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WEll Per-and polyfluoroalkyl substances (PFAS)

PFAS are found in many consumer products

e

FIREFIGHTING FOAMS

http://www.sixclasses.org/
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NIl Forever chemicals!!!

wEPA Per- and Polyfluoroalkyl Substa~ -\ PFAS)

A clac
Fluorine %@ _arbon (C) atoms
| ' ) unded by fluorine (F)
atoms
» Water-repellent
(hydrophobic body)
» Stable C-F bond
* Some PFAS include oxygen,
hydrogen, sulfur and/or
nitrogen atoms, creating a
polar end.

Perfluorooctanoic acid (PFOA) Perfluorooctanesulfonic acid (PFOS)
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Il PFAS can reach to our drinking water!!

products containing
PFAS in landfill

Introduction

manufacturing
emissions which These sources
tain PFAS . .
4 contribute PFAS into
our drinking water.

A
wastewater
containing —
PFAS

PFAS
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Wl PFAS exposure and the health effects

Human studies suggest g@PFAS
PFAS exposure may... e

increase risk of thyrmd
dlsease

increase blood cholesterol

levels

decrease the body s
response to vaccines

decrease fertility
in women

increase risk of high blood
pressure & preeclampsia

lower infant birth
weight

in adults in children

in pregnant
women
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Information sourced from Agency for Toxic Substances and Disease Registry
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W0 1t has been detected in many site in the US
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https://www.ewg.org/

Wl And PFAS can be found in other countries too !l

h WA

https://www.miltoncaine.com
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W0 Private wells around the Chemours Chemical
Plant are contaminated with PFAS

A During 2017-2018, PFAS (including GenX), were detected in
more than 75% of 803 private water supply wells near the
Chemours facility

---------
| AT r
FEaLPE

vannah

[NC DEQ, 2017-18, Scruggs, 2019]
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Jll GenX concentrations vary widely from well to well

e 803 wells tested
* 23% > health goal
* 23% non-detect

* Map key
* Red => 140 ng/L
* Yellow = 0- 140 ng/L
* Green = non-detect

* Figure courtesy of DEQ
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Wl Objectives

d Overall: To uncover factors influencing the O

risk of PFAS contamination in water supply wells
near the Chemours plant

% Determine why some wells are contaminated and others are not.
What features of the wells, landscape, geology, weather, and
geographic location influence risks to wells?

% Build model to prioritize private wells for future testing.

% Develop user-friendly web site to help private well owners assess
risks.
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W0l Many variables may influence the PFAS
showing up in a private water well

Impervious Layer

Soil Zone 2

Intermediate Zone &

Zone

Water Level

Saturated & UnSaturated

Ground Water Y A N A N A S D) SN N oA

Image from: cleanwaterstore.com
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W We built a database of multiple factors that

might influence GenX in well water
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MBI Our curated data set imported to BayesiaLab

A matrix of
803 rows™240 columns
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Wl We used Bayesian network to cluster the
variables and find pattern in the data set
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WAl Multiple models built and tested Using
Bayesialab software

d Modeling goals:

» Predict which untested wells are at risk of having GenX above
NC health goal (140 ng/L)

» ldentify factors most influencing risk

d Model building steps (in BayesialLab)

1. “Unsupervised learning” and “variable clustering “to
discover which variables are most closely related to GenX

2. Elimination of unrelated variables

3. “Supervised learning” 1o build a predictive model

» Augmented naive Bayes algorithm often used for classification
problems

RC

=]
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Wl Area Under Receiver-Operating Characteristics
(ROC) curve used as performance metric
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Prediction Accuracy = Area Under Curve (1.00 is perfect)



Wl Accuracy tested in cross-validation

lteration 1

lteration 2

Iteration 3

lteration 4
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O Five-fold cross Validation

O Repeated 20 times

= Different random train/test split each time
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2 Hll Main variables that influencing higher risk of GenX

. GenX above health goal

J For the whole dataset KFcen

. Air deposition rate (micro g/m2-s)

&

. Average up to 1 m Cation exchange capacity of soil in cmolc per kg

s

. Distance from Chemours plant (miles)

V.o

. Average up to 0.6 m Soil pH=10 in KCL

qt
F e




28l Mutual information with the GenX as target
node
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Average up to 0.6 m Soil pH=10 in KCL
0.0145




W0l Knowing “Air Deposition Rate” provides the
most information about GenX risk

aﬁhﬁﬂcha_ﬁ'& capacity of soil in cmole per kg

GenX depositiont
from air

GenX risk [ 1 Tt N
R"'\-\.

