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Bayesian Networks & BayesiaLab

A Practical Introduction for Researchers

* Free download:

www.bayesia.com/book Bayesian Networks
y & BaygsiaLab

* Hardcopy available on Amazon:
http://amzn.com/0996533303

* See Chapter 8
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Background & Motivation

The Dimensions of Human Personality



Accessible Active Adaptable Admirable Adventurous Agreeable Alert Allocentric Amiable Anticipative Appreciative Articulate Aspiring Athletic Attractive Balanced Benevolent
Brilliant Calm Capable Captivating Caring Challenging Charismatic Charming Cheerful Clean Clear-headed Clever Colorful Companionly Compassionate Conciliatory Confident
Conscientious Considerate Constant Contemplative Cooperative Courageous Courteous Creative Cultured Curious Daring Debonair Decent Decisive Dedicated Deep Dignified
Directed Disciplined Discreet Dramatic Dutiful Dynamic Earnest Ebullient Educated Efficient Elegant FEloquent Empathetic Energetic Enthusiastic Esthetic Exciting
Extraordinary Fair Faithful Farsighted Felicific Firm Flexible Focused Forceful Forgiving Forthright Freethinking Friendly Fun-loving Gallant Generous Gentle Genuine Good-
natured Gracious Hardworking Healthy Hearty Helpful Heroic High-minded Honest Honorable Humble Humorous Idealistic Imaginative Impressive Incisive Incorruptible
Independent Individualistic Innovative Inoffensive Insightful Insouciant Intelligent Intuitive Invulnerable Kind Knowledge Leaderlike Leisurely Liberal Logical Lovable Loyal
Lyrical Magnanimous Manly Many-sided Masculine Mature Methodical Meticulous Moderate Modest Multi-leveled Neat Nonauthoritarian Objective Observant Open Optimistic
Orderly Organized Original Painstaking Passionate Patient Patriotic Peaceful Perceptive Perfectionist Personable Persuasive Planful Playful Polished Popular Practical Precise
Principled Profound Protean Protective Providential Prudent Punctual Purposeful Rational Realistic Reflective Relaxed Reliable Resourceful Respectful Responsible Responsive
Reverential Romantic Rustic Sage Sane Scholarly Scrupulous Secure Selfless Self-critical Self-defacing Self-denying Self-reliant Self-sufficient Sensitive Sentimental Seraphic Serious
Sexy Sharing Shrewd Simple Skillful Sober Sociable Solid Sophisticated Spontaneous Sporting Stable Steadfast Steady Stoic Strong Studious Suave Subtle Sweet Sympathetic
Systematic Tasteful Teacherly Thorough Tidy Tolerant Tractable Trusting Uncomplaining Understanding Undogmatic Unfoolable Upright Urbane Venturesome Vivacious Warm
Well-bred Well-read Well-rounded Winning Wise Witty Youthful Absentminded Aggressive Ambitious Amusing Artful Ascetic Authoritarian Big-thinking Boyish Breezy
Businesslike Busy Casual Cerebral Chummy Circumspect Competitive Complex Confidential Conservative Contradictory Crisp Cute Deceptive Determined Dominating Dreamy
Driving Droll Dry Earthy Effeminate Emotional Enigmatic Experimental Familial Folksy Formal Freewheeling Frugal Glamorous Guileless High-spirited Hurried Hypnotic
Iconoclastic Idiosyncratic Impassive Impersonal Impressionable Intense Invisible Irreligious Irreverent Maternal Mellow Modern Moralistic Mystical Neutral Noncommittal
Noncompetitive Obedient Old-fashioned Ordinary Outspoken Paternalistic Physical Placid Political Predictable Preoccupied Private Progressive Proud Pure Questioning Quiet
Religious Reserved Restrained Retiring Sarcastic Self-conscious Sensual Skeptical Smooth Soft Solemn Solitary Stern Stoic Strict Stubborn Stylish Subjective Surprising Soft
Tough Unaggressive Unambitious Unceremonious Unchanging Undemanding Unfathomable Unhurried Uninhibited Unpatriotic Unpredictable Unreligious Unsentimental
Whimsical Abrasive Abrupt Agonizing Aimless Airy Aloof Amoral Angry Anxious Apathetic Arbitrary Argumentative Arrogant Artificial Asocial Assertive Astigmatic Barbaric
Bewildered Bizarre Bland Blunt Boisterous Brittle Brutal Calculating Callous Cantankerous Careless Cautious Charmless Childish Clumsy Coarse Cold Colorless Complacent
Complaintive Compulsive Conceited Condemnatory Conformist Confused Contemptible Conventional Cowardly Crafty Crass Crazy Criminal Critical Crude Cruel Cynical
Decadent Deceitful Delicate Demanding Dependent Desperate Destructive Devious Difficult Dirty Disconcerting Discontented Discouraging Discourteous Dishonest Disloyal
Disobedient Disorderly Disorganized Disputatious Disrespectful Disruptive Dissolute Dissonant Distractible Disturbing Dogmatic Domineering Dull Easily Discouraged Egocentric
Enervated Envious Erratic Escapist Excitable Expedient Extravagant Extreme Faithless Fanatical Fanciful Fatalistic Fawning Fearful Fickle Fiery Fixed Flamboyant Foolish
Forgetful Fraudulent Frightening Frivolous Gloomy Graceless Grand Greedy Grim Gullible Hateful Haughty Hedonistic Hesitant Hidebound High-handed Hostile Ignorant
Imitative Impatient Impractical Imprudent Impulsive Inconsiderate Incurious Indecisive Indulgent Inert Inhibited Insecure Insensitive Insincere Insulting Intolerant Irascible
Irrational Irresponsible Irritable Lazy Libidinous Loquacious Malicious Mannered Mannerless Mawkish Mealy-mouthed Mechanical Meddlesome Melancholic Meretricious Messy
Miserable Miserly Misguided Mistaken Money-minded Monstrous Moody Morbid Muddle-headed Naive Narcissistic Narrow Narrow-minded Natty Negativistic Neglectful Neurotic
Nihilistic Obnoxious Obsessive Obvious Odd Offhand One-dimensional One-sided Opinionated Opportunistic Oppressed Outrageous Overimaginative Paranoid Passive Pedantic
Perverse Petty Pharisaical Phlegmatic Plodding Pompous Possessive Power-hungry Predatory Prejudiced Presumptuous Pretentious Prim Procrastinating Profligate Provocative
Pugnacious Puritanical Quirky Reactionary Reactive Regimental Regretful Repentant Repressed Resentful Ridiculous Rigid Ritualistic Rowdy Ruined Sadistic Sanctimonious
Scheming Scornful Secretive Sedentary Selfish Self-indulgent Shallow Shortsighted Shy Silly Single-minded Sloppy Slow Sly Small-thinking Softheaded Sordid Steely Stiff Strong-
willed Stupid Submissive Superficial Superstitious Suspicious Tactless Tasteless Tense Thievish Thoughtless Timid Transparent Treacherous Trendy Troublesome Unappreciative
Uncaring Uncharitable Unconvincing Uncooperative Uncreative Uncritical Unctuous Undisciplined Unfriendly Ungrateful Unhealthy Unimaginative Unimpressive Unlovable
Unpolished Unprincipled Unrealistic Unreflective Unreliable Unrestrained Unself-critical Unstable Vacuous Vague Venal Venomous Vindictive Vulnerable Weak Weak-willed Well-



