The Small Data Problem: Using

Bayesian Networks in Endangered
Species Policy Development

Steve Wilson, Ph.D.
Standpoint Decision Support Inc., Canada




Machine

Learning
T —

Artificial

Intelligence
T

Human

Learning
-

Human

Intelligence
T —

Scoring

Forecasting

Classification

Operations

' Algorithmic '

' Parametric '

Theory

Risk Analysis

Decision Analysis

"Reasoning"

Simulation

Causation

Conrady & Jouffe (2015)

Description Prediction Explanation Optimization

Association
Correlation




Supervised and
Unsupervised Learning

Scoring

Forecasting

Artificial
Intelligence

Algorithmic Classification

Human Parametric Economics _ _
Learning Risk Analysis
| — I Social Sciences
Human Decision Analysis
Intelligence Epidemiology
- —

"Reasoning"

Description Prediction Simulation

Association
Correlation

Explanation Optimization

Causation

Conrady & Jouffe (2015)



Supervised and
Unsupervised Learning

Scoring

Forecasting

Artificial
Intelligence

Classification

Algorithmic

Human Parametric
Learning

Human
Intelligence

Description Prediction

Association
Correlation

Economics

Social Sciences

Epidemiology

Explanatio

Operations

Risk Analysis

Decision Analvsi

Expert Models
(BEKEE)

Conrady & Jouffe (2015)



Supervised and
Unsupervised Learning

Scoring

Forecasting

Artificial
Intelligence

Classification

Algorithmic

Traditional Statistics _—— — —

Operations

Human Parametric Economics

Learning

Risk Analysis

Social Sciences

I Epidemiology

o .
Human Decision Ana

Intelligence

Expert Models
(BEKEE)

Description Prediction

Association
Correlation

Explanatio

Conrady & Jouffe (2015)



Collect/acquire

dataset

S univariate analyses
STl - transforming to meet parametric assumptions
anaIyS|s «  reducing dimensions (multicollinearity, missing data, low observation:dimension ratio)

|dentify
“candidate”
models

Conduct
regression
analysis

|dentify
supported
models

AIC or other information-
theoretic scoring

Traditional Statistical
Workflow
(Observational Data)



Collect/acquire

dataset

e { i univariate analyses
SR . transforming to meet parametric assumptions
anaIyS|s «  reducing dimensions (multicollinearity, missing data, low observation:dimension ratio)

|dentify
“‘candidate”
models

Conduct
regression
analysis

|dentify
supported
models

AIC or other information-
theoretic scoring

Traditional Statistical
WO rkﬂOW Mbaket stuff up
(Observational Data)

Implement
made-up stuff as

policy



“... | see no greater impediment to scientific progress than the
prevailing practice of focusing all our mathematical resources on
probabilistic and statistical inferences while leaving causal
considerations to the mercy of intuition and good judgment.”

Pear! (1999)



Problems with the Traditional Workflow

* No causal analysis!

* The analytically weakest
results drive policy

e Inferences are data-limited




“Small Data” Problems
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 “We only had 24 data
points, so we couldn’t
consider any other
variates in our analysis”

@ GSA North

@ Pipmuacan

 “That might be and
important factor but
collecting dataon it is
iInfeasible”

: : : ) , , , : ,  But look at the r-squared!
5 15 25 35 45 55 65 75 85
Total Disturbance (500m buffer, no reservoirs)



“Small Data
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Med Sci Sports Exerc. 1993 Jan;25(1):127-31.

Effect of time zone and game time changes on team performance: National Football League.

Jehue R, Street D, Huizenga R.

Abstract
To determine the effect of time zone and game time changes on NFL team performance, win-loss records from 1978-1987 were

analyzed. Twenty-seven NFL teams were grouped by time zone and possible anti-jet lag adjustments. Among all intra-time zone rivals,
home teams won 56.6%, away teams won 43.8%, for a home vs away winning percentage change of -12.8% (P < 0.001). West teams
(N = 5) displayed fluctuations in home vs away team performance in association with trans-meridian travel. The change in winning
percentage was found to be 0.0% vs West teams, -14.1% vs Central teams (N = 8) (P < 0.05), -16.3% vs East (N = 14) (P < 0.05) for
West teams (N = 4) flying about 42 h pregame and +2.3% vs East for the one West team advancing practices 3-4 h to match East coast
game time in addition to 48 h pregame flights. For night games within the same time zone, home vs away team winning percentage
changed -23.8% (P < 0.01). West teams displayed uniformly high home winning percentages (75.0% and 68.4%) when playing Central
and East teams, respectively, with little or no fall in away winning percentages (67.7% and 68.8%). For day games, a 3-h phase advance
may decrease West coast team performance. In one small subset, anti-jet lag adjustments appeared to eliminate the expected
decrement in performance. For night games, West coast teams, whether home or away, appear to be at a distinct advantage over East
and Central teams.
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The Data-Free Option

Build and parameterize a model
based on expert elicitation

Experts want models to reflect
available data, but this can lead to
biases

“*Small experts” can be as big a — ~

1 39 e — o e N B
problem to manage as “small data e EE 'y
Empiricism trumps expertise — k-



What’s our Workflow?
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What is the expected
effect of climate change
on future population
growth of caribou?




Developing the Causal Model
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Specify Priors

® O Node Editor
Node Selection: @ Predation_pressure_index_core E Rename
States Properties Classes Values State Names Reference State »

Probabilistic  Deterministic  Tree [R=GliEiilolly Updating

Equation Type: @ Deterministic Probabilistic

?Predation_pressure_index_core? =

Please validate formula!

~

Samples: 1000 Smoothing: 0 2 Fixed Seed: 31 ° Validate

Discrete Proba Distributions Predation_pressure_index_core
Predator_density_km2_range

) ) Linear_density_km2_core
Special Functions Effective_habitat_km2 _core
Arithmethic Functions

Transformation Functions
Conversion Functions
Trigonometric Functions

Continuous Proba Distributions

Relational Operators
Boolean Operators

OK Cancel



Specify Priors

Factor 1 Factor 2 Low Moderate High
Low 99.000 0.500 0.500
Low Moderate 49.500 49.500 1.000
High 49.500 1.000 49.500
Low 49.500 49.500 1.000
Moderate Moderate 0.500 99.000 0.500
High 1.000 49.500 49.500
Low 49.500 1.000 49.500
High Moderate 1.000 49.500 49.500
High 0.500 0.500 99.000

 Use 3-4 states to capture non-linearities
 Capture assumed direction of the relationship & the relative importance of parents

e Assign plausible intervals to states
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Inference>Parameter Updating

O Evidence Source

Evidence Source
Manual Evidence

) Evidence Scenario File

Options
Use Current Prior Weights

© Initialize Prior Weights to 20

Cancel
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Simulator

O ® (< ] @ @ simulator.bayesialab.com & ['I] ] e

Climate Change Effects on Population Trends of Caribou

CEVEHEMIIVIEICI g Climate change effects on caribe 0o <= ©)
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