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Industry Demand in Machine Learning Space

Learn to Reason
In focus, causal inferential based learning

Learn to Classify

Achieved greater success in learning to
classify in a probabilistic manner

Interactive Machine Learning

Machine learning systems that interact
with end-users

Long-life Machine Learning

Trending, learning for multiple tasks over
time transfer prior knowledge when
learning new tasks

Transfer Learning/Knowledge Elicitation
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Outline

Introduction to Knowledge Elicitation in a machine learning framework

How we are leveraging these concepts in our products and solutions

Course5 application of Knowledge Elicitation

» Transfer Learning in Bayesian Network Modeling

» Course5 Integrated Marketing Measurement & Optimization

© Course5 Intelligence




About Course5 Intelligence

We drive Digital Transformation for businesses through Analytics, Insights, and Artificial Intelligence.

Multi-faceted talent with 1200 personnel across global locations enables our clients to make the most effective
strategic and tactical moves related to customers, markets, and competition.
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OUR IMPACT

« $10bn+ impact for client organizations to
date

« Real time understanding of customers &
markets and enablement of digital business
models

360 analysis, providing deep insights and
decision-making support

» End-to-end solutions — delivering top line
and bottom line business impact



Knowledge Elicitation

ﬁi}:{:@ A concept which leverage human expertise into a machine learning process

O‘ft{i To account of aspects which are not feasible to measure and quantify into a mathematical models

Opens up new opportunities by interpreting, otherwise black box machine learning process
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Transfer learning

It is desirable to use data and knowledge from similar cases; a technique known as “transfer learning”

e C++ >Java Current ML VS Transfer Learning

Isolated, single task learning: Learning of new tasks relies on
the previous learned tasks

* Maths/Physics > Computer Science/Economics

4
Knowledge

¥

Learning
Task 2

Learning
Dataset 2
atase Task 2

Dataset 2

Learning .
Dataset 1 Task 1 Dataset 1 Learning
Task 1

which part of the knowledge can be To improve new task |dentifying ways of actually transferring
transferred from the source model to the performance/results and not degrade the knowledge across domains/tasks
new model them.
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How we are adopting knowledge elicitation and transfer learning

We are building one type of model (source domain) and transferring knowledge gained into another type of model (target

tasks) t
asks) to |

EAccount for unobserved variables (nodes) which are not feasible to be observed (instance transfer learning) }

J’V Introduce right interventions in the model to measure “true” impact of variables }

R/O\%:iki {To allow counter factual inference which otherwise not feasible J
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Applications of marketing measurement
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Consumer Purchase Journeys in Digital World
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Change in Traditional Media Consumption 2011-2018

12%
|
BT
-3%
-8%
-45%
-56%
Digital Channels Cinema TV Radio Print Newspapers Print Magazines

Published on Marketing Charts.com in June 2018
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U.S. Digital vs. Traditional annual AD Spending

-
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Current Marketing Measurement Models

r

Marketing Mix

c

c§> Useful for the strategic planning by brand,

b geo etc., budget allocation and optimal

= channel mix

- \/
™ Paid Social

Incremental Sales Uplift

Optimized Marketing Budget

Course5 .
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Tactical media buying, campaign execution
in right channel and optimization

Display Social Paid Search
..__ - ‘-- -.. __________ >
Customer Journey

Credit Allocation

dn-wojjog
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Incorrect digital media measurement

3 Attribution Models VS. Reality

100%
Incremental
revenue

80%

60%

40%

20%

0%
Last Touch Multi-Touch Attribution Reality

[l some channel [ Brand equity B Price & promo Offline marketing woM [ search Display M social Email
Source: https://iaeehg.com _|
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https://iaeehq.com/

In Summary

Key Challenges

Complex consumer journeys

Industry is biased towards digital channels

Disparate data sources

Models are separate and used in silos

Incorrect attribution and declining RO

Courseb
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Er)ables dynamlg campaign Doesn’t provide granular insights at Doesn’t account offline channels
effectiveness and align with overall :
customer groups hence biased

marketing strateo

Course5 Integrated Marketing

Measurement Solution is a

contlpuously evplvmg marketing MMM Digital Attribution
solution, that brings a top-down

and bottom-up meta intelligence

to marketing insights.