How Many Dimensions?




Eysenck's PEN Model of Personality

PSYcHOTICISM | RXATRAVERSEON Nevroticism
Aggressive Sociable Anxious
Assertive Irresponsible Depressed
Egocentric Dominant Guilt Feelings
Unsympathetic Lack of reflection Low self-esteem
Manipulative Sensation-seeking Tense
Achievement-oriented Impulsive Moody
Dogmatic Risk-taking Hypochondriac
Masculine Expressive Lack of autonomy
Tough-minded Active Obsessive

BayesialLab.com
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Five Factor Model

Openness

Conscien-
tiousness

Personality

Agreeableness Extraversion

BayesialL.ab.com 14




Multivariate Behavioral Research, 39 (2), 329-358
Copyright © 2004, Lawrence Erlbaum Associates, Inc.

Psychometric Properties of the
HEXACO Personality Inventory

Kibeom Lee
University of Calgary

Michael C. Ashton

Brock University

We introduce a personality inventory designed to measure six major dimensions of personality
derived from lexical studies of personality structure. The HEXACO Personality Inventory
(HEXACO-PI) consists of 24 facet-level personality trait scales that define the six personality
factors named Honesty-Humility (H), Emotionality (E), Extraversion (X), Agreeableness (A),
Conscientiousness (C), and Openness to Experience (O). In this validation study involving a
sample of over 400 respondents, all HEXACO-PI scales showed high internal consistency
reliabilities, conformed to the hypothesized six-factor structure, and showed adequate
convergent validities with external variables. The HEXACO factor space, and the rotations of
factors within that space, are discussed with reference to J. S. Wiggins’ work on the circumplex.

stefan.conrady@bayesia.us 15




HEXACO Personality Inventory

* The HEXACO model of personality conceptualizes human personality in terms
of six dimensions.

