-0.7936549	0	0.33297455	-0.1579133	0.19860568	-0.2768747	0.27521149	-1.0669806	0
2019-01-14	-0.0996512	-0.0547795	0.21486481	0.93689048	0.20027467	0	0.15692431	0.55045057	0
2019-01-14	-0.0997506	-0.0822255	0.15597585	0.31851062	-0.3988803	0.86030320	0.21536963	-0.0518000	-0.1170531
2019-01-14	-0.6006024	-0.0274235	0.21407033	0.31749935	0	0	0.17586716	0	-0.5946935
2019-01-14	0.80000426	0.02742355	0.17480824	-0.4888789	-0.4004777	0	0.23400946	-1.4614038	0
2019-01-14	0	0.10961908	-0.0776548	-0.8119124	-0.1998002	-0.2175861	0	0.41972779	-0.2383791
2019-01-14	-0.1994018	0.05476451	0	0	-0.2022877	-0.6427170	-0.1169362	-0.5249355	0
2019-01-14	-0.1998002	0.21875863	0.23278381	-0.0926812	0.40208806	-0.4329430	0.33096496	-3.6554796	0.12048934
2019-01-14	-1.0050335	-0.0819784	-0.2716338	-0.1051427	-1.4112757	-0.8650179	-0.2335085	0	0
2019-01-14	-0.4048588	-0.1094092	0	-0.0247555	-0.2047558	0.65108635	-0.0779575	1.63520888	-0.3594380
2019-01-14	0	-0.0547495	0.07768499	0	0.20475589	-0.2208940	-0.0194988	0.97269753	0.35943808
2019-01-14	0.40485885	-0.1644286	0.21332307	0.12371645	0.40405795	0	0.25318934	1.04757320	0.11788978
2019-01-14	0	-0.1372307	-0.1745031	0	-0.2018249	U	-0.2141953	-0.5277057	-0.4/73278
<									>

Missing Values Processing

	d Filtering								
Missing Value Pr	ocessing				Information -				
Filter					Number of Ro	ws 4852	100.00%		
OR					Discrete	0	0.00%		
	5				Continuous	51	98.08%		
Replace by	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		~		Others	1	1.92%		
🔿 Valu	Je				Unused	0	0.00%		
O Mea	an/Modal				Missing Values	s 8412	3.33%		
) Infer					Filtered Value	s O	0.00%		
🔵 Sta	tic Imputation				Select Values				
Opr	namic Imputation	1						Delete Sele	ections
Structure	uctural EM				AND			Display Sel	ections
O Ent	ropy-Based Dyn	iamic Imputation	1]				
Data	ASC 💌	BIP 💌	CCL 🤋 🔽	CKH 🤋 🕶	CMRE 💌	CPLP 🤋 🔽	CUK 🤋 🔽	DCIX 🤋 🕶	DHT 💌
DateTime			0.0000400	-0.4594487	0.19900091	-0.1542020	-0.0787091	. 2.13494180	0.7092922
DateTime 2019-01-14	-0.7874056	0	-0.0980488						
DateTime 2019-01-14 2019-01-14 2019-01-14	-0.7874056 -0.7936549 -0.0996512	0 0 -0.0547795	0.33297455	-0.1579133 0.93689048	0.19860568	-0.2768747 0	0.27521149.	1.0669806 0.55045057	0
DateTime 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.7874056 -0.7936549 -0.0996512 -0.0997506	0 0 -0.0547795 -0.0822255	0.33297455 0.21486481 0.15597585	-0.1579133 0.93689048 0.31851062	0.19860568 0.20027467 -0.3988803	-0.2768747 0 0.86030320	0.27521149. 0.15692431. 0.21536963.	1.0669806 0.55045057 0.0518000	0 0 -0.1170531
DateTime 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.7874056 -0.7936549 -0.0996512 -0.0997506 -0.6006024	0 0 -0.0547795 -0.0822255 -0.0274235	0.33297455 0.21486481 0.15597585 0.21407033	-0.1579133 0.93689048 0.31851062 0.31749935	0.19860568 0.20027467 -0.3988803 0	-0.2768747 0 0.86030320 0	0.27521149. 0.15692431. 0.21536963. 0.17586716.	1.0669806 0.55045057 0.0518000 0	0 0 -0.1170531 -0.5946935
DateTime 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14	-0.7874056 -0.7936549 -0.0996512 -0.0997506 -0.6006024	0 0 -0.0547795 -0.0822255 -0.0274235	0.33297455 0.21486481 0.15597585 0.21407033	-0.1579133 0.93689048 0.31851062 0.31749935	0.19860568 0.20027467 -0.3988803 0	-0.2768747 0 0.86030320 0	0.27521149. 0.15692431. 0.21536963. 0.17586716.	1.0669806 0.55045057 0.0518000 0	0 0 -0.1170531 -0.5946935 ≻
DateTime 2019-01-14 2019-01-14 2019-01-14 2019-01-14 2019-01-14 < ↓	-0.7874056 -0.7936549 -0.0996512 -0.0997506 -0.6006024	0 0 -0.0547795 -0.0822255 -0.0274235	0.33297455 0.21486481 0.15597585 0.21407033	-0.1579133 0.93689048 0.31851062 0.31749935	0.19860568 0.20027467 -0.3988803 0 Select All D	-0.2768747 0 0.86030320 0 Discrete	0.27521149. 0.15692431. 0.21536963. 0.17586716.	1.0669806 0.55045057 0.0518000 0	0 0 -0.1170531 -0.5946935 >

