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Motivation: Preamble

• Commander: If I am to invest in BBN software, demonstrate 
to me what it can do for me first.

1) State Estimation - How can it help  me characterize
adversarial behavior?

2) Optimal Learning - How can it help me decide on what to 
do based on known goals?

• Request: Use easily understandable models!

• Answer:  Use Crowd Turbulence  - Fluid Turbulence                                      
Analogy
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Outline

1)  Introduction: Traditional Geo-Intelligence Problems

2)  DPF System Characterization
A) Why use DPF for system characterization?
B) Why use DPF data for system modeling?
C) Image Particle Dynamics Phenomenology

3)  Modeling Methodology
A) Global Two-Tier Processing
i) Feature Extraction
ii) Hidden Markov Model Parameter Learning

B) Physical Interpretation of Emission Matrices

C)    Knowledge Gradient Policy Information Ranking

4)   Conclusions
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Introduction: Traditional Geo-Intelligence 
Problems
1) Military geo-intelligence electro-optical remote sensing 

platforms are often tasked with monitoring complex 
(including human) systems which change over time

a) Navy: Radar remote sensing of riverine and ocean waters for 
underwater mine detection

b) Air Force: Multidimensional imagery remote sensing of land 
processes for comprehending adversarial motion

c) Homeland Security: Panchromatic remote sensing of crowd 
turbulence for adversarial  surveillance

2) Traditionally, linear optimal Bayesian estimators have 
been used as state estimators to address these sorts of 
problems
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Why use DPF for System Characterization?

• Real world systems = highly nonlinear and probabilistic

• Knowledge of the dynamical system model does not exist

• State estimation initially requires model learning or system 
characterization

• Dynamic particle fields (DPF) obtained from large eddy 
simulations (LES) 

Optimal temporal-based Bayesian system characterization

• Parameterized system model aids in future state 
assessment and decision making
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Why use DPF Data for System Modeling?

• Turbulent particle fields have strong similitude to both marine
and human many-body systems of military interest

• DPF equations emanate from turbulent fluid mechanics

• DPF data possesses both particle imagery motion and the 
underlying driving force behind the motion

• Both variables necessary for robust probabilistic system 
modeling 

• Not readily available in open source data sets

• DPF data = noiseless and seemingly random 
allows for pure algorithmic exploration 
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DPF System Characterization: 
Imaged Particle Dynamics Phenomenology 

1) Dynamic particles = point tracers representing different phenomena 
(E.g. people or objects)

2) Modeling point:  Though 
seemingly random and
unpredictable, statistical 
structure exists as particles 
move through space/time.

3)  Particle patterns emerge as particles coagulate into groups and 
disperse 

4) DPF dynamics mimics how chaotic state of geo-intelligence processes  
with an organized or pattern-like quality 

E.g. Organized adversarial motion, coherent wakes cause by mines
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Modeling Methodology: 
Two Tier Processing 
• Objective of DPF data system modeling: to employ machine 

learning algorithms to create a probabilistic graphical model

• DPF data processing employs two tiers

A) Feature Extraction

• Data domain split horizontally into 2 layers  
• Each dimensionally reduced to single values

• Bottom layer  -> characteristic latent causal states
Top layer       -> characteristic surface particle observations

822-Oct-19



B) Hidden Markov (Bayesian) Model Parameter Learning

Statistical relationship between observations (upper layer structure) 
and states (bottom layer structure) can be learned!

Assumptions?
1) State- Markovian
2) Observations - independent

• Instance counting can be used to estimate the transition 
probabilities, A and emission probabilities, B

• Parameterized HMM allows for system characterization of 
relationship between surface and bottom

A?
B?

Modeling Methodology:
Two Tier Processing
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Feature Extraction from DPF Data

Global Methodology:

1) Decompose surface and sub-surface DPF using feature extraction

Machine      Learning

2)  9-D Feature time series array of surface and subsurface values!