* Honesty-Humility (H)

Emotionality (E)

Extraversion (X)

Agreeableness (versus Anger) (A)
* Conscientiousness (C)
* Openness to Experience (O)
* |t was proposed as alternative to the Big Five/FFM (Five Factor Model)

stefan.conrady@bayesia.us 16




HEXACO Personality Inventory: 240 Questions

| love dangerous situations.

| need the approval of others.

| am the life of the party.

| am quick to judge others.

| make careless mistakes.

| seldom experience sudden intuitive
insights.

| feel others' emotions.

| come up with something new.

| would not enjoy being a famous
celebrity.

I tire out quickly.

| face danger confidently.

| react strongly to criticism.

| keep others at a distance.

| seem to derive less enjoyment from
interacting with people than others do.
| prefer to eat at expensive restaurants.
| pretend to be concerned for others.

| often worry about things that turn out
to be unimportant.

| would never go riding down a stretch
of rapids in a canoe.

| rarely get irritated.

| demand quality.

| prefer to just let things happen.

| would not regret my behavior if | were
to take advantage of someone
impulsively.

| will not probe deeply into a subject.
| am sensitive to the needs of others.
| say little.

I don't know much about history.

| suspect that my facial expressions
give me away when | feel sad.

I am good at making impromptu
speeches.

| pay too little attention to details.

| do things without thinking of the
consequences.

| maintain high energy throughout the
day.

| have an eye for detail.

| have excellent ideas.

I am usually a patient person.

| steal things.

| need reassurance.

| boast about my virtues.

I do not like art.

| don't think that i'm better than other
people.

| feel comfortable around people.

| seldom get mad.

| get upset easily.

| talk to a lot of different people at
parties.

| when interacting with a group of
people, am often bothered by at least
one of them.

| try to forgive and forget.

| make a fool of myself.

| know that my ideas sometimes

| find it hard to forgive others.

| don't know why | do some of the
things | do.

| like to attract attention.

| have a vivid imagination.

| see myself as an average person.

| rarely cry during sad movies.

I work hard.

| don't worry about things that have
already happened.

| wish to stay young forever.

| 'am hard to reason with.

| love to think up new ways of doing
things.

| speak softly.

I do not have a good imagination.

| feel healthy and vibrant most of the

| adjust easily.

| am willing to take risks.

| believe in the importance of art.

| rarely feel depressed.

| don't strive for elegance in my
appearance.

| swim against the current.

| rebel against authority.

| get angry easily.

| get upset by unpleasant thoughts
that come into my mind.

| return extra change when a cashier
makes a mistake.

| get deeply immersed in music.

| bottle up my feelings.

| do not enjoy watching dance
performances.

might not notice.

I would hate to be considered odd or
strange.

| criticize others' shortcomings.

| am good at taking advice.

| am usually active and full of energy.
| would not enjoy a job that involves a
lot of social interaction.

| often forget to put things back in
their proper place.

| find it necessary to please the people
who have power.

| have little to say.

| feel that | have a lot of inner
strength.

| hang around doing nothing.

| am a physical coward.

| rarely enjoy being with people.

| play a role in order to impress
people.

| try to follow the rules.

| don't mind being the center of
attention.

| get started quickly on doing a job.
| consider myself an average person.
| get upset if others change the way
that | have arranged things.

| am inclined to forgive others.

| speak ill of others.

| 'am likely to show off if | get the
chance.

| enjoy being thought of as a normal
mainstream person.

| am not easily disturbed by events.
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| rarely feel angry with people.

| have a strong personality.

| have a good word for everyone.

| tell people about it when i'm
irritated.

| have great stamina.

I love luxury.

| would feel very badly for a long time
if | were to steal from someone.

| don't finish the things that | start.
| find it difficult to approach others.
I usually like to spend my free time
with people.

| admire a really clever scam.

| distrust people.

| can't do without the company of
others.

| seldom get emotional.

I enjoy intellectual games.

| am mainly interested in money.

BayesialL.ab.com

feel angry at someone.

I let people push me around to help
them feel important.

| ' would love to explore strange places.
| have read the great literary classics.
I'want to be liked.

I don't talk a lot.

| seldom feel weepy while reading the
sad part of a story.

| stop when work becomes too
difficult.

I smile a lot.

| would be afraid to give a speech in
public.

| seek status.

| am deeply moved by others'
misfortunes.

| 'am hard to convince.

| push myself very hard to succeed.

I switch my loyalties when | feel like it.

other people.
I like to tidy up.
I try to impress others.

| continue until everything is perfect.

| would fear walking in a high-crime
part of a city.

I let myself be influenced by others.
| would be good at rescuing people
from a burning building.

| keep in the background.

| hate being the center of attention.
| get irritated easily.

| have an intense, boisterous laugh.
| take things as they come.

I 'am hard to get to know.

| have a sharp tongue.

| leave my belongings around.

| seek support.