Discretization

	ia nggi ogation								
Multiple Discre	tization								
Туре	R2-GenOpt		\sim						
Intervals		5	5 🜩						
Log Tran	sformation								
Isolate Z	eros								
Create a	Class for Each Ty	pe of Discretiza	tion						
	Log d Discosting								
	Load Discretiza	uons							
Data									
DateTime	ASC	BIP	CCL	СКН	CMRE	CPLP	CUK	DCIX	DHT
	-0.7874056	0	-0.0980488	-0.4594487	0.19900091	-0.1542020	-0.0787091	2.13494180	0.7092922
	-0.7936549	0	0.33297455	-0.1579133	0.19860568	-0.2768747	0.27521149	-1.0669806	0
	-0.0996512	-0.0547795	0.21486481	0.93689048	0.20027467	0	0.15692431	0.55045057	0
	-0.0997506	-0.0822255	0.15597585	0.31851062	-0.3988803	0.86030320	0.21536963	-0.0518000	-0.117053
	-0.6006024	-0.0274235	0.21407033	0.31749935	0	0	0.17586716	0	-0.594693
	0.80000426	0.02742355	0.17480824	-0.4888789	-0.4004777	0	0.23400946	-1.4614038	0
	0	0.10961908	-0.0776548	-0.8119124	-0.1998002	-0.2175861	0	0.41972779	-0.238379
	-0.1994018	0.05476451	0	0	-0.2022877	-0.6427170	-0.1169362	-0.5249355	0
	-0.1998002	0.21875863	0.23278381	-0.0926812	0.40208806	-0.4329430	0.33096496	-3.6554/96	0.1204893
	-1.0030335	-0.0819784	-0.2718338	-0.1051427	-0.2047552	0.65109625	-0.2333085	1 62520999	0 250420
	0	-0.0547405	0.07769400	0.024/555	0.20475590	0.00108035	-0.0104099	0.07260752	0.2504290
<			1111/164444		11 /114 / 5504	-11 //103440	1111199900	11 97769755	>
			Colored 4						
			Select A	All Continuous	Select All	Jiscrete			

Associated graph 9.xbl *

Associated ...

