The Small Data Problem: Using **Bayesian Networks in Endangered Species Policy Development** Steve Wilson, Ph.D.

Standpoint Decision Support Inc., Canada

Supervised and Unsupervised Learning

Forecasting Artificial Classification Algorithmic Intelligence Source Model Human Parametric Learning Theory Human Intelligence Description Prediction Association Correlation

Scoring

Supervised and Unsupervised Learning

Forecasting Artificial Classification Algorithmic Intelligence Source Model Parametric Human Learning Theory Human Intelligence Description Prediction Association Correlation

Scoring

Supervised and Unsupervised Learning

Forecasting Artificial Classification Algorithmic Intelligence Source Model Parametric Human Learning Theory Human Intelligence Description Prediction Association Correlation

Scoring

Traditional Statistical Workflow (Observational Data)

reducing dimensions (multicollinearity, missing data, low observation: dimension ratio)

AIC or other informationtheoretic scoring

Traditional Statistical Workflow (Observational Data)

reducing dimensions (multicollinearity, missing data, low observation: dimension ratio)

"... I see no greater impediment to scientific progress than the prevailing practice of focusing all our mathematical resources on probabilistic and statistical inferences while leaving causal considerations to the mercy of intuition and good judgment."

Pearl (1999)

Problems with the Traditional Workflow

- No causal analysis!
- The analytically weakest results drive policy
- Inferences are data-limited

"Small Data" Problems

- Many dimensions
- Few observations
- RCT experiments impractical

- "We only had 24 data points, so we couldn't consider any other variates in our analysis"
- "That might be and important factor but collecting data on it is infeasible"
- But look at the r-squared!

"Small Data" Problems

- Jurisdictions
- Sports teams
- Medical trials
- Endangered species
- Climate change

Payroll and Income Tax by Country (Tax Wedge on Average Income) 2013 Employee Employer Income Tax Belgium Germany Austria Hungary France Italy Finland Sweden Czech Republic Slovenia Greece Portugal Slovak Republic Spain Estonia Turkev Denmark Norway Luxembourg Netherlands Poland Iceland Japan United Kingdom **United States** Canada Australia Ireland Switzerland Korea Israel Mexico New Zealand Chile 0% 15% 30% 45% 60%

Med Sci Sports Exerc. 1993 Jan;25(1):127-31.

Effect of time zone and game time changes on team performance: National Football League.

Jehue R, Street D, Huizenga R.

Abstract

To determine the effect of time zone and game time changes on NFL team performance, win-loss records from 1978-1987 were analyzed. Twenty-seven NFL teams were grouped by time zone and possible anti-jet lag adjustments. Among all intra-time zone rivals, home teams won 56.6%, away teams won 43.8%, for a home vs away winning percentage change of -12.8% (P < 0.001). West teams (N = 5) displayed fluctuations in home vs away team performance in association with trans-meridian travel. The change in winning percentage was found to be 0.0% vs West teams, -14.1% vs Central teams (N = 8) (P < 0.05), -16.3% vs East (N = 14) (P < 0.05) for West teams (N = 4) flying about 42 h pregame and +2.3% vs East for the one West team advancing practices 3-4 h to match East coast game time in addition to 48 h pregame flights. For night games within the same time zone, home vs away team winning percentage changed -23.8% (P < 0.01). West teams displayed uniformly high home winning percentages (75.0% and 68.4%) when playing Central and East teams, respectively, with little or no fall in away winning percentages (67.7% and 68.8%). For day games, a 3-h phase advance may decrease West coast team performance. In one small subset, anti-jet lag adjustments appeared to eliminate the expected decrement in performance. For night games, West coast teams, whether home or away, appear to be at a distinct advantage over East and Central teams.

What's the Alternative Workflow?

- Conduct a formal causal analysis
- Address the small data problem

halysis blem

- Build and parameterize a model based on expert elicitation
- Experts want models to reflect available data, but this can lead to biases
- "Small experts" can be as big a problem to manage as "small data"
- Empiricism trumps expertise

The Data-Free Option

What's our Workflow?

What's our Workflow?

