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Algorithm	

Bayesian	
network	

HeurisEc	search	for	the	best	
Bayesian	network	to	fit	the	data,	
under	a	given	score.	



Biological	Systems	

•  Neuronal	systems	

•  GeneEc	systems	

•  Ecological	systems	
– Rocky	shore	ecosystem	&	ecological	resilience	–	
Edwin	Hui	



Neuronal	InformaEon	Flow	Networks	

acEon	potenEal	
neurotransmiLers	

receptors	

acEon	potenEal	

excitaEon	&	inhibiEon	

Neuronal	informaEon	flow	network	



Neuronal	Networks	

•  Well-suited	to	Bayesian	networks	

•  Large	amount	of	data	(1,000s	–	10,000s+	
samples)	

•  Time	series	–	enables	dynamic	Bayesian	
networks	

•  Neurons	hypothesised	to	interact	like	a	
Bayesian	network	



use	known	anatomy	to	
biologically	validate	algorithm	
performance	

NCM	 L3	 L2	 L1	 CMM	

Validated	in	Songbird	Auditory	System	

sound	
Photo	by	Tom	Smulders	

Data	collec4on	by	Dr	Tom	Smulders,	Newcastle	
University	

Jing Yu  



Sound	SEmuli	

Photo	by	Haru	Horita	

(2)	zebra	finch	song	

(1)	white	noise	

(1)	amplitude	modulated		
	white	noise	

6	birds,	4	recording	sessions,	4	sEmuli	

20	repeEEons,	in	5	ms	Eme	bins	=	>20,000	data	points	

sEmuli	~6	seconds	long,	1/3	silence,	1/3	sound,	1/3	silence	

Data	discreEzed;	use	BDe	Score	



Consensus	network	matches	with	
known	anatomy	

consensus	

NCM	 L3	 L2	 L1	 CMM	
known	
anatomy	

NCM	 L3	 L2	 L1	 CMM	 CSt	



Consensus	network	matches	with	
known	anatomy	

consensus	

NCM	 L3	 L2	 L1	 CMM	
known	
anatomy	

NCM	 L3	 L2	 L1	 CMM	 CSt	



Consensus	network	matches	with	
known	anatomy	

consensus	

NCM	 L3	 L2	 L1	 CMM	
known	
anatomy	

NCM	 L3	 L2	 L1	 CMM	 CSt	
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(P=9.2	x	10-6,	
hypergeometric	test)	
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Noise	&	Song	Differ	

noise	
sEmuli	

song	
sEmuli	



Spike	Trains:	Trouble	for	BDe!	

•  Preponderance	of	non-spiking	bins	

•  Lack	of	seman4cs	

songbird	data	≈	normal	 spike	train	≈	Poisson	
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high	when	parent	and	child	both	
non-spiking;	rare	spiking	events	
have	liLle	influence	



Snap	Shot	Score	
•  Treat	spiking	and	non-spiking	differently	

•  Hybrid	networks	(discrete	and	conEnuous):		
–  Combine	precision	of	spike	train	with	smoothing	
convoluEon,	ac4vity	level	series	

•  Likelihood	score	for	excitatory	interacEons:	
condiEonal	probability	

P(spike|parent	acEvity)	=	
P(spike	and	parent	acEvity)	

P(parent	acEvity)	

SSS(Δt) = a, s
atst+Δtt=1

T−Δt
∑

att=1

T−Δt
∑

Πa,s

Christoph Feenders 



Spike	Train	Data	

•  ReEnal	acEvity	waves	
– Data	from	Dr	Evelyne	Sernagor,	Newcastle	
University	

– 5	sec	recordings,	mulE-unit	spike	trains	



•  Drosophila	larvae:	live	
imaging	

•  IdenEfy	ganglion	as	
regions	of	interest	

Data	from	Stefan	Pulver,		
St	Andrews	University	

forward	 backward	

Alistair Birse-Stewart-Bell, Staṡa Tumpa, Jacob Francis 



Gene	Regulatory	Networks	

protein	

protein	

mRNA	 mRNA	

combinaEons	of	
acEvators	&	inhibitors	

gene	regulatory	network	
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SimulaEon	Results	

%
	

number	data	points	

2. Increase true 
positives 

1. Decrease 
false positives 

Challenges: 



Decreasing	False	PosiEves	
•  Influence	score	

imprecision	
recall	
	

•  InterpolaEon	
imprecision	
recall	

•  Limit	parent	number	
imprecision	
recall	? 

