Synthesis of Causal Discovery and Machine Learning – Questions Posed

Robert Stoddard, Principal Researcher, SEI
Mike Konrad, Principal Researcher, SEI

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Agenda

Use of BayesiaLab

Causal Learning

Comparison of ML and CL outputs

Questions Posed for Future Collaboration?

Context of Causal Models for Software Cost Control (SCOPE)

Agenda

SEI SCOPE Research Focus

Causal Learning

Comparison of ML and CL outputs

Questions Posed for Future Collaboration?

Use of BayesiaLab

- 1. Supervised machine learning (ML) with cost, schedule and quality as targets
- 2. Multi-variate outlier analysis
 - a) Aid in data quality analysis
 - b) Possible data segmentation strategies
- 3. Data imputation, when needed
- 4. Prediction of "what-if" scenarios of factors against outcomes
- 5. Classifier to assign probability of a binary outcome (e.g. good vs bad outcomes)
- 6. Diagnostic of most likely factors associated with a given outcome
- 7. All in support of DoD cost estimation and affordability analysis

Agenda

SEI SCOPE Research Focus

Use of BayesiaLab

Comparison of ML and CL outputs

Questions Posed for Future Collaboration?

Why Do We Care about Causation?

http://www.tylervigen.com/spurious-correlations

More about Misinterpreting Correlation!

Regression & ML benefit from a Structural Causal Model!

Regression and ML may be fooled by spurious association!

Need a structural causal model (SCM) representing our theory and context

Need to determine which paths are causal versus non-causal

Must block non-causal paths

Then conduct regression and ML with the correct set of factors!

Suitability of the model depends on the SCM!

The Causal Learning Landscape

Conduct Causal Search using Tetrad

A View of the Data File Loaded into Tetrad

Prior Knowledge Entered into Tetrad

Causal Learning Algorithms

<u>Constraint-based:</u> Calculate independences in the data and do "backwards inference"; used to minimize the degree of false negative edges

Score-based (Bayesian): Calculate the likelihood of different DAGs given the data; used to minimize the degree of false positive edges

Hybrid: Use constraint-based to get "close," then Bayesian search around neighborhood

Α	В	No evidence	of a causa	l link
			.	

Some Algorithms Exploit Non-Gaussianality

Causal Search Capable with Small Data

Challenge: Which genes regulate flowering time in Arabidopsis thaliana?

Using only 47 observations, causal search identified 9 out of 21,326 genes as causal on gene activation

Subsequent greenhouse study, that used knockout variants, confirmed that 4 of the 9 were actual regulators

Using FASK Search with Associated Parameters

Additional FASK Search Parameter Settings

Causal Structure Graph Result

Markov Blanket of the NumBugs Factor

Traditional SEM Results from Tetrad

Additional Causal Learning Topics

- 1. Algorithms operating on the Structural Causal Model (see Judea Pearl, 2018, "The Book of Why")
- 2. Propensity Scoring (see Shenyang Guo and Mark W. Fraser, 2014, "Propensity Score Analysis")
- 3. Instrumental Variables (see Felix Elwert, publications on Instrumental Variables)

Agenda

SEI SCOPE Research Focus

Use of BayesiaLab

Causal Learning

Questions Posed for Future Collaboration?

ML and CL Graph Structures May Be Different

CL Markov Blanket

ML Markov Blanket

Agenda

SEI SCOPE Research Focus

Use of BayesiaLab

Causal Learning

Comparison of ML and CL outputs

When ML and CL Graph Structure Results Differ?

- 1. Choose to instantiate the Tetrad causal structure in BayesiaLab as a PSEM?
- 2. Use BayesiaLab to conduct Pearl graph surgery or Jouffe's likelihood matching for causal modeling?
- 3. Pursue metrics such as Average Causal Effect (ACE) and Total Causal Effect (TCE)?

Opportunities to Integrate ML & CL? - 01

- 1. Can a ML association graph structure result inform a CL causal search?
- 2. For extremely large datasets and # variables, would ML require significantly less computer time than a CL causal search? If so, could ML serve as a pre-screen of a CL causal search?
- 3. Could ML graph structure results inform opportunities for research into new CL causal search algorithms?
- 4. Could/should CL causal search be combined with ML graphical results for a new, superior output?

Opportunities to Integrate ML & CL? - 02

- 5. Is there a possible superior understanding obtainable from graphical structural results of both ML and CL?
 - a) Can differences between the two graphs provide insight?
 - b) Can commonality across the two graphs provide insight?
 - c) More generally, is there greater knowledge of combining Shannon Information Theory with Causal Theory?
- 6. Can combined use of ML and CL graphical structures enable an improved method of "stitching together" separate, but overlapping results towards a more holistic result?

Conclusion

We are seeking research collaboration in two ways:

- 1. Collaboration and data access for software project cost estimation and control, and
- 2. Collaboration to gain insight and answer the questions posed in this presentation

Contact Information

Presenter Contact Information

Dr. Mike Konrad
Principal Researcher,
SEI / CMU
mdk@sei.cmu.edu
1-412-268-5813

Robert Stoddard
Principal Researcher,
SEI / CMU
rws@sei.cmu.edu
1-412-268-1121