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Context of Causal Models for Software Cost Control (SCOPE)
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Use of BayesiaLab

1. Supervised machine learning (ML) with cost, schedule and quality as targets

2. Multi-variate outlier analysis
a) Aid in data quality analysis

b) Possible data segmentation strategies

3. Data imputation, when needed

4. Prediction of “what-if” scenarios of factors against outcomes

5. Classifier to assign probability of a binary outcome (e.g. good vs bad outcomes)

6. Diagnostic of most likely factors associated with a given outcome

7. All in support of DoD cost estimation and affordability analysis
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Why Do We Care about Causation?

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations
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More about Misinterpreting Correlation!
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Regression & ML benefit from a Structural Causal Model!

Regression and ML may be fooled by spurious association!

Need a structural causal model (SCM) representing our theory and context

Need to determine which paths are causal versus non-causal

Must block non-causal paths

Then conduct regression and ML with the correct set of factors!

Suitability of the model depends on the SCM!
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The Causal Learning Landscape
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Conduct Causal Search using Tetrad

http://www.phil.cmu.edu/projects/tetrad/

https://www.ccd.pitt.edu/

https://oli.cmu.edu/courses/all-oli-courses/causal-statistical-reasoning/

https://statisticalhorizons.com/

http://www.phil.cmu.edu/projects/tetrad/
https://www.ccd.pitt.edu/
https://oli.cmu.edu/courses/all-oli-courses/causal-statistical-reasoning/
https://statisticalhorizons.com/
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A View of the Data File Loaded into Tetrad
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Prior Knowledge Entered into Tetrad
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Causal Learning Algorithms

Constraint-based: Calculate independences in the data and do “backwards inference”; 
used to minimize the degree of false negative edges

Score-based (Bayesian): Calculate the likelihood of different DAGs given the data; used 
to minimize the degree of false positive edges

Hybrid: Use constraint-based to get “close,” then Bayesian search around neighborhood

A               B        Evidence of a causal link from A to B
A               B        Evidence of a causal link from B to A
A               B        Evidence of an unmeasured confounder

A               B        No evidence of a causal link



16Synthesis of Causal Discovery and Machine Learning – Questions Posed
© 2018 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] Approved for 
public release and unlimited distribution.] 

Some Algorithms Exploit Non-Gaussianality

X Y

X Y

Linear Gaussian Linear non-Gaussian
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Causal Search Capable with Small Data

Challenge:  Which genes regulate flowering time in Arabidopsis thaliana?

Using only 47 observations, causal search identified 9 out of 21,326 genes as causal on 
gene activation

Subsequent greenhouse study, that used knockout variants, confirmed that 4 of the 9 
were actual regulators
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Using FASK Search with Associated Parameters
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Additional FASK Search Parameter Settings
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Causal Structure Graph Result
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Markov Blanket of the NumBugs Factor
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Traditional SEM Results from Tetrad
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Additional Causal Learning Topics

1. Algorithms operating on the Structural Causal Model (see Judea Pearl, 2018, “The Book of Why”)

2. Propensity Scoring (see Shenyang Guo and Mark W. Fraser, 2014, “Propensity Score Analysis”)

3. Instrumental Variables  (see Felix Elwert, publications on Instrumental Variables)
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ML and CL Graph Structures May Be Different

CL Markov Blanket ML Markov Blanket
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When ML and CL Graph Structure Results Differ?

1. Choose to instantiate the Tetrad causal structure in BayesiaLab as a PSEM?

2. Use BayesiaLab to conduct Pearl graph surgery or Jouffe’s likelihood matching for 
causal modeling?

3. Pursue metrics such as Average Causal Effect (ACE) and Total Causal Effect (TCE)?
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Opportunities to Integrate ML & CL? - 01

1. Can a ML association graph structure result inform a CL causal search?

2. For extremely large datasets and # variables, would ML require significantly less 
computer time than a CL causal search?  If so, could ML serve as a pre-screen of a 
CL causal search?

3. Could ML graph structure results inform opportunities for research into new CL causal 
search algorithms?

4. Could/should CL causal search be combined with ML graphical results for a new, 
superior output?
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Opportunities to Integrate ML & CL? - 02

5. Is there a possible superior understanding obtainable from graphical structural results 
of both ML and CL?

a) Can differences between the two graphs provide insight?

b) Can commonality across the two graphs provide insight?

c) More generally, is there greater knowledge of combining Shannon Information 
Theory with Causal Theory?

6. Can combined use of ML and CL graphical structures enable an improved method of 
“stitching together” separate, but overlapping results towards a more holistic result?
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Conclusion

We are seeking research collaboration in two ways:

1. Collaboration and data access for software project cost estimation and control, and

2. Collaboration to gain insight and answer the questions posed in this presentation
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