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Pearl (1999)

“… I see no greater impediment to scientific progress than the 
prevailing practice of focusing all our mathematical resources on 

probabilistic and statistical inferences while leaving causal 
considerations to the mercy of intuition and good judgment.”



Problems with the Traditional Workflow

• No causal analysis!


• The analytically weakest 
results drive policy


• Inferences are data-limited



“Small Data” Problems

• Many dimensions


• Few observations


• RCT experiments 
impractical



 

25 
 

 
Figure 8. Graph showing 50, 70 and 90 % prediction bands for the best univariate regression 
model (M3) of caribou recruitment and landscape disturbance.  
 
The disturbance–recruitment relationship from the meta-analysis was used to 
parameterize a model of habitat-based population growth (see Appendix 7.8) based on the 
percent total disturbance within each boreal caribou range, and this indicator was used for 
the integrated risk assessment (Section 2.4.6.1) and to derive the categories of risk for the 
disturbance thresholds (Section 2.4.6.2).  

• “We only had 24 data 
points, so we couldn’t 
consider any other 
variates in our analysis”


• “That might be and 
important factor but 
collecting data on it is 
infeasible”


• But look at the r-squared!



“Small Data” Problems

• Jurisdictions


• Sports teams


• Medical trials


• Endangered species


• Climate change





What’s the Alternative Workflow?

• Conduct a formal causal analysis


• Address the small data problem



The Data-Free Option

• Build and parameterize a model 
based on expert elicitation 

• Experts want models to reflect 
available data, but this can lead to 
biases


• “Small experts” can be as big a 
problem to manage as “small data”


• Empiricism trumps expertise



What’s our Workflow?

Figure 10.14 
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What’s our 
Workflow?

Draft the casual 
DAG
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identification

Specify with 
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What is the expected 
effect of climate change 
on future population 
growth of caribou?



Developing the Causal Model



Specify Priors



Specify Priors

• Use 3-4 states to capture non-linearities 


• Capture assumed direction of the relationship & the relative importance of parents


• Assign plausible intervals to states



Update Parameters
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Inference>Parameter Updating



Internal Consistency
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Estimate Effects



Effects of Management
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Conclusions
• Evolving workflow aimed at replacing the traditional statistical approach 

with a causal paradigm


• Blend expert knowledge and data to address the “small data” problem