I laugh a lot.

| see beauty in things that others

| like to be viewed as proper and
conventional.

| need protection.

| find fault with everything.

| make rash decisions.

| often need help.

| use flattery to get ahead.

| find political discussions interesting.
| accept people as they are.

| believe that | am better than others.
| am exacting in my work.

| dislike imperfect work.

| avoid mistakes.

| try to avoid complex people.

| love to read challenging material.

| tremble in dangerous situations.

| like to do frightening things.

| talk a lot.

| don't like to draw attention to myself.
| do too little work.

| panic easily.

| act like different people in different
situations.

| do just enough work to get by.

| want everything to add up perfectly.
| make plans and stick to them.

| am nice to people | should be angry
at.

| hold a grudge.

| would never take things that aren't
mine.

| seldom notice the emotional aspects
of paintings and pictures.

| cheat on people who have trusted
me.

| like to be thought of as a normal kind
of person.

| avoid difficult reading material.

| begin to panic when there is danger.
| would never cheat on my taxes.

| put on a show to impress people.

| am just an ordinary person.

| become frustrated and angry with
people when they don't live up to my
expectations.

| get chores done right away.

| jump into things without thinking.

| have a lot of fun.

| get even with others.

| am more capable than most others.
| worry about things.

| can't stand being contradicted.

| am seldom bothered by the apparent
suffering of strangers.

| cry during movies.

| have leadership abilities.

| leave a mess in my room.

| am annoyed by others' mistakes.

| immediately feel sad when hearing of
an unhappy event.

| quickly lose interest in the tasks |
start.

| complete tasks successfully.

| am interested in science.

| like order.

| do things according to a plan.

| show my sadness.

| tell other people what they want to
hear so that they will do what | want
them to do.

| lose my temper.

| act impulsively when something is
bothering me.

| don't bother worrying about political
and social problems.

| am easily annoyed.

| do not like concerts.

| don't pretend to be more than | am.
I'am full of ideas.




HEXACO Personality Inventory: 240 Questions

All variables are recorded on a seven-point scale

* 1 = strongly disagree

* 2 =disagree

3 = slightly disagree

4 = neutral

5 = slightly disagree

6 = agree

/ = strongly agree

BayesialLab.com 18




@ Open Source Psychometrics Project Home - About - Log

This website provides a collection of interactive personality tests with detailed
results that can be taken for personal entertainment or to learn more about
personality assessment. These tests range from very serious and widely used
scientific instruments popular psychology to self produced quizzes. A special focus
is given to the strengths, weaknesses and validity of the various systems.

Recommended test for scientific validity

Big Five Personality Test: The general consensus in academic psychology is that
there are five fundamental personality traits. This model is assumed in most
personality research, and is the basis of many of the most well regarded tests
employed by psychologists who maintin close connections with academia. The "big
five"tend to not be popular in consumer focused personality assessment or self-
help because to many people the feedback of the model seems relatively basic. This
test uses public domain scales from the International Personality [tem Pool.

Recommended test for personal enjoyment

Carl Jung (1921) and later refined by C. Myers and I. M. Briggs has become an
extremely widely used personality theory in self-help, business management,
counselling and spiritual development contexts, but it is not commonly used in
academic research where, like all type theories, it is treated sceptically. The system
produces 16 personality types on the basis of four dichotomies and is the system
used in the Myers Briggs Type Indicator and Keirsey Temperament Sorter
instruments, among many others. The OEJS is a free and open source measure of
the four dichotomies which yields an equivalent result to the usual tests.

BayesialLab.com 19




TOday’S ObjECtiveS ( lateo (present infinitive latere, perfect active

latui); second conjugation, no passive
* Tamconcealed or in hiding, lurk, skulk.

“Exploratory Factor Discovery" « Latet anguisin herba. — A snake
hides in the grass.
 Discovery of latent (hidden) < * Sub nomine pacis bellum latet. —
War lurks under the name of peace.
concepts. * Tamhidden and in safety.
* Easy-to-interpret, meaningful factors * Ikeepoutofsight.
* Jlivein concealment; live retired.
* Homogenous clusters * Iescapenotice, remain unknown.
. _ * Bene qui latuit, bene vixit. — He
* Stable dimensions who has well remained unknown

has lived well.
 Jam obscure or unknown, lie hidden.

* Computationally tractable * Id quaratione consecutus sit latet. —
It is unknown how he obtained that.

e “Careful” dimension reduction

BayesialLab.com 240)
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Why Bayesian-Networks & BayesialLab?



The New Paradigm: Bayesian Networks <

EEVESERINEWYIIE
& Bayesialab

STEFAN CONRADY | LIONEL JOUFFE

BAYESIAN NETWORKS*

PROBABILISTIC GRAP

Judea Pearl
Cognitive Systems Laboratory
HI ISTIC REASONING Computer Science Department
University of California, Los Angeles, CA 90024
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A Practical Introduction for Researchers
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Mathematical Formalism = Research Software

BAYESIAN
NETWORK




BAYESIALAD

A desktop software for:

e AR PPPHELNO0 8H0FNORERE ROSCSOENEHON AL nmNRAvYE
Bvacpiog = ot Py, 0000% .
e g |earn Ing
T

* editing

* performing inference

° analyzing

° simulating

* optimizing

with Bayesian networks.