– 🗗 🗙

0:0 🜄

Unconnected Network

0	0	0	0		0	C
ASC	DHT	GLNG	KEX	NMM	SFL	тос
0	~	0			0	C
BIP	DLNG	GLOP	KNOP	NNA	SSW	GAS
0	C		C	0	0	C
CCL	DRYS	GLOG	LPG	NVGS	STNG	GRI
C			0		0	
СКН	DSX	GMLP	МАТХ	OSG	TDW	
0		3	0	0	0	
CMRE	EGLE	GNK	NAT	RCL	TGP	
~	(?	C ?		0	0	
CPLP	EURN	GOGL	NCLH	SALT	тк	
0	C	C	C	C	0	
CUK	FRO	HMLP	NM	SB	TNK	
			C	C	0	
DCIX	GLBS	INSW	NMCI	SBLK	TNP	

🔀 BayesiaLab - Associated graph 9.xbl

Associated ...

0:0

0

Generate Da	ta						
	-	Aur 2					As a solution of Langer Niews
export Dictio		Node >	Node Renaming				Associating Long Nam
		State >	Long Names		0	2	
vidence Sce	enario File	~	Comments	1	0		
Jata Set	Sati	GLN	Classes		SFL	100	
vincular Data	Jet		Constants				
Charts			Colors	3	0		
BIP	DLNG	GLC	Images		ssw	GASS	
			Costs				
2	2	-	Temporal Indices		0	2	
			Cocal Structural Coe	micients	0		
CCL	DRYS	GLC	Positions	15 S	SING	GRIM	
2	(3	(7)	(3	3	(3		
CKH	DSX	GMLP	матх	OSG	TDW		
	(7)	(7)		0	(3)		
MRE	EGLE	GNK	NAT	RCL	TGP		
		-			-		
9	C	C	0	\bigcirc	\bigcirc		
PLP	EURN	GOGL	NCLH	SALT	тк		
2	(?)	(?)	(2)	(?)	0		
СИК	FRO	HMLP	NM	SB	TNK		
2	(7)	R	2	(2)	~?		

Associated graph 9.xbl *

Associated ...

ѷҍӏӏ҂ҡ҂ӥҨ҇҇ҨҨҨӼ҂҂Ӡ҄ѸѺӣ҈Ѻ╱҄҄҄҄҄҄҄҄҄҄ѺѴ҄҄҄҄҄҄҄҄҄Ѻ҄҄҂҄Ҩ҄҄҄҄ӼҨ҄҄҄҄҄҄҄҄҄҄҄҄ѺѺ๏ѻѺҴ҄҄҄҄҄҄҄҄҄҄҄҄҄҄҄҄҄҄ѽҥ҄ӸҌ҄ӸҌ҄Ѩ҅҅ҏѷ

- # ×

51:0 🧤

– 🗗 🗙

Associating Long Names

	Edit		-		
A	Rename	GLNG	KEX	NMM	SFL
	Сору				
-	Delete	-	1	17	-
	Exclude	CL OD	KIIOD		COM.
D	Set as Target Node	GLOP	KNOP	NNA	55W
	Monitor	7 3	<u>7</u> 3	7 3	
C	Charts	GLOG	LPG	NVGS	STNG
	Imputation				
-	Select >	73	6	23	<u>~</u> 3
CI	Connect >	GMLP	MATX	OSG	TDW
	Alignment >				
	Properties >	Color	>		Barrow Martin
	0	Image	>	Kendering	Properties
MRE	EGLE	Classes	>	Show Nam	e
		Temporal In	dex	Show Colo	r
-	-	Cost		Show Imag	je
	C	Virtual Num	ber of States	Crop Imag	e to Node Shape
PLP	EURN	Reference St	ate	Name Len	gth
		Filtered State	ė	Show Long	j Name
	250	Local Struct	ural Coefficient	Name Colo	pr .
		Long Name		Name For	t.
сик	FRO	Comment	>	Name Out	line
		Prior Weight		Name Alig	nment
-7	12	Discount		Name's Po	sition
	GLBS	Node Appea	irance >	Default	
UCIA	JLU3	Developing D	succession of the	References.	