H“& |

s
Average up to 0.6 m Soil pH=10 in KCL




Wl Distance from Chemours is second-most
important predictor

Caﬁhﬁﬂchaﬁe capacity of soil in cmole per kg

Distance
GenX risk ‘

[
™~ [
L\H"'\-\._
Average up to 0.6 m Soil pH=10 in KCL




1] Cation Exchange Capacity is third-most
important predictor

“hﬁﬂchaﬁe capacity of soil in cmole per kg |
i

CEC 2 )

\ GenX risk ‘t&

H“& |

s
Average up to 0.6 m Soil pH=10 in KCL




MRl Soil pH in KCL is forth-most important predictor

Air deposition

Average u_p ETEE&ﬁhﬁﬂcha@e capacity of soil in cmole per kg

'. Soil pH 2§
v
Average up to 0.6 m Soil pH=10 in KCL

GenX risk f&t

Results
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W0l For 25% of houses we have additional
information

v" Well depth

-~ v' Year of construction

v' Method of construction

NP AN
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[l Main variables that influencing higher risk of GenX
for the smaller @@ Genx above health goal

dataset £ cenx
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28l Mutual information with the GenX as target
node

wn @Mpacity of soil in cmolc per kg

Average up to 0.6 m Seil-pH=10 in KCL
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W0l Well depth can reduce the risk of Genx
contamination

B

GenkX abovelhealth goal

aly S

well depth ' | vl |
GenX risk l

| Average Soil cation exchange capacity up to 1.0 m (cmolc/ kg)

Welljage (yrs)

—

Distance from Chentours plant {miles)




20l Increase in Well age may cause higher risk of
Genx

Average Soil cation exchange capacity up to 1.0 m (cmolc/ kg)

t |w:=u@sy |
Well Age
GenX risk t

Distance from C




i Our ML model confirmed the source and
how it reaches to the houses
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fll Predictive risk in the area of study

10 mi

Zero Risk
Intermediate Risk <30%

No Data (Mo Water Wells)




Wl ROC curve for model 1 - whole dataset

True Positive Rate for Genx above health goal = <=140 ROC Index: 84 47%
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Wl Tornado graph shows variables with most
influence onrisk - model 1

GenX above health goal

Air
Deposition

Distance from
Chemours |

Average Cation
Exchange Capacity

Average Soil
pH in KCl

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
P (GenX above Health Goal| X)




Wl ROC curve for model 2 - 25% of data set

True Positive Rate for GenX above health goal = <=140 ROC Index: 86.76%
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Wl Tornado graph shows variables with most
influence on risk — model 2

GenX above health goal

Distance from
Chemours

Average Cation
Exchange Capacity

Air Deposition

Well Depth

Average Soil pH in KCI

Well Age I

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
P (GenX above Health Goal| X)



W0 The web simulator for model 1
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Testing Netwaork
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Wl The web simulator for model 2
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UNC Predictive Model for GenX Concentration in Private Wells

|l Testing Netwaork

CEVESERSTOITETGTM UNC PFAS Model _With Well De ~ [ B 3
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Wl Conclusion

d Bayesian network identified factors associated with the
GenX Concentration

= Proximity to Chemours Plant
= Air Deposition

= Soil pH

= Cation Exchange Capacity

d BN model can classify the private wells with above
average sensitivity (84%) and reasonable false-positive
rate.

d Adding more well permit data and more measurement
to the model can help increase ROC index.
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20l Main takeaways

d Although PFAS issue is complicated, we have tools and
datasets to build ML models which can help us
understand PFAS better.

d Bayesian network modeling has the capability to show
us the influencing variables in PFAS contaminations

d The accuracy of the ML model is reasonably good,
however more data (such as well-depth, age, and
measurements) can help it increases the accuracy.

Conclusion TUNC 44
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