BayesialLab.com




Nomenclature

EANn

Manifest=0bserved
Variables/Nodes

EANxi2
Mean: 5.541 Dev: 1.473
Value: 5.541

2.07%
4.04%

Unobserved/Latent Variable,
Factor, or Cluster

Anxi10

Factor_17
ean: 4.360 Dev: 0.199
Value: 4.360
2.76% C4 (3.9116)
6.32% C1 (3.9608)
7.45% C2 (4.0282)
24.83% C6 (4.2557)
28.52% C3 (4.5050)
30.12% C5 (4.5146)

5.43%
5.04%
22.83%
30.80%
29.78%

~NOoO R WN =

EANxi4

Monitor with

Bayesialab.com Node States

\

Monitor with
Generated Factor States or
Cluster States (C1-C6)




Nomenclature

Unobserved/Latent Variable,

PN Factor, or Cluster
I often worry about things that turn out to be unimportant.

EANXxi1

I don't worry about things that have already happened.
A

Manifest=0Observed @ EANxi10
Variables/Nodes

Factor_17
[Factor \17] ean: 4.360 Dev: 0.199
Value: 4.360
2.76% C4 (3.9116)
6.32% C1 (3.9608)
EANXxi2 7.45% C2 (4.0282)
Mean: 5.541 Dev: 1.473 24.83% C6 (4.2557)
Value: 5.541 28.52% C3 (4.5050)
2.07% 1 : 30.12% C5 (4.5146)
4.04% 2 I worry about things.
5.43% 3 \
5.04% 4 .
22.83% 5 EANXi2 - -
30.80% 6 I get upset by unpleasant thoughts that ¢ Mon Itor Wlth
efio i Generated Factor States or

Monitor with EANnXxi4 Cluster States (C1-C6)

BayesialLab.com Node States
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Bayesian Networks

Key Concepts Important for Factors Analysis

* As a Bayesian network represents a joint
probability distribution, we can easily
compute several information-theoretic
measures with Bayesialab:

* Entropy

* Mutual Information
* Arc Force

* Node Force

* Etc.

BayesialLab.com 24°)
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Bayesian Networks

Key Concepts Important for Factors Analysis

* As a Bayesian network represents a joint
probability distribution, we can easily
compute several information-theoretic

measures: -
* Entropy Arc Force, a Measure of “Arc Importance”
* Mutual Information Arc Force is more formally known as
* Arc Force < “Kullback-Leibler Divergence.”
* Node Force It is the difference or distance in the joint
* Etc. L distributions @ and P denoted Dy, (P | Q)

BayesialL.ab.com



I don't like to draw attention to myself.

Arc Force — m==ggss

XEXpr3

Bayesian Network

XExpr10
I don't talk a lot.
I have an intense, boisterous laugh.
XExpr1 I am never at a loss for words.
XExpr5
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‘I tell people about it when i'm irritated. |

XExpr9

XExpr4
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I have an intense, boisterous laugh.

XExpr5
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|I don't like to draw attention to myself.

I am the life of the party.

XEXpr3

XExp

I speak softly.
I say little.

XExpr10

I don't talk a lot.
I talk a lot. XExpr6

XExpri

I am never at a loss for words.

XExpr2

Including the Arc

I bottle up my feelings.

‘I tell people about it when i'm irritated. |

XExpr9
XExpr4
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I don't talk a lot.
I talk a lot. XExpr6

I have an intense, boisterous laugh.

XExpri

I am never at a loss for words.

XExpr5

Without the Arc XExpr2

I bottle up my feelings.

[ tell people abowen i'm irritated. | XExprd DKL( P ” Q): AI‘C FOI‘Ce

XExpr4

BayesialL.ab.com 34



0.0962 like to draw attention to myself.

Arc Force - motammsmy o

XEx
XEXpr3
1 0.2480

Bayesian Network

0.1317 =
5.1450% Aty XExpr10

XExpr8 e 17.7984%

14.2340%
0.0785
3.0659%
I don't talk a lot.
0.6587
25.7247% 0.1156
0.1572 1 =llialne XExpré 4.5158%
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I have an intense, boisterous laugh. ]
g XExpr1 I am never at a loss for words.
g
0.0666
XExpr5 2.6028%
0.0991 XExpr2
3.8685%

0.0887 __II bottle up my feelings. |
I tell people about it when i'm if3.4632% T

XExpr9
XExpr4
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Arc Force

Starting Point:
10 Nodes=10 Factors

XExpri0

XExpr5
XExpr2

XExpr9
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Arc Force

Top Arc Force

XExpr10

XExpr5
XExpr2

XExpr9
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Arc Force

Using Arc Force for Variable Clustering

* BayesialLab’s Variable Clustering is a hierarchical agglomerative clustering
algorithm that uses Arc Force (i.e., the Kullback-Leibler Divergence) for
computing the distance between nodes.

