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Context of Causal Models for Software Cost Control (SCOPE)
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Use of Bayesialab

1. Supervised machine learning (ML) with cost, schedule and quality as targets

2. Multi-variate outlier analysis
a) Aid in data quality analysis

b) Possible data segmentation strategies
Data imputation, when needed
Prediction of “what-if” scenarios of factors against outcomes
Classifier to assign probability of a binary outcome (e.g. good vs bad outcomes)

Diagnostic of most likely factors associated with a given outcome

S L o

All in support of DoD cost estimation and affordability analysis
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Why Do We Care about Causation?

Number people who drowned while in a swimming-pool
correlates with

Power generated by US nuclear power plants

Correlation: 90.12% (r=0.901179)
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http://www.tylervigen.com/spurious-correlations
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More about Misinterpreting Correlation!

Often, an excluded
common cause
results in a
misinterpretation
of correlation!

Hot
Temperature

/

Does high
correlation imply
causation?
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Regression & ML benefit from a Structural Causal Model!

Regression and ML may be fooled by spurious association!
Need a structural causal model (SCM) representing our theory and context
Need to determine which paths are causal versus non-causal

Must block non-causal paths

Then conduct regression and ML with the correct set of factors!

Suitability of the model depends on the SCM!
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The Causal Learning Landscape

Causal Directed Acyclic
Causal Search Graph Model
using CMU Tetrad

which implements a
variety of algorithms

Prior Knowledge

& Observational
Data

Causal Estimation using
SEM Model

Formulate Hypotheses

using domain
knowledge and prior
scholarly publication
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Conduct Causal Search using Tetrad

A 2012-00 Tetrad Project Reduced Factors.tet - Tetrad 6.5.3-0

File Edit Logging Pipelines Window About

A\ 2018-09 Tetrad Project Reduced Factors.tet
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http://www.phil.cmmu.edu/projects/tetrad/

https://www.ccd.pitt.edu/

https://oli.cmu.edu/courses/all-oli-courses/causal-statistical-reasoning/

https://statisticalhorizons.com/
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A View of the Data File Loaded into Tetrad

All9Systems (Data) :

File Edit Tools

All 8 for Tetrad-v010.csv |

M

C1 c2 C3 c4 cs5 Ck c7 ca ca

AgeMonths | NumDev LOC NumBugs | BugChurn |NumCyclic...| NumModul..| NumUnsta... | Numimpro...
1 71.0000 80000  491.0000 18.0000{  241.0000 8.0000 2.0000 3.0000 1.0000
2 35.0000 500000 270.0000 10.0000 329.0000 167.0000 1.0000 1.0000 4.0000
3 52.0000 2.0000 58.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 420000 1.0000 47 0000 2.0000 13.0000 0.0000 0.0000 0.0000 0.0000
5 490000 1.0000 10.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
[ 36.0000 2.0000 103.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
7 54.0000 2.0000 29.0000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 75.0000 8.0000 163.0000 13.0000 134.0000 0.0000 1.0000 3.0000 0.0000
] 74.0000 2.0000 15.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
10 57.0000 2.0000 26.0000 1.0000 16.0000 22.0000 0.0000 0.0000 0.0000
11 48.0000 4.0000 81.0000 2.0000 6.0000 0.0000 1.0000 0.0000 0.0000
12 39.0000 1.0000 30.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
13 48,0000 2.0000 46,0000 3.0000 36.0000 0.0000 0.0000 0.0000 0.0000
14 46,0000 3.0000 34.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
15 75.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

4]
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Prior Knowledge Entered into Tetrad

Priorknowledge1 (Tiers and Edges)
File

Tiers rﬂtherﬁmups rEdges |

ot in tier:

Tier 1

Forbid Within Tier
| AgeMonths || LOC || NumbDev

Tier 2 Forbid Within Tier

|| NumModularityViolations |

| NumCyclicDepend || Numimproperinherit
[ NumUnstablelnterface |

Tier 3

BugChurn || NumBugs

[_| Forbid Within Tier

Use shift key to select multiple items.
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Causal Learning Algorithms

Constraint-based: Calculate independences in the data and do “backwards inference”;
used to minimize the degree of false negative edges

Score-based (Bayesian): Calculate the likelihood of different DAGs given the data; used
to minimize the degree of false positive edges

Hybrid: Use constraint-based to get “close,” then Bayesian search around neighborhood

A B No evidence of a causal link
A =—) B Evidence of a causal link from Ato B

A G— B Evidence of a causal link from B to A
A <¢=—p B Evidence of an unmeasured confounder
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Some Algorithms Exploit Non-Gaussianality

Linear Gaussian Linear non-Gaussian
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Causal Search Capable with Small Data

Challenge: Which genes regulate flowering time in Arabidopsis thaliana?

