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Overall Project

1. Build computational models to predict 

PFAS risk in private wells

• Mechanistic fate/transport model

• Machine-learned Bayesian Network

• Integrated mechanistic/MLBN model

• Model validation

2. Conduct citizen-science well monitoring 

campaign

3. Develop user-friendly risk map
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PFAS Exposure
• Persistent in body (especially legacy/long-chain 

PFAS)

• Increases risk of cancer, infertility, liver damage, 

obesity, affects birthweight, child development, 

immune function, cholesterol, thyroid function

• Most Americans exposed through drinking water, 

most water treatment doesn’t remove legacy PFAS 

(EPA 2021)

• PFAS detectable in blood of most Americans 

(Lewis et al. 2015)

USGS 2022https://epi.dph.ncdhhs.gov/oee/pfas/PFAS_Factsheet.pdf
https://genxstudy.ncsu.edu/our-findings/
https://content.ces.ncsu.edu/Guide-to-Understanding-and-Addressing-PFAS-in-our-communities 3



PFAS Types

Long-chain/Legacy PFAS

• Includes PFOA, PFOS

• Predominant until 2000

Short-chain

• Includes GenX

PFOA (C8) GenX
Xu et al. 2021Xu et al. 2021
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PFAS Regulation in NC

• 2017 NCDEQ established provisional health goal of 140 ppt for GenX

• 2023 EPA proposed MCL NPDWR for 6 PFAS (finalized in 2024, +3 years 

to meet MCLs)

– MCLs are 4 ppt for PFOA and PFOS, hazard index for 4 others 

including GenX

≤ 1

https://www.epa.gov/system/files/documents/2023-03/How%20do%20I%20calculate%20the%20Hazard%20Index._3.14.23.pdf5



Chemours Fayetteville Works Facility

• 1980 production began at 

Chemours (then DuPont)

• 2009 Chemours replaced PFOA 

with GenX

• Drinking water in Cape Fear River 

Basin affected by both 

groundwater transport and surface 

water (downstream) and air 

deposition (upstream)

https://epi.dph.ncdhhs.gov/oee/a_z/pfas.html
https://factor.niehs.nih.gov/2019/3/feature/2-feature-pfas 6



Challenges of Modeling PFAS in Groundwater

• PFAS properties – high number of chemicals, different adsorptions, transport 

interactions, hydrophobic/-philic

• Difficult to get data on soil measurements

• Difficult to predict fluxes through saturated, vadose zones

• Complex transport, irregular occurrence patterns

• Accuracy of transport principles at very low levels (ppt)

• Time to model/calibrate fate & transport of multiple chemicals

Simon et al. 2019
Roostaei et al. 2021
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Bayesian Network

Coined in 1985

Based on Bayesian statistics (how good 

is a model given assumed evidence)

 Components to a Bayesian network:

– Directed acyclic graph

– Conditional probability distributions
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Machine-Learned Bayesian Network

Two components to a Bayesian network:

– Directed acyclic graph

– Conditional probability distributions

are “learned” from data.

Model complexity vs accuracy optimized 

by minimizing “min description length” 

(MDL) score:

𝑀𝐷𝐿
= 𝛼 × 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑚𝑜𝑑𝑒𝑙
+ 𝑏𝑖𝑡𝑠 𝑡𝑜 𝑠𝑡𝑜𝑟𝑒 𝑑𝑎𝑡𝑎 𝑔𝑖𝑣𝑒𝑛 𝑚𝑜𝑑𝑒𝑙
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Previous Work

• Dataset curation

Roostaei et al. 2021
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Previous Work

• Dataset curation

• Train MLBN with same inputs as 

mechanistic GW flow model 

• Model validation

• Spatial risk maps

Roostaei et al. 2021
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Goal: compare predictive performance of models with low- to high-mechanistic 
modeler effort:

Models compared

Models compared labeled by input effort:

GW 
model 
inputs

GW flow 
model 

outputs
FT model 

output conc.