🚱 BayesiaLab - Associated graph 9.xbl

Associated

- 0 X

🔀 BayesiaLab - Associated graph 9.xbl

🕜 BayesiaLab - Associated graph 9.xbl

Network Data Edit. View Learning Inference Tools Window Help

0:0 😨 📑

Ð

Assigning Classes

^

6

😰 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Tools Window Help

Associated

ѷӻӷӷӽ҂҂҄҄ѿӫѻҞӼ҄Ӽ҄ҲҀҲҀ҄ѺҨҩ҄Ҩ҄Ҳҩ҄҂ҨҨ҄ҝѻ҄ҝ҄Ҩ҄Ҳҩ҄҂ҨҨҝҫҝ

-

o x

% 🖬 🌘 Associated ... 🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Tools Window Help

泥 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

泥 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Tools Window Help

Associated graph 9.xbl *

Maximum Weight Spanning Tree

- @ ×

- F 🗙

0:0 😯 📑 🤤

🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Tools Window Help

/ 11 원 역 역 🔀 🖉 🖈 신 진 💿 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🗮 🖶 🗒 🗮 🗮 🗮 🗮 👘 🌾

Associated

-

o ×

泥 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

o x

-

🔀 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

🛃 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xb1

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

o ×

😢 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

😰 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9.xbl

Associated ...

Carriers

Gaslog Ltd

Network Data

% 🖬 🌖 Optimizatio....

Associated

What is the optimum portfolio?

Seaspan Corp

Ships

0:0 주 😯 📑 🦉

🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-10 Black Swans\Demo 3\Associated graph 9b.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

ø × -

BayesiaLab.com

Risk and Return

- Expected Return:
 - $E(R_P) = w_A E(R_A) + w_B E(R_B)$
- Expected Return Variance:

•
$$\sigma_P^2 = w_A^2 \sigma_A^2 + w_B^2 \sigma_B^2 + 2w_A w_B \sigma_A \sigma_B \rho_{AB}$$

- Gaussian assumptions of return distributions in MPT may not hold.
- Variance is a symmetric measure, but risk is not symmetric, i.e., only "downside" is risk; "upside" is opportunity.
- MPT provides a statistical, not a structural model.

- Gaussian assumptions of return distributions in MPT may not hold.
- Variance is a symmetric measure, but risk is not symmetric, i.e., only "downside" is risk; "upside" is opportunity.
- MPT provides a statistical, not a structural model.

Countermeasures

- Gaussian assumptions of return distributions in MPT may not hold.
- Variance is a symmetric measure, but risk is not symmetric, i.e., only "downside" is risk; "upside" is opportunity.
- MPT provides a statistical, not a structural model.

Countermeasures

Encode Assumptions

🛃 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Associated graph 9 rdb 2.xbl

Network Data Edit View Learning Inference Tools Window Help

Associated graph 9 rdb 2.xbl *

Sotimizatio...

Associated

Unsupervised Learning

The network approximates the joint probability distribution of the historical data.

Ð

- 🗗 🗙

😰 BayesiaLab - C./Users/StefanConrady.AzureAD/OneDrive - Bayesia USA/Presentations/2019-07-19 Black Swans/Demo 3/Associated graph 3 rdb 2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

- 0 ×

New graph 3.xbl*

s = 0

New graph ...

Network Data Edit View Learning Inference Tools Window Help

월 🖿 🛢 🖉 💾 🖶 🌾 🔶 🎢 🔍 Q Q 🔀 🖉 🛠 ٽ 간 💿 🖉 💽 🖉 🚫 🖉 🔍 🖉 🔍 🖉 🔍 🖉 🖉 🖄

Objective: "mixing" the optimal portfolio — maximizing the expected return given a certain level of risk.

-

o x

- # ×

🔀 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbl

P BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbl

Network Data Edit View Learning Inference Tools Window Help

😢 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbl

😰 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbI

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

🕰 🕰 🗛 😹 💘 🛤 🦨 🗸 🥆 🤜 🧧

Optimization2.xbl

Optimizatio...

