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IQsAl Context & purposes

We led an assignment for a large multinational company (MNC) willing to optimize its +1000
agencies network. The purpose is :
1) To spot key success/failure factors related to branches’ performance
2) Eveéltually to build a decision-making model aiming at providing branch footprint optimization
guidance.

Context : the MINC has been working on it for a while, but the recent health crisis has made it
more urgent to identify the key strategic and operational issues to be dealt with. It has then
become urgent to treat both :

Structural issues that existed prior to the crisis (growth, profitability...)
New issues resulting from the crisis (shift in customer behaviour, digital competition...)

The objective is to assist the MNC in making the appropriate strategic and organizational
decisions. To do this, we must provide the relevant “decision making” facts and figures, i.e.
those that will allow to :

Identify possible sources of underperformance and avenues for optimization,
Identify the relevant levers of action,
Prioritize them so as to maximize the chances of success of an optimization and adjustment plan

The purpose it then to better anticipate : we developed a methodology intended to shed light
on possible upcoming events

The methodology we elaborated is based on data processing and involves :
Bayesian networks (Bayesialab)
Neural networks
Humain expertise (domain experts).



IQzAlInitial approach

The first stage consisted in identifying the variables that could
make sense as regards to the questions asked:
What defines an agency that "performs” or one that "underperforms"?

What are the indicators that can help anticipate developments and adapt
agencies and the agencies network accordingly?

To achieve this, we needed to move away from usual
assumptions, and to adopt a non-siloed, "holistic" approach.

Therefore, we collected and gather data from various origins
and sources : the expectation was that this "diversity" would
lead us to spot unexpected correlations between variables

Source

Variable 1
Variable 1
Variable 1
Variable 1
Variable 1
Variable 1
Variable 1
Variable 1
Variable 2
Variable 2
Variable 2
Variable 2

Target
Variable 28
Variable 43
Variable 30
Variable 39
Variable 86
Variable 17
Variable 34
Variable 91
Variable 37
Variable 72
Variable 4
Variable 40

Correl. [Pearson]

0,520830077
0,518258786
0,516407663
0,515761265
0,515564785
0,515179052
0,5149961
0,507724536
0,50682865
0,506706964
0,505722602
0,504405526

If we knew the reason why were doing this, bat we didn’t know what we were looking for: the
variables that would prove important could come either from the financial sphere, or be an indicator
that characterizes HR issues, or others such as commercial activity, market shares, business fields,
customer size, geographical location... no hypothesis should be ruled out, except those that were
obviously far-fetched (e.g. little chance that the color of the walls of the agency could have an

impact on turnover.... although...)

Some data supposed to exist proved to be missing or unavailable... in conclusion, this “collect and
centralization” phase has been a tedious and long one, but we knew that the rigor with which this
was carried would condition the relevance of the observations and conclusions that will result...

It resulted in 1,116 columns and 1,032 rows centralization document (i.e. more than one million

data), ready to be refined for the purpose of the data processing ...
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Summary

Il. Bayesialab in the process : from data to causality
* ‘Noisy’ signal ? The empty-missing-zero dilemma
* Overview of PSEM process and first causal results
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Empty, #Missing, O

‘Noisy’ signal in data ?

: What does that really mean
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IQAl “Noisy’ signal in data ?

Dilemma : Missing vs Filtered alternative [bias]
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Al Noisy’ signal in data ?

Initial dataset
1032 rows x 1116 variables

0:-96'080 Values (%Nb vs Total dataset cells) - =
c i 000% i =
'i every | | “ _ —
|| MISSING (1’;22% ‘ \ . Final dataset
I 1023 rows x 106 variables
| 0%  10%  20%  30%  40%  50%
l = Initial = Final JIues
' B = Empty : C
i === 0: 16,800

N/A : 3,138

20/10/2021 Emmanuel KEITA - for Up&Up 9




QA Data Importation in Bayesialab
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Data Selection and Filtering

Missing Values Processing
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Complete Data Set

Associated Continuous Values| Yes
Minimum 3
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Standard Deviation 1.4972895
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@A Filtered values option

Differences with machine learning...

| Unsupervised Learning & Supervised Learning
(MWST) & (Tree Augmented Markov Blanket)
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QA Filtered option in Bayesialab

... Because of differences of perception !

Initial MDL score: 27,623.982

Initial MDL s
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QA 55EM 1 - Learning + Var. Clustering
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1Q:Al PSEM 2 . Data Clustering +
Learning
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Total Effects on Target
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@A Direct Effects on Target
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IQeAl - Top 10 causal effects

A
- | Positive |
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That’s a great job !

B
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Heuristic Search
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Summary

Ill. Network science’s contributions
1. Data elicitation

2. Causal discovery in high dimensions : GIES and first
results

Christophe Thovex



IQ«Al Network Science and data elicitation

2006:
The United States National Research Council defines network
science as "the study of network representations of physical,

biological, and social phenomena leading to predictive
models of these phenomena."