7 Surface Features (Effects) 2 Sub-surface (Cause)

a) Cross flow  spatial scale                                                      a) Vorticity
b) Characteristic PCA based Concentration spatial scale    b) Stress
c) Characteristic PCA based W velocity spatial scale
d) Characteristics ICA based Concentration spatial scale
e) RMS PCA based V velocity
f) RMS PCA based W velocity
g) RMS PCA based concentration
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Sub-surface and Surface Feature Time Series
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Feature Extraction from DPF Data

Global Methodology:

3) Perform EOF analysis to determine worthy candidates for 
HMM parameter estimation.
Choose surface and sub-surface variable subset 

a) Vorticity (cause)
b) RMS PCA based V velocity                                         

(effect)
c) RMS PCA based concentration 

(effect)
d) ICA based concentration 

scales (effect)
9 -> 4 Features
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Hidden Markov Model Parameter Learning

Global Methodology:

3) Perform EOF analysis to determine worthy candidates for HMM 
parameter estimation. Choose surface and sub-surface variable   
subset

a) Vorticity (cause)
b) RMS PCA based V velocity (effect)
c) RMS PCA based concentration (effect)
d) ICA based concentration scales 

(effect)

4) Use 4 features in HMM parameter    
estimation to estimate transition 
and emission matrices 
(1 cause, 3 effects)
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Physical Interpretation of Emission Matrix 1
Vorticity and RMS V Velocity
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Low rms v 
velocity

0.115 – 0.125 
(m/s)

Medium rms v 
velocity

0.125 – 0.14 (m/s)

High rms v 
velocity 

0.14 – 0.15 (m/s)

Low vorticity
13.0 – 14.5 (s-1)

0.6000 0 0.4000

Medium 
vorticity
14.5 – 16.0 (s-1)

0.0769 0.4615 0.4615

High vorticity
16.0 – 17.5 (s-1)

0.4286 0.4286 0.1429
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Physical Interpretation of Emission Matrix 1
Vorticity and RMS V Velocity

• Complex emission matrix due to non-linearity relationship between 
vorticity and rms surface v velocity

• At low vorticity levels -> low rms v vel. (60%)  AND high rms v vel.(40%)            

Q: Why?              A: Flow nonlinearity

• Low vorticity (cause) ->  low stress (effect)
->  low sediment injection into the water column
->  flow field ‘adjusts’ to sediment modulation 
->  turbulent fluctuations increase

• Low vorticity levels      -> high rms v turbulent vel.
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Low vorticity
13.0 – 14.5 (s-1)

Low vel.
0.6000

Medium vel. 
0

Large vel.
0.4000



Physical Interpretation of Emission Matrix 1
Vorticity and RMS V Velocity

• At medium vorticity levels -> strong % at medium and high 
rms v velocity levels

• At high vorticity levels       -> strong % at medium and low  
rms v velocity levels

• Q : Why?

• A: High vorticity levels -> sediment flux to the surface boundary 
layer        

-> dampens surface v velocity

High vorticity levels -> low rms v velocity
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High vorticity
16.0 – 17.5 (s-1)

Low vel.
0.4286

Medium vel.
0.4286

High vel.
0.1429



Physical Interpretation of Emission Matrix 3
Vorticity and Sediment Concentration Spatial Scales

17

Small  Conc. 
Scales

0 – 0.08 (cm)

Medium Conc. 
Scales

0.08 – 0.11 (cm)

Large Conc. 
Scales

0.11 – 0.12 (cm)

Low Vorticity
13.0 – 14.5 (s-1)

0.5 0.1000 0.4000

Medium Vorticity
14.5 – 16.0 (s-1)

0.2857 0.3571 0.3571

High Vorticity
16.0 – 17.5 (s-1)

0.2857 0.7143 0
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Vorticity and sediment conc. spatial scales distant kinematic cousins!
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Physical Interpretation of Emission Matrix 3
Vorticity and Sediment Concentration Spatial Scales

• Low vorticity levels -> small (50%) and large sediment spatial 
scales (40%)

Q: Why?
A: Low vorticity (low shear) allows for large scale    

sediment amalgamation and small scale residuals

• Medium vorticity levels -> small, medium, and large spatial scales 
supported (~30% for all)

• Q: Why? 
• A: Fluid vorticity and stress levels increase -> large spatial scales    

break downs into all scales
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Low Vorticity
13.0 – 14.5 (s-1)