* At the start of Variable Clustering, each manifest variable is treated as a
distinct Factor or Cluster.

* The clustering algorithm proceeds iteratively by merging the “closest”
Factors/Clusters into a new Factor/Cluster.

40
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BayesialLab Workflow

Workflow

* Machine-Learning

* Minimum Description Length
* Clustering
|ZI * Arc Force
* Validation

* Log Loss

* Contingency Table Fit

* Purity
* Visualization & Interpretation
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Number of Possible Networks
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* 2 Nodes: 3
N1 N2
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Learning=Searching

Number of Possible Bayesian Networks

* 2 Nodes: 3
* 3 Nodes: 25
* 4 Nodes: 543
* 5 Nodes: 29,281
* 6 Nodes: 3.8x10°
* 7 Nodes: 1.1x10°
* 8 Nodes: 7.8x10!
* 9 Nodes: 1.2x1015
* 10 Nodes: 4.2x1018 eﬂrc ﬂce
* 11 Nodes: 3.2x1022
: : /

* 240 Nodes: 9.1x109060
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Learning=Searching

Minimum Description Length

° DL(B) is the number of bits
to represent the Bayesian
network B (graph and
probabilities), and

* DL(D|B) is the number of
bits to represent the dataset
D given the Bayesian network
B (likelihood of the data MDL(B,D)=a-DL(B)+DL(D|B)

given the Bayesian network). Default

Structural Coefficienta  _ a=1

Complexity
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Minimum Description Length
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CAR PPPENLOO 204008V ROGOO@MNEOT
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Network score: 217,884.553
Network score: 217,743.338
Network score: 217,610.856
Network score: 217,483.237
Network score: 217,359.875
Network score: 217,241.952
Network score: 217,195.628
Network score: 217,152.903
Network score: 217,113.827
Network score: 217,075.16
Network score: 217,037.782
Network score: 217,010.554
Network score: 216,985.768
Network score: 216,968.772
Network score: 216,955.839
Network score: 216,951.317
Network score: 216,947.242
Network Associated graph 1.xbl final score: 216,947.234
Data Compression Rate: 39.913%

Structural Compression Rate: 98.42%
\ Time to find the best solution: Oh 0m 20s
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Joint Probability: 100.00%:
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Total Value: 1,008.919
Mean Value: 4.204

[00| s B




|E| Bayesialab - Associated graph 1.xbl

- [m| X
Metwork Data Edit View Learning Inference Analysis Menitor Tools Window Help
DoES XDherd PRLPAEILUVY 220 +/RHOREAN OGS OE \EHOT LALPevERIFTHRV AT I[ 057608 |k @
] o |
Joint Probability: 100.00%
Log-Loss: 0
Cases: 15,017
Total Value: 1,008.919
Mean Value: 4.204 =
< >
= @ [00| s B
@[ assoa.. | e




[£#] BayesiaLab - Associated graph 1.xbl — [m| X

Metwork Data Edit View Learning Inference Analysis Menitor Tools Window Help

DoES XPEers PRPPEILZNVY @20 A/RO0REHAN hOOOOENEON PLLPuER[Fh%VAE: | 0.820853 | ¥ @
¥ Associated graph 1.xbl * E=REEE=
Joint Probability: 100.00%
Log-Loss: 0
Cases: 15,017
Total Value: 1,008.919
Mean Value: 4.204 Al
2.
< >
= @ [00| s B

][] Associa... e




[£#] BayesiaLab - Associated graph 1.xbl — [m| X

Metwork Data Edit View Learning Inference Analysis Menitor Tools Window Help

DBH@“ Missing Values Processing >@é.ﬁ‘@0@ﬁﬁ'.....\@.Iﬁﬁﬁlﬁkl?‘qvﬂif
ik =Rl

Stratification

. - . Joint Probability: 100.00%:
Discretization Ctrl+Shift+R Log-Loss: 0
Binarization Cases: 15,017
I} Total Value: 1,008.919
p— Mean Value: 4.204 ]

Generate Node Values

Linearize Node Values .‘)-

Generate Prior Samples ‘z....w
Parameter Estimation

Unsupervised Structural Learning >

Supervised Learning ¥

Data Perturbation

Data Clustering

Multiple Clustering T
Multiple Binary Clustering 1 ,‘:

K-Means
Binary Clustering

<
=] o |0:0] e
@[ Assoca...| e




|E Bayesialab - Associated graph 1.xbl
Metwork Data Edit View Learning Inference Analysis Menitor Tools Window Help

DoEe XhEerms PRLPEIUINVO

220 FPOREAN  LOOSOENEHOW PRPLPuExF %Vl

T “HPRQ

[E=EEN

'" Lla Assodia...