Individual customer journeys (digital

Aggregate static data model and Historical aggregate spend patterns

path) lead to conversion mostly real
time data

individual user level configurable and correlate with sales over time

models

15
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How we are integrating best of both?

Courseb5
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Build Holistic MMO using Bayesian Network Modelling

Structural Learning using BNN

Knowledge discovery from BNN

Paid digital
video (lag 2) TV spend
(lag 2)
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T Spend (0.4)
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Intel MPD Sales
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Build Digital Attribution Network model

— ~ Chamnel  Contribution

Organic Search 59.9%
Referral 16.8%

Email 7.1%

Direct 5.8%

Paid Social 4.4%

Paid Digital Video 4.2%
Paid Digital Non Video 1.1%
Paid Search 0.6%
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B U i Id Att ri b UtiO NN EtWO I‘k m Od el (including offline channel nodes) with the helps of a prior probabilities specified in network

Knowledge discovery from BNN
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Relative importance of offline and online channels in IMM

Organic Search 59.9% 28.24% g 31.66%
Referral 16.8% 7 60% - _9.20%

Email 7.1% 3.40% - -3.70%

Direct 5.8% 2.67% - -2.67%

Paid Social 4.4% 2 04% - 2236%

Paid Digital Video 4.2% 1.35% - _2.85%
Paid Digital Non Video 1.1% 0.47% - L0.63%
Paid Search 0.6% 0.16% t _0.44%
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Key Benefits across industry applications

Date Range Total Spend  ROAS
November 2018 $49,974.33 1460.95%
October 2018 $25,840.01 1105.72%
Seplember 2018 $23,251.71 1176.34%
August 2018 $27,957.30 1494.15%
July2018  $18,537.39 1360.26%
June2018  $20,231.77 975.17%

0.00%
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6.69%
7.35%
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SEO
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-
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In Summary

Key Challenges

Complex consumer journeys

Industry is biased towards digital channels

Disparate data sources

Models are separate and built in silos

Incorrect attribution and declining ROI

Courseb

Transformative intelligence

Key Benefits of IMM

Unified measurement provides holistic insights

Able to handle disparate data very well

Learnings from one model is transferred into another
model

Accurate attribution accounting for mediating variables

The model insights are actionable in real time campaign
management

© Course5 Intelligence 22



Integrated Marketing Measurement platform demo

https://course5intelligence.shinyapps.io/integrated marketing mix/

Courseb Integrated Market Measurement Prototype

Transformative intelligence

Introduction Trend Analysis Marketing Response Analysis Market Mix Model Digital Spend Optimization Integrated Marketing Mix

Our Vision Methodology

Course5 Integrated Marketing Measurement Solution is a continuously evolving marketing solution, that brings a

- . - top-down and bottom-up meta intelligence to marketing insights through a blend of technology intervention,
’,gf' frameworks, critical thinking, and advanced data science techniques.
~ “ Our IMM solution leverages Marketing Mix Modeling (MMM) and Multi-Touch Attribution (MTA) to bring
~ together aggregate full-business models, and user-level models for a customer view”

Why consider a merger?

Integrating MTA & MMM
When the two measurement
practices are combined,
however, they improve the

Multitouch Attribution
Modeling
Data-driven attribution
requires a wealth of
granular, user-level data,
which can limit offline
channel visibility

Market Mix Modeling
Traditional MMM offers high-
level analysis on a quarterly

or yearly basis, which can

outputs from each. Data-
driven attribution informs
MMM models. MMM data
feeds attribution analysis.

limit more granular, or on-the-
fly optimization

How does implementing IMM help?

[ ™ ~
2275 ing® 11

Actionable Real-Time Data Omnichannel Delivery Unified Marketing
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The surest kind of knowledge is what you construct
yourself.
~ Judea Pearl, The Book of Why: The New Science of Cause and Effect
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THANK YOU
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