😰 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

[0.9972874] [0.9989265] [1.9125873] [1.0000464] [1.0348168]

[0.9972874][0.9989256][1.0050947][1.0000464][1.0031002] (0.9972874][0.9972874][1.0050947]⁺⁺⁺[0.9717063]⁺⁺⁺[1.0331002] (0.9717083][0.9972874][0.9980265][0.9717083][1.0331002] (0.9717083][0.9972874][0.9980265][0.9717083][1.0331002] (0.9717063][0.9972874][0.9980265][0.9717083][0.9717083] (0.9717083][0.9972874][0.971803][0.9717083][0.9717083]] (0.9717083][0.9772874][0.971803][0.9717083][0.971083][

Solution Progress

– 0 ×

🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization2.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

Ё♥\$ \\ ■ [] ダ★★#]] @ @ Q Q X Z X U U ● \$ @ Z @ \$ \\ 🕰 🕰 🗛 😽 💐 🗮 🖊 🔽 🖊 🧝 📔

Optimization2.xbl*

Optimizatio...

THAT WAS JUST BUSINESS AS USUAL ...

Hypothetical Event

NAVY BLOCKADE OF MALACCA STRAIT

Hypothetical Event

NUCLEAR SUBMARINE DISASTER IN MALACCA STRAIT

Impact on Stock Market

Black Swan Scenarios

- Any such risks are obviously not reflected in the Bayesian network that we used to • optimize our investment portfolio.
- So, how can we account for such risks?

BayesiaLab.com
Modern Portfolio Theory

- Gaussian assumptions of return distributions in MPT may not hold.
- Variance is a symmetric measure, but risk is not symmetric, i.e., only "downside" is risk; "upside" is opportunity.
- MPT provides a statistical, not a structural model.

Countermeasures

Black Swan Scenarios

Potential Impact on Stock Portfolio

 We need to modify the joint probability distribution so that it reflects our estimates of the extreme event.

Black Swan Scenarios

Potential Impact on Stock Portfolio

😢 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Extreme Eventxbl

Network Data Edit View Learning Inference Tools Window Help

Extreme Event.xbl *

% 🖬 🌖

Optimizatio...

Extreme Ev...

Associated

Encoding Assumptions

Ø

- # ×

🔀 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xbl

Network Data Edit View Learning Inference Tools Window Help

1 ◘ ▬ 등 ▬ ♧ ⊱ ■ □ ҂ ♠ ≁ № Q Q Q X ↗ ४ ↺ 간 O ♂ ◙ ♥ X Q ▶ 0 ● ० ◇ □ ∿ <mark>=</mark> ● 1

0:0 4 3

– 🗗 🗙

😰 BayesiaLab - C:\Users\StefanConrady:AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xbl

Network Data Edit View Learning Inference Tools Window Help

Ð X

- # X

🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

#₩■☆ ๖■『☆☆☆♪!! QQQX2*びひ ● ♬ ●↗⊠ ♥ X X X * 1 =< 🖳 🖳 🗛 🐼 💐 🗮 🖊 🖊 🧝 📔

쭏 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

😰 BayesiaLab - C.\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xb1

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help @ \ = ☆ ⊱ ■ 『 ダ ♠ ↗ !!! ④ Q Q X Z Z び ひ ● ♂ ● ↗ ⊠ ♥ X X & N ● ● ● ◇ □ S = ● * 🕰 🕰 🗛 😽 💐 🗮 🖊 🗸 🗸 🗖 🧧 - # X Optimization4.xbl* Joint Probability: 10.23% Genetic Optimization of Functions × Genetic Search Method Function Weight (GNK) 2 Target Portfolio Score O Hard Evidence treme Event Numerical Evidence Proportional to: lue: 0.005 Value 1 Function Mean ODomain OProgression Margins Edit Constraints Resources False Distribution Estimation Method: Target Resources True Weight 10 🜲 Optimization 25 🜲 Intermediate Points Options Allow No Evidence Restrict Search to the Selected Nodes Direct Effects Output 10 🜲 () Store the n Best Solutions in Evidence Scenarios O Store All the Solutions in Evidence Scenarios O Replace Evidence Scenarios GNK Append to Evidence Scenarios Save All Generated Solutions Browse Genetic Settings Number of Kingdoms 5 🗘 GNK[1] Population Size 10 \$ Crossover Rate (%) 10 2 Gene Mutation Rate (%) 25 🜲 50 🗘 Selection Rate (%) 31 🗘 Fixed Seed: Genetic Stop Criterion PR3 10 0 Consecutive Number of Generations Without Improvement For Each Kingdom Across all Kingdoms OK Cancel Expected Return (PR)

Ð \times

4:0 4 3

Optimizatio... Extreme Ev...