1~ Associated graph 1.xbl *

TICOmTTgs. & ESe: AL_ XExpro | | Jeint Probability: 100.00%

Log-Loss: 0
I show my sadness.| Cases: 15,017
. R Total Value: 1,008.919
1tell Eeople aboul:_lli when i'm irritated. Mean Value: ‘{.204 =
XExprd

= II seldom get emotional.

way that I have arranged things. ESeht10 .

II don't worry about things that have already happened.|
@ EAnxi10
. . . I rarely worry.
to my expectations. .
Ecru-u—my—u-eg-m-emn-m'len bothered by at least one of them. — - :
y — I get upset by unpleasant thoughts that come into my mind.
Pati6 /
. oy -
I get upset easily. II often worry about things that turn out to be unimportant.
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T) [Factor_0] | am deeply moved by others' misforfunes.

| seldom feel weepy while reading the sad part of a story.
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| am not easily disturbed by events

| am good at making impromptu speeches.
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[Factor_1]
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PO | get upset easily

[N | get stressed out easily.

[Factor_2] J=iFdE8 | remain calm under pressure.

(== 0 | seldom get emotional.
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AFlexd | react strongly to criticism.
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| am just an ordinary person
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| 4| A80cB1U |1 have Intie to say. |Factor_au] |Factor_34||[Factor_40] | [Factor_39]| |Factor_2U|||Factor_4U] | |Factor_22| |[Factor_21] | [Factor_4U] | |F-actor_4U] L