Small Scale
0.5

Med. Scale 
0.1000

Large Scale 
0.4000



Physical Interpretation of Emission Matrix 3
Vorticity and Sediment Concentration Spatial Scales

• High vorticity levels -> 71% medium spatial scales
-> 0% large spatial scales

• Q: Why?
• A: High vorticity levels -> high shear -> destroys large spatial scales                      

• Low Vorticity –>  small and large spatial scales
• High Vorticity –>  medium and small spatial scales

a) Weak enough to support large spatial scales
b) Strong enough to destroy large spatial scales 

• Applicable geo-intelligence systems describing adversarial behavior
• E.g. Human systems feel ‘stress’ (cause) and coagulate and disperse 

(effect) in complex ways!
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High Vorticity
16.0 – 17.5 (s-1)

Small scale
0.2857

Med. Scale
0.7143

Large Scale
0



Knowledge Gradient Policy Information Ranking 

Consider the problem:

1) 9 measurement (7 surface and 2 sub-surface) array

2) Leadership projects future values for 9 variable state

3) Leadership has limited amount of resources to take data

Q:  What order should the variables be sampled over time to 
reach the projected goal state? 

Question of HOW to collect information efficiently.

A: Knowledge gradient policy (KGP) processing = optimal learning
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Knowledge Gradient Policy Information Ranking 

• Estimate path towards the mean goal state S* (θ*,∑*)

1)  Assume a prior mean vector θ0 and covariance matrix ∑0

Mean goal state vector = [ # # # # # # # # # ]

2) Sn (θn ,∑n) = Bayesian belief state at time n

3) Learn or approach goal state by 

a) sampling the data mean turbulent feature values 
(information sources) 

and
b) choosing 1 variable out of the 9 at every n

• The criterion or policy used in choosing = knowledge gradient 
policy
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Knowledge Gradient Policy Information Ranking 

• Knowledge gradient =

i) amount by which the state improves if feature  x’= xM from M=9 array
is selected

ii) marginal value of a measurement in terms of  information value 
gained

• Information value measured via utility function           

• Optimal decision choice =  choice that  causes largest change in                                        
-> maximizes expected reward
-> minimizes opportunity cost

• Updated Bayesian state produces an optimal state path through time

~ Method of steepest descent

( )SX n,π
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Knowledge Gradient Policy Information Ranking 

2322-Oct-19

Truth  = red
Estimate = blue

• T = 21 estimate less accurate than  T = 41 estimate
• KGP algorithm needs time to approach to truth

• Surface variable  3, 5, and 9 converge first  (cross flow spatial scales,  
RMS w velocity, ICA based concentration spatial scales)

• Some variables may be more significant in Bayesian goal state march!

Prior = 5 

Var 2-9  = 2 X true mean valueVar 1 = true mean value



Knowledge Gradient Policy Information Ranking 

24

• Both estimates are overall less accurate than previous Prior = 5 
case

• Vorticity is estimated very well compared to the Prior = 5 case

• Lack of overall variable convergence suggests that 
Prior = 10 is too high and more convergence time is needed
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Truth = red
Estimate = blue

Prior=10



Knowledge Gradient Policy Information Ranking 

• RMS surface w velocity   (5)         
• PCA-based surface w velocity scales (8)
• ICA-based surface concentration scales (9)

converge first !

Different set of variables to consider when seeking to attain 
goal state (because prior =10)

Overall KGP Conclusions:

• Goal state convergence time T varies depending on:
1) variable correlation (covariance) 2) priors assumed.

• What we believe affects how we obtain goals!
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Conclusions 
• Bayesian algorithms applied to DPF data can be used to rationally 

understand simulated turbulent shear flow structure 

1) HMM models captures the dynamic, sediment-induced nonlinear flow 
dampening in a sparsely sampled fluid flow.

2) KGP algorithm provides rational, resource saving guidance as to how 
to attain a goal state based on Bayesian learning ‘powered’ by 
information source covariance. 

• Not just data interpolation but a crude way to inject a rudimentary 
sense of ‘mind’ using a functional policy for data paucity problems

• Developed algorithms possibly applicable to crowd turbulence

• Presently seeking ways to utilize BNN software to automate and 
ease calculations.
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