Update parameters with available data

expert

knowledge

Review for internal consistency

Estimate effects

Specify Priors

				Node Editor				
	No	ode Selection:	Predation_	_pressure_ind	ex_core ᅌ	Rename		
States	Probability Di	istribution	Properties	Classes	Values	State Names	Reference Sta	te
		Probabilisti	ic Determi	nistic Tree	Equation	Updating		
Equation	n Type: 💿 Dete	erministic	Probabilisti	c				
Predatio	n pressure inde	$ex_{core?} =$		-				
rieualio	m_pressure_mut	$ex_core =$						
Please va	lidate formula!							
Samples:	1	1000 Smooth	ning:	0	V Fixed Se	ed:	31 🗘 Valid	late
Samples:]	1000 Smooth	ning:	0	V Fixed Se	ed:	31 🗘 Valid	late
Samples:	te Proba Distribu	LOOO Smooth tions	ning: Predation_pr	0 ressure_index_o	Fixed Se	ed:	31 🗘 Valid	late
Samples : Discre	te Proba Distribu nuous Proba Distri	L000 Smooth tions ibutions	ning: Predation_pr Predator_der Linear_densi	0 ressure_index_o nsity_km2_rang ty_km2_core	✓ Fixed Se core ge	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia	te Proba Distribu nuous Proba Distri I Functions	LOOO Smooth tions ibutions	ning: Predation_pr Predator_den Linear_densi Effective_hab	0 ressure_index_o nsity_km2_rang ty_km2_core pitat_km2_core	✓ Fixed Se core ge	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia Arithm	te Proba Distribu nuous Proba Distri I Functions nethic Functions	LOOO Smooth tions ibutions	ning: Predation_pr Predator_den Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	✓ Fixed Se core ge	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia Arithm Trans	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Function	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_den Linear_densi Effective_hab	0 ressure_index_o nsity_km2_rang ty_km2_core pitat_km2_core	✓ Fixed Se core ge	ed:	31 🗘 Valid	late
Samples : Discre Contin Specia Arithm Trans Conve	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Function rsion Functions	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_de Linear_densi Effective_hab	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	✓ Fixed Secore	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia Arithm Trans Conve Trigor	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Functions rsion Functions	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_den Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	✓ Fixed Se core ge	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia Arithm Transf Conve Trigor Relatio	te Proba Distribute nuous Proba Distribute al Functions nethic Functions formation Functions rsion Functions nometric Functions	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_den Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	Fixed Se	ed:	31 🗘 Valid	late
Samples: Discre Contin Specia Arithm Transi Conve Trigor Relatio Boolea	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Functions rsion Functions nometric Functions onal Operators an Operators	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_der Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core oitat_km2_core	Fixed Se	ed:	31 🗘 Valid	late
Samples : Discre Contin Specia Arithm Transf Conve Trigor Relatio Boolea	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Functions nometric Functions nometric Functions an Operators	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_den Linear_densi Effective_hab	0 ressure_index_o nsity_km2_rang ty_km2_core oitat_km2_core	Fixed Secore	ed:	31 🗘 Valid	late
Samples : Discre Contin Specia Arithm Transf Conve Trigor Relatio Boolea	te Proba Distribu nuous Proba Distri al Functions nethic Functions formation Functions nometric Functions nometric Functions an Operators	1000 Smooth tions ibutions ns	ning: Predation_pr Predator_densi Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	Fixed Secore	ed:	31 🗘 Valid	late
amples: Discre Contin Specia Arithm Transf Conve Trigor Relatio Boolea	te Proba Distribution nuous Proba Distribution al Functions formation Functions formation Functions nometric Functions nometric Functions an Operators	LOOO Smooth tions ibutions ns	ning: Predation_pr Predator_densi Linear_densi Effective_hat	0 ressure_index_o nsity_km2_rang ty_km2_core bitat_km2_core	Fixed Secore	ed:	31 🗘 Valid	late

Specify Priors

Factor 1	Factor 2	Low	Moderate	High
	Low	99.000	0.500	0.500
Low	Moderate	49.500	49.500	1.000
	High	49.500	1.000	49.500
	Low	49.500	49.500	1.000
Moderate	Moderate	0.500	99.000	0.500
	High	1.000	49.500	49.500
	Low	49.500	1.000	49.500
High	Moderate	1.000	49.500	49.500
	High	0.500	0.500	99.000

- Use 3-4 states to capture non-linearities
- Assign plausible intervals to states

Capture assumed direction of the relationship & the relative importance of parents

Update Parameters

Inference>Parameter Updating

dence Source	
irce vidence	
Scenario File	
ent Prior Weights	
Prior Weights to	20
Cancel	ОК

Internal Consistency

Prior Model

Parameter-updated Model

Estimate Effects

Population_trend_lambda

Population_trend_lambda

>1 (15.7069%)

 $P(Population_trend_lambda = >1 | ...)$

Simulator

Conclusions

- Evolving workflow aimed at replacing the traditional statistical approach with a causal paradigm
- Blend expert knowledge and data to address the "small data" problem