Do XBE AForgl |1 love my enemies [Factor_41] [Factor_42] 8 vl =T vl [Factor_41] | [Factor_a1] [ 2l (51 (| . ¥4l [Factor_41]| [Factor_41]
i Associated graph 1.xbl * AForg4 |1 am nice to people | should be angry at. [Factor_41] [Factor_42] 2 [Factor_41] JjL5=1e 1 ¥ |Factor_41]|[Factor_41]
AGentB@ HSinc10 | let people push me around to help them feel important. [Factor_41] [Factor_42] JiE==(I@eil [Factor_. [Factor_41] Jj|F=1x (I w] [Factor_41]|[Factor_41]
’ip HFairg | admire a really clever scam. [Factor_42] [Factor_43] | [Factor_17]|[Factor_43] | [Factor_41] fig:0 SRl [Factor_14] | [Factor_15] | [Factor_14] | [Factor_15] | [Factor_13]
HEair? | cheat to get ahead. [Factor_42] [Factor_43] | [Facter_17]|[Facter_43] | [Factor_41] | [Factor_28]| [Facter_14] | [Factor_15] |[Facter_14] | [Facter_15]|[Factor_13]
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CPerf10 |1 prefer to just let things happen [Factor_43] [Factor_44] [Factor_41] [Factor_44] [Factor_42] [Factor_42] [Factor_42] [0 [Factor_42] [Factor_42]
. OAesAT || seldom notice the emotional aspects of paintings and pictures. [Factor_44] [Factor_45] | [Factor_42] Ji g =0 M 5T (T8 %1l [Factor_43] I (=T (0 %M | 3= Te (s IE B | 3 To (TSIl [Factor_43] ([Factor_43]
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exﬁ@ QAesA10 (1 do not enjoy watching dance performances. [Factor_44] [Factor_45] | [Factor_42] iz {uie St M | Tx (0 &Il [Factor_43] [ (g (e (0 kM T (o] RN [ Tol 1@ MU [Factor_43] ([Factor_43]
HMede1 || don't think that i'm better than other people. [Factor_45] [Factor_7] |[Factor_45] J(5=l=0/8:] M [Factor_10] Jig:I=CIg) | [Factor_8] |[Factor_46] ||5:0=018:] M [Facior_45] [Factor_46]
HWlodes || believe that | am better than others. [Factor_45] [Factor_7] |[Factor_45] J(F=0=0/8 0 [Factor_10] Jig=l=Glg i [Factor_8] |[Factor_46] |0 [Factor_45] [Factor_46]
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HMede? |l like to atiract altention. [Factor_47] [Fa 4 [Factor_45 [Factor_47 [Factor_45]
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QuUnco4 |1 rebel against authority. [Factor_47] [Factor_43] [Factor_46] |[Factor_48] [Factor_438] [Factor_47]
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Olngui | am interested in science. [Factor_48] [Factor_11] | [Factor_14]| [Factor_12] flE=l I8 )l [Factor_12] izl (I8 L)l [Factor_13] | [Fola: il [Factor_48]
QIngu3 [l enjoy intellectual games [Factor_48] [Factor_11] | [Factor_14]|[Factor_12] [Fa[:lcul&][Fadch&] [Factor_13] [Faclurja]
CPerf1 |l pay attention to details [Factor_49] [Factor_49] [Factor_49]
CPerf3 |1 have an eye for detail. [Factor_49]
CPerf | pay too little aitention to details. [Factor_49]
CPrudg || make careless mistakes [Factor_50] "
Ot) CPrudi0 (I make a fool of myself. [Factor_50] 0] [Factor_50] [Factor_50] JigE={=t/ @30 [Factor_50] [Factor_50] |0 [Factor_50] [Factor_s]
APati1@ HSinc2 || use flatery to get ahead. [Factor_51] [Factor_52] JiE:Ix! TGN (5= 85 )| [Factor_26] | [Factor_14] [ [Factor_15] [[Facter_14] | [Facter_15]|[Factor_13]
HSinc3 || tell other people what they want to hear so that they will do what | want them to do.  J[FEGIEER| [Factor_52] Jig:I! TR W =0 0188 W | [Factor_26] | [Factor_14] [ [Factor_15] [[Facter_14] | [Facter_15]|[Factor_13]
QIngus |l find political discussions interesting. [Factor_52] [Factor_22] [Factor_23] [Factor_53] [Factor_24] [Factor_52] [Facior_51] [Factor_52]
Qlngud || don't bother worrying about political and social problems. [Factor_52] [Factor_22] [Factor_53] [Factor_24] [Factor_52] [Factor_51] [Factor_52]
EFear§ |l like to do frightening things. [Factor_53] [Factor_53] | [Factor_53]| [Factor_52] [z vkl [Factor_54] | [Factor_53] === =0l [Facto (51 e [Factor_53]
EFear? |l love dangerous situations [Factor_53] [Factor_53] | [Facter_53]| [Factor_52] §ig:I= 0 @kl [Factor_54] | [Factor_53] j[E=I= 01 |31 (Il [Factor_53]
| HGree7 |l wish to stay young forever. [Factor_54] [Factor_54] [Facter_54] | =00/ %)) [Factor_54] [Factor_0] [Facter_54] [Factor_52] [Factor_54] JIz:=GIg®]) [Factor_54]
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Automatic Selection of the Number of States by Random Walk
MNumber of Steps 10
Sample Size 100.0000%
Initial Number of States 2
Maximum Number of States 7
Minimum Cluster Purity 70.0000%
Minimal Cluster Size 1.0000%
Random Number Generator's Seed 3
Result Summary
Statistics Min Mean Max
Number of Factors 54
Number of Clusters 2 49444 7
Mean Purity 80.2359% | 85.6986% | 93.4544%
Contingency Table Fit 33.2139%| 67.1222% | 94.9874%
Hypercube Cells Per State| 10.0527|6,384.9394 |54 910.6286
| [Factor_0] - 1 cry during movies._(7)
Performance Indices
Mean Purity 86.3660%
Contingency Table Fit 39.0043%
Deviance 739128418
Hypercube Cells Per State |45,858.1135
Node significance with respect to the information gain brought by the node to the knowledge of [Factor_0]
Normalized | Relative " .
Mutual Relative Prior G-test df | p-value
Node Comment . N Mutual Mutual . G-test |df| pvalue
information || o tion | Information | Si@MIficance | Mean Value (Data) |(Data)| (Data)
ESent3 |l cry during movies. 1.1857 | 422342%| 43.0031% 1.0000 3.9520|24,683.1335| 36| 0.0000% | 24,688.6265 36|0.0000%
ESent6 | | rarely cry during sad movies 11215 39.9473%| 40.6746% 09459 4.0925|23,346.5796 | 36 | 0.0000% | 23,351.4988 36| 0.0000%
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ESent5 (| am deeply moved by others’ misfortunes. 0.5143| 18.3184%| 18.6519% 0.4337 4.4901|10,705.9261 | 36| 0.0000% [ 10.707.9183 36|0.0000%
ESent& || am seldom bothered by the apparent suffering of strangers. 0.4974| 17.7160%| 18.0386% 0.4195 3.24560(10,353.8665 | 36| 0.0000% [ 10,355.7313 36| 0.0000%
EAnxi& | am not easily disturbed by events. 0.2547 9.0744% 9.2306% 0.2149 4.3584| 5,303.3726|36|0.0000% | 5304.2425 36|0.0000%
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(MRl | don't worry about things that have already happened. 03813 147517% | 17.2499% 0.3245 3.3409( 7938.4589(30(0.0000%  7,939.6912 30{0.0000%
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Quality of Representation

Key Measures

* Contingency Table Fit
* Log-Loss Distribution
* Entropy

* Purity

* Deviance

* Hypercube Cells Per State
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