N ≥ d p(2d −1)
Limit	on	N	to	avoid	FP	

Given	N,	choose	p	to	avoid	FP	
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Jing Yu  



Dealing	with	Low	Data	Amount	
Yeast	stress	response	(36	data	points,DBN)	

Causton	et	al.	2001	Mol	Biol	Cell	12:323-337	

BMH1	

SMP1	

RAD7	

YJL144W	 PSO2	

RAD1	

NBP2	

SVF1	
• 	Influence	score	
• 	InterpolaEon	
• 	Limit	parent	number	



Biological	Discovery	in	GeneEc	Data	
•  IdenEfying	gene/protein	networks?	

–  not	as	much	

•  IdenEfying	genes/groups	of	genes	of	interest	
–  including	other	variable	types	in	the	network	

•  Gene	selecEon	
–  differenEal	expression	
–  principal	component	analysis	
–  naïve	Bayes	
–  clustering	(of	selected	genes)	



Ovarian	Cancer	Example	
•  Treatment	sensiEve	&	resistant	cell	lines	

– OV1002	–	sensiEve	
– HOX424	–	resistant	

•  Two	treatment	regimes	
–  CarboplaEn	
–  CarboplaEn	+	paclitaxel	

•  DifferenEal	gene	expression	between	control	and	
treatment	

 Antonis 
Koussounadis 



Tumour	Growth	-	RelaEve	Tumour	Volume	

SensiEve	-	responding	 Resistant	–	not	responding	



Clustering	DifferenEally	Expressed	Genes	



Pathway	Overexpression	Analysis	



A. Vogogias, J. Kennedy, D. Archambault, V. A. Smith, H. Currant / MLCut: Exploring Multi-Level Cuts in Dendrograms for Biological Data

5.1. Coordinated views

During HC, information is extracted from the original data. How-
ever, depending on users’ decisions, some information is either fil-
tered, or it is aggregated to form more abstract entities (i.e. dissim-
ilarity levels), which are represented as intermediate nodes in the
dendrogram. If the wrong combination of distance metric/measure,
algorithm and its parameters is used, important information could
be lost and results could be even misleading. Therefore, our collab-
orators also asked to provide a representation of the original data,
in coordination with an effective representation of the dendrogram.
In this way, the users would be able to interact with the dendrogram
while seeing the effect their choices have in the original data.

In our effort to satisfy this requirement, we developed the fol-
lowing design approach. The user interface (UI) is composed of
two linked view components (Figure 6). The top view constitutes a
radial representation of the dendrogram like the one used in the first
prototype, while the bottom view is a representation of the original
data using parallel coordinates [ID91].

Figure 6: Three sub-clusters of genes (A, B and C) that exhibit
distinctive time patterns. Each sub-cluster belongs to a larger main
cluster, visually encoded using colour.

Each data record, which is is represented as a rectangle in the

dendrogram (i.e. top) view, is linked to a line in the parallel coor-
dinates (i.e. bottom) view. Data records are normalised and every
axis in the parallel coordinates is scaled to the same minimum and
maximum values, in order to enable comparisons. The user can ex-
plore main clustering assignments using the two sliders and also
interact with the branches of the dendrogram to explore the effect
of potential multi-level cuts, shown in the parallel coordinates view.
The interaction is done by hovering over the circles of intermedi-
ate branch nodes. This gives a real-time preview of the effect the
branch-cut would have in the original data. Clicking on a circle se-
lects the whole branch including its leaves. Previewing and select-
ing branches interactively can be done in any level of detail: from
the whole tree until a single leaf. This flexibility enables the explo-
ration of potential sub-clusters within the main clusters identified
using the sliders. Selected branches are highlighted with thicker
borders at the top view and with thicker lines at the bottom view as
it is shown in Figure 6.