1. Committee on Network Science for Future Army Applications (2006). Network Science.
National Research Council. doi:10.17226/11516. ISBN 978-0309653886.
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IQeAl Network Science and data elicitation

High dimension and sparse data sets:
supporting data preparation with correlations network

First:
670 nodes, 8 530 correlated pairs, 10 clusters [Blondel2008]

Pearson > 0,5: sparse correlated structure
225 nodes, 1 100 pairs
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IQeAl Network Science and data elicitation

Supporting data preparation with correlations network:
reduced dimension and sparsity

After:
104 nodes, 5 350 correlated pairs, 3 clusters

Pearson > 0,5 : core-clustered structure
104 nodes, 784 pairs

20/10/2021 23



IQeAl Network Science and data elicitation

Supporting data elicitation with network science

How ?
Exper. graphs using Hilbert-Schmidt Independence Criterion (NHSIC), Automatic
Relevance Determination (ARD) and Bridging Centrality [Hwang2006].

Topology and flow-based search
for key nodes in correlated pairs

Key-nodes structure
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IQeAl Network Science and data elicitation

Generic effects on regression trees for BN in Bayesia Lab - decision support

Random tree forest regressor — representative examples (scikit-learn 0.24.1):
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IQeAl Network Science and data elicitation

Generic effects on regression trees for BN in Bayesia Lab - decision support

Random tree forest regression on deciles — representative examples :

ifi Weak classifier
Classifiers eak classifiers

First decile (above) / last decile (below)
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IQsAl Causal discovery in high dimensions

Following flows convergences through large graphs for
pulling causal signals from noise

Step #1 : GIES - Characterization and Greedy Learning of Interventional Markov
Equivalence Classes of Directed Acyclic Graphs [Hauser2012]

3

Simulates interventions

Search Markov
equivalence

!
oo |

Observational DAG Essential DAG Interventional DAG
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IQsAl Causal discovery in high dimensions

Following flows convergences through large graphs for
pulling causal networks from noise

Step #2 : using P-rank — [Yan2011] for
page-ranking essential DAGs with nodes in/out degree as a prominent value.

'
Local causation network

Signals

Global flows convergence
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IQsAl Causal discovery in high dimensions

Experimentation: Top 1 causes vs. KPl on quartiles

Top ranked causes for quartiles Q1 and Q4 look coherent with our key performance indicator
(KPI) for these quartiles, although they may be uncoherent for Q3.

Cause directe 81 O4 XY

For systemic causes - i.e. a specific variation not
presented here -, when they influence or
depend on a large spectrum of other nodes BB e
(causes and/or consequences in causal chains), | oOh e s g
direct correlation to KPI may become
unsignificant and the determinating aspect —
combinatorial — of these nodes may not be
expressible from such a type of visual
representation (cf. last graphic here).
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Summary

V. Conclusions
1. Dimensional view of the work & Questions to Blabers
2. Perspectives

Joél Pain

Emmanuel KEITA



Another view of the work

|Q:AI
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|QsAl From observation to action :
Enligthen the decision makers
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IQsAl 4 questions to Blabers

1) Switch to the « remove all Filtered States » option ?
2) Variable clustering : modifying clusters composition?
3) Convergence problems (direct effects, MRE)?

Mo exact convergence for Mb Clts Restauration 2019

IUnable to obtain acceptable convergence!

4) Explain in one sentence a GBF ?

5) Found a MDL score’s local minimum for SPL, using
different steps in the settings ?

[ MDL_100steps > ...> MDL_39steps > MDL 40steps < MDL_39 steps <....]
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|QeAl Conclusion

As showed, all these processes provided us with a lot of information, Projection Log CA - KPI
even if at the end we got more questions than answers...

But it enabled us to look in the right direction, to study deeper some
specific issues

It raised many interrogations, it brought up many hypothesis, and it
allowed us to ask the client “did you already consider this ?”, “have you :
already noticed that such variable could have an influence on the
agencies performance”...

Depending on the client feedback, we were then encouraged to deepen
our analysis so as to confirm (or not) that a correlation we identified
was a causality (or not)

As a result, our approach proved efficient and brought some results the MNC found interesting and
promising : we identified
a few “performance patterns”
some keys reasons that explain underperformance,
we draw their attention to some characteristics they hadn’t noticed previously,
We spotted some inconsistencies in their data which put some major weakness related to their data in evidence...
... and they seem happy with all that !

We are currently still in the process of working with them, and we hope they will soon be willing to
broaden the scope of analysis to the rest of the World and to external variables...

...which is precisely our initial purpose : we intend to build a model that integrates all relevant
parameters and that can be played with thanks to Bayesialab ;-)
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Thank you for your attention !
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