% 🖬 🌒

😢 BayesiaLab - C:\Users\StefanConrady:AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xb1

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

■ 🥙 🗎 🖶 🖇 🔦 → 👖 🔍 Q Q Q 🔀 🧭 🖉 🔘 🖉 🔘 🖊 🔤 🖗 📉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🖉 🕰 🕰 🗛 🖌 💐 🗮 🗮 🖊 💙 🤜 📑 - F X Optimization4.xbl * Joint Probability: 10.23% Log-Loss: 3.29 Optimization Total Value: 1.032 Mean Value: 0.094 Weight (EURN) Weight (SSW) Weight (GLQP) Report Extreme Event Value: 0.005 99.50% False 0.50% True w (GNK) P Optimization Report of Portfolio Score (Optimization4) × _ **Analysis Context** Extreme Event | {False: 10.19%, True: 100.00%} Initial State Value Resources 0.0167 1.0000 GNK Search Method: Numerical Evidence Proportional to: Mean - Fix Probabilities (Binary) Synthesis Nodes Weight (EURN) Weight (GLOP) Weight (GNK) Weight (SSW) **Initial State** 0.2500 0.2500 0.2500 0.250 0.0385 (-0.2115) 0.4615 (0.2115) 0.0769 (-0.173 **Best Solution** 0.4231 (0.1731) GNK[1] EU Min 0.1154 (-0.1346) 0.0385 (-0.2115) 0.0769 (-0.1731) 0.0000 (-0.250 0.4231 (0.1731) 0.4231 (0.1731) 0.7692 (0.5192) 0.7308 (0.4808 Max **Best Solutions** Weight (EURN) Weight (GLOP) Weight (GNK) Weight (SSW) Score Value Resources 0.4615 0.0769 0.9716 0.0284 (0.0117 0.423 0.038 1.0000 (0.0000 0.423 0.076 0.4615 0.0385 0.9717 0.0283 (0.0116) 1.0000 (0.0000) 0.1154 0.7692 0.0385 0.9719 0.0281 (0.0114) 1.0000 (-0.0000) PR3 0.307 0.0769 0.5769 0.0385 0.9729 0.0271 (0.0104) 1.0000 (-0.0000) 0.1154 0.0769 0.0769 0.7308 0.9749 0.0251 (0.0084) 1.0000 (-0.0000) 0.3077 0.4231 0.2692 0.0000 1.0069 -0.0069 (-0.0236) 1.0000 (0.0000) Close Save As... Print Std. Dev. Expected Return (PR) 4:0 4 🕄 % E (

Ð ×

Optimizatio... Extreme Ev... 🕼 BayesiaLab - C:\Users\StefanConrady.AzureAD\OneDrive - Bayesia USA\Presentations\2019-07-19 Black Swans\Demo 3\Optimization4.xbl

Network Data Edit View Learning Inference Analysis Monitor Tools Window Help

- 눈토 🖹 🖉 속 / // 의 의 의 것 🖉 🖌 🕑 한 🕘 / 전 🖉 🖉 🖉 의 의 이 수 🗆 옷 📒 🗢 🍵 出言改 🕰 🕰 🗛 😹 💘 🛤 🦧 🗸 🗸 🤜 📑

Optimization4.xbl*

Extreme Ev....

Optimizatio...

Thank You!

stefan.conrady@bayesia.us

BayesianNetwork

linkedin.com/in/stefanconrady

facebook.com/bayesia