In order to reduce the visual clutter at the bottom view, records
that do not belong to any of the selected branches are shown in light
gray. The top view supports most of the interactivity and the colour
encoding is preserved in order to enable the further exploration of
the dendrogram. Moreover, a record of particular interest could be
further highlighted by double clicking on its mapped rectangle at
the top view. Finally, each selected cluster or sub-cluster could be
exported as a comma separated values (CSV) file.

In the first prototype, possible outliers and nested clusters found
using the distinctiveness slider, were shown in black. However, this
encoding changed in the final prototype because using the same
colour was confusing when multiple “weak-edges” were found
close to each other in the dendrogram. Therefore it was decided
to retain the colour encoding that characterises the parent cluster
and only show the “weak-edges” using thick, dashed, red lines.

5.2. Evaluation

Usability testing has been done informally for this tool during and
after the development of the second software prototype. A real us-
age scenario took place in which a gene expression data set with
short time-series was explored. The data set consist of the fold
change of 800 differentially expressed genes in five time points and
it can be found in the Gene Expression Omnibus (GEO) [EDL02]
repository with accession number GSE49577 [KLHS14].

Initially, different distance measures have been used for calculat-
ing pairwise dissimilarities between time series such as: euclidean
distance, autocorrelation coefficient and dynamic time warping.
Also different agglomerative HC algorithms have been tested using
the TSclust [MV14] package in R. The combination of euclidean
distance with an average-linkage HC algorithm has been selected
as the best option for the task.

Using our tool, we managed to find three distinctive temporal
profiles of late gene expression (Figure 6). This was achieved by
interactively exploring the branches for potential sub-clusters, and
eventually by cutting the dendrogram in multiple levels. The differ-
ence in gene expression patterns occurs between the third and the
fifth parallel coordinates. Gene expression in the cluster shown in
Figure 6A first increases and then decreases, while in Figure 6C the

c� 2016 The Author(s)
Eurographics Proceedings c� 2016 The Eurographics Association.
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MLCut:	MulE-level	cuts		
for	clustering	

Thanasis	
Vogogias	



Bayesian	networks	from	clusters	

•  MLCut	to	define	clusters	

•  Get	original	data	(not	differenEal	expression)	
and	build	Bayesian		network	
– variable	for	treatment	vs	control	

•  Bayesian	networks:	probabilisEc	relaEonships,	
most	direct	influences	

Hannah	Currant	
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Independent	Clinical	Dataset	



Genes	related	to	alcoholism	in	rats	

Genes	related	to	paEent	
response	in	melanoma	 Protein	pathways	in	

ovarian	cancer	



Ecological	InteracEon	Networks	
predaEon	

compeEEon	

parasiEsm	

mutualism	

combinaEon	of	interacEons	

ecological	interacEon	network	



Peak	District	NaEonal	Park	

•  37	birds	species	and	9	
habitat	variables	
measured	in	1990	and	
2004	
–  data	from	RSPB	&	Dr	Colin	
Beale,	York	

•  Extracted	at	0.5,	1,	2,	and	
5	km2	
–  2099,	610,	176,	and	39	
data	points,	respecEvely	

•  StaEc	Bayesian	network	



Peak	District	Bird	PopulaEons	
Habitat	
•  Reveal	known	

interacEons	
	

Species	&	species-habitat	
•  Interspecific	interacEons	posiEve	
•  New	species	interacEng	
•  ID	highly	connected	species	

(e.g.,	Golden	Plover)	
	

1990	 2004	

•  CharacterisEc	spaEal	scale	for	interacEons	
	



Bayesian Networks in 
Ecology 
Edwin Hui  



Ecological resilience  



Ecological resilience 



Water 
temperature 
increase 



Rocky Shore Ecology 



Bayesian Networks 

-  Conditional dependencies translate well into ecological relationships within a 
community 



Control Fucoid removal 

AIM: Reveal dynamic bayesian network of 
post disturbance changes to community 
structure 
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Control network 

-  Fucoid vs Barnacle competitive 
interactions 

 

-  Grazing relationships between Limpet 
and Littorinid and Microalgae 

 

-  All consistent with what we would 
expect from literature 



Control VS Fucoid removal  
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Blueprints for future study? 
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