Low-effort BN (Roostaei et al. 2021)

Medium-effort BN

High-effort BN

Mechanistic FT model

Mechanistic modeling effort required:     1 mo.  1 mo.
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Mechanistic Model

• Modflow 2005 & MT3D engines in 

Groundwater Vistas Model 

parameterized using data from NC DEQ, 

Chemours reports

• Model C1 (concentration at wells) using 

only parameters used in MLBN:

– steady state/long-term transport 

(saturated zone)

– empirical relationship between 

concentration at water table C0 and 

modeled air deposition rates River

Saturated 
Zone

Residential
well

D0, S0 (air deposition)

C0

C1

EPA CMTP User Manual
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MLBN Model Development

• Imputation of missing data

• Discretize variables

• Supervised learning

• Structural coefficient analysis

• Adjustment of included variables, 

discretization

• Supervised learning

• Cross-validation analysis
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MLBN Model Development
Medium-effort model High-effort model
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Model Performance Comparisons

• Area under receiver operating 

characteristic curve (AU-ROC)

16



Model Performance Comparison (AU-ROC)

Low-effort BN Med-effort BN High-effort BN FT model

0.854±0.010 
(0.905)

0.845±0.0123 
(0.908)

0.868±0.0061 
(0.916)

0.832±0.0055
(0.803)

5 CV sets’ Average±StdDev 
(final model)

High-effort BN FT modelLow-effort BN

5-fold cross-validation (n=5), 

wells with depths (n=424):

1-FPR

Tr
u

e 
Po

si
ti

ve

Med-effort BN
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Low detection rate vs low identification accuracy

• If only 10 % of wells are 

contaminated, a model can have 90 

% accuracy and never detect any 

positives (low power)

Low-effort 
BN (DT=50%)

FT Model 
(DT=140ppt)

TPR 58-61% 22-32%

TNR 91-92% 98-100%

FPR 8-9% 0-2%

FNR 39-42% 65-75%

Precision 59-62% 80-96%

Accuracy 85-86% 85-87% 18



Low detection rate vs low identification accuracy

• CV (non-stratified k-folds) made FT 

model TPR and FNR worse

Low-effort BN 
(DT=50%)

FT Model 
(DT=140ppt)

TPR 58-61% (68%) 22-32% (46%)

TNR 91-92% (92%) 98-100% (95%)

FPR 8-9% (7%) 0-2% (5%)

FNR 39-42% (32%) 65-75% (54%)

Precision 59-62% (67%) 80-96% (67%)

Accuracy 85-86% (87%) 85-87% (86%) 19



Model Performance Comparisons
• F1 score

– Balances true positive rate 

and positive predictive value

• F2 score
– Better score reduces false 

negatives (Type II Error)

Low wolf detection rate?

Low wolf identification accuracy?

Which is worse in environmental 

engineering? 20



Max = 0.6 ~40-70 ppt

Low-effort BN Mechanistic FT model

• BN models & Mechanistic FT model have similar accuracy (86%)

• Mechanistic FT model had high PPV but low TPR (tradeoff in model 

performance/risk of FP and FN based on decision threshold (posterior 

probability for BN, concentration for mechanistic–baked into mechanistic 

model calibration)

Decision Threshold (ng/L)

F1
-s

co
re

Decision Threshold (probability of exceedance)

F1
-s

co
re

Max = 0.68 ~0.25-0.55

Model Performance Comparison (F1-score)
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Max = 0.68 ~0.25-0.55

Low-effort BN

Max = 0.8 ~0.45-0.85

High-effort BN

F1
-s

co
re

F1
-s

co
re

Max = 0.65 ~0.35-0.60

Model Performance Comparison (F1 scores)

Med-effort BN

Mechanistic FT

Max = 0.6 ~40-70 ppt
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Max = 0.7 ~0.1-0.4

Low-effort BN

Max = 0.8 ~0.05-0.85

High-effort BN

F2
-s

co
re

F2
-s

co
re

Max = 0.8 ~0.10-0.70

Model Performance Comparison (F2 scores)

Med-effort BN

Mechanistic FT

Max = 0.65 ~40-50 ppt
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Max = 0.8 ~0.45-0.85

High-effort BN

F1
-s

co
re

Model Performance Comparison (F2 scores)

Mechanistic FT

Max = 0.6 ~40-70 ppt

F1
-s

co
re

Mechanistic FT

High-effort BN

F2
-s

co
re

F2
-s

co
re
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Takeaways, Limitations
• MLBN model and mechanistic FT models have similar accuracy and AU-

ROC metrics; integrated MLBN models make small gains in predictive 

power

• MLBNs appear more robust to different decision thresholds (for mechanistic 

model, decision threshold is baked into calibration)

• Mechanistic model is more susceptible to imbalanced datasets in CV

• Recalibrating mechanistic model to give more weight to high concentrations 

(improve TPR) would take a lot of additional effort, but incorporating this 

knowledge to improve performance in the hybrid BN is trivial 25



Importance, Applications

• In this particular case study area, low-

effort MLBN by itself performs as well as 

more time-consuming mechanistic model 

(at the selected level of sophistication) – 

MLBN very promising for PFAS modeling

• Improving risk prediction and awareness, 

particularly for vulnerable communities/ 

private well owners is timely

American Indian Mothers Inc. 26
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