Using only 47 observations, causal search identified 9 out of 21,326 genes as causal on
gene activation

Subsequent greenhouse study, that used knockout variants, confirmed that 4 of the 9
were actual regulators
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Using FASK Search with Associated Parameters

FASKsearch (Algorithms that Generate Graphs) =
Algorithm Filters Choose Algorithm Algorithm Description
Show algorithms that: BPC =
@ show all FAS
{7 forbid latent common causes LS
FASK Concatenated
' allow latent common causes ECl
_ search for Markov blankets FGES
_ produce undirected graphs FGES-MB
FOFC
) orient pairwise FTEC
(_ search for structure over latents GFCI L
GLASSO
Show only: IMaGES Continuous
[] accepts knowledge IMaGES Discrete 3
LiNGAM
Choose Independence Test and Score MBFS
MGM
Filter by dataset properties: MIMBuild
. o . . PC All
[_] variables with linear relationship R1
[] Gaussian variables R2
R3
RFCI
Test | -] RSkew
Score: |Sem BIC Score |v | RSkewE W
Skew -
<] Il [+]
| Set Parameters >
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Additional FASK Search Parameter Settings

FASKsearch (Algorithms that Generate Graphs)

4

FASK Parameters
Penalty discount (min = 0.0) 4
Maximum size of conditioning set (unlimited = -1) -1
Alpha orienting 2-cycles (min = 0.0) 1.0E-6
Threshold for including extra edges 0.3

Threshold for judging negative coefficient edges as X-=>Y (range (-1, 0) -0.2
Yes if adjacencies from the FAS search should be used i@ Yes ) No
Yes if adjacencies from conditional correlation differences should be used i® Yes (' No

The number of bootstraps (min = 0) 0
Ensemble method: Preserved (0), Highest (1), Majority (2) 1

Yes if verbose output should be printed or logged i) Yes ® No
< Choose Algorithim | ‘ Run Search & Generate Graph > ‘
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Causal Structure Graph Result

LOC m AgeMonths

‘ HumCyclicDepend ‘

¥

‘ Humimproperinherit ‘

‘ HumbUnstablelnterface |

| HumModulariyiolations ‘

BugChurn
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Markov Blanket of the NumBugs Factor

‘ HumcCyclicDepend ‘

BugChurn

HumBugs
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Traditional SEM Results from Tetrad

LOC

1149152

1.0347

0.0121

BugChurn

0.0151

1

2.3501

NumBugs

23852

9.09463

| HumCyclicDepend ‘

0.0051

File Parameters Layout

| Graphical Editor | Tabular Editor

Degrees of Freedom =4
Chi 3guare = 2353.0099
F Value = 0.0000ED

BIC Score = 2321.5678
CFl=0.9907

RMSEA = 0.2550
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Additional Causal Learning Topics

1. Algorithms operating on the Structural Causal Model (see Judea Pearl, 2018, “The Book of Why”)
2. Propensity Scoring (see Shenyang Guo and Mark W. Fraser, 2014, “Propensity Score Analysis”)

3. Instrumental Variables (see Felix Elwert, publications on Instrumental Variables)

| JuD F.I/‘\“PHA RL .
] | Ivlll\\lk f'lJ.HFl\JEH\l‘. "“i“} ) pRDPENSITY
\ AND DANA MACKENZIE SCDRE
THE ANALYSIS

S’y&tic.ﬂ Methods and Applications
J

CAUSAL INFERENCE BOOK OF

!\h!rglATISTIES WHY

.

Judea Pearl '

Madelyn Glymour . )

4 THE NEW SCIENCE

Nicholas P. Jewell X e S
OF CAUSE AND EFFECT Mark W. Fraser

Lo

=) WILEY
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ML and CL Graph Structures May Be Different

CL Markov Blanket

LOC

HumbDey

e

NumCyclicDepend

BugChurn

T

HumBugs

ML Markov Blanket

LOC

_
O

-
Os.

BugChurn e
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When ML and CL Graph Structure Results Differ?

1. Choose to instantiate the Tetrad causal structure in BayesiaLab as a PSEM?

2. Use Bayesialab to conduct Pearl graph surgery or Jouffe’s likelihood matching for
causal modeling?

3. Pursue metrics such as Average Causal Effect (ACE) and Total Causal Effect (TCE)?
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Opportunities to Integrate ML & CL? - 01

1. Can a ML association graph structure result inform a CL causal search?

2. For extremely large datasets and # variables, would ML require significantly less
computer time than a CL causal search? If so, could ML serve as a pre-screen of a
CL causal search?

3. Could ML graph structure results inform opportunities for research into new CL causal
search algorithms?

4. Could/should CL causal search be combined with ML graphical results for a new,
superior output?

© 2018 Carnegie Mellon University
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Opportunities to Integrate ML & CL? - 02

5. Is there a possible superior understanding obtainable from graphical structural results
of both ML and CL?

a) Can differences between the two graphs provide insight?
b) Can commonality across the two graphs provide insight?

c) More generally, is there greater knowledge of combining Shannon Information
Theory with Causal Theory?

6. Can combined use of ML and CL graphical structures enable an improved method of
“stitching together” separate, but overlapping results towards a more holistic result?
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Conclusion

We are seeking research collaboration in two ways:
1. Collaboration and data access for software project cost estimation and control, and

2. Collaboration to gain insight and answer the questions posed in this presentation
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