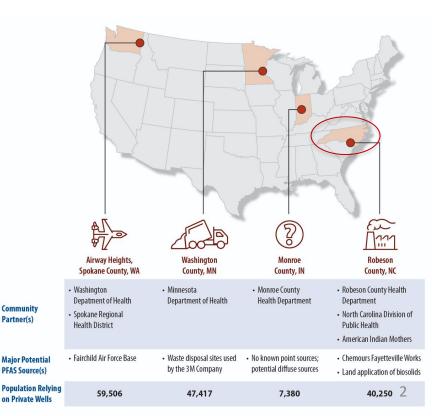
PREDICTING PFAS EXPOSURE RISKS FROM RURAL PRIVATE WELLS USING INTEGRATED MECHANISTIC AND MACHINE-LEARNED BAYESIAN NETWORK MODELS

Thursday, April 11, 2024, BayesiaLab Spring Conference, Cincinnati, OH NCSU: **Hana C Long** (presenter), Jackie McDonald Gibson, Krishnamohan Ganta RTI: Rohit Warrier, Riley Mulhern, Jennifer Hoponick Redmon, Ted Lillys

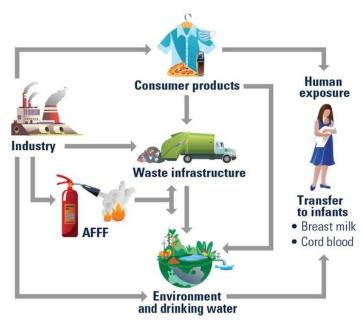
Overall Project

- Build computational models to predict PFAS risk in private wells
 - Mechanistic fate/transport model
 - Machine-learned Bayesian Network
 - Integrated mechanistic/MLBN model
 - Model validation
- Conduct citizen-science well monitoring campaign
- 3. Develop user-friendly risk map



PFAS Exposure

- Persistent in body (especially legacy/long-chain PFAS)
- Increases risk of cancer, infertility, liver damage, obesity, affects birthweight, child development, immune function, cholesterol, thyroid function
- Most Americans exposed through drinking water, most water treatment doesn't remove legacy PFAS (EPA 2021)
- PFAS detectable in blood of most Americans (Lewis et al. 2015)

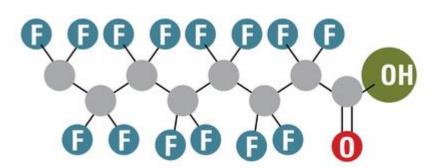


USGS 2022

PFAS Types

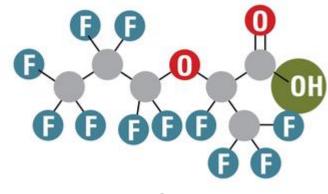
Long-chain/Legacy PFAS

- Includes PFOA, PFOS
- Predominant until 2000



PFOA (C8) Xu et al. 2021 Short-chain

Includes GenX



GenX

Xu et al. 2021

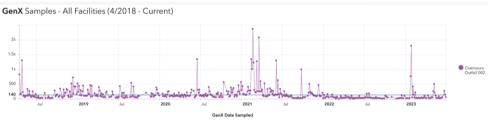
PFAS Regulation in NC

- 2017 NCDEQ established provisional health goal of 140 ppt for GenX
- 2023 EPA proposed MCL NPDWR for 6 PFAS (finalized in 2024, +3 years to meet MCLs)
 - MCLs are 4 ppt for PFOA and PFOS, hazard index for 4 others including GenX

$$\text{Hazard Index } = \left(\frac{[\text{GenX}_{\text{water}}]}{[\text{10 ppt}]}\right) + \left(\frac{[\text{PFBS}_{\text{water}}]}{[\text{2000 ppt}]}\right) + \left(\frac{[\text{PFNA}_{\text{water}}]}{[\text{10 ppt}]}\right) + \left(\frac{[\text{PFHxS}_{\text{water}}]}{[\text{9.0 ppt}]}\right) \leq 1$$

Chemours Fayetteville Works Facility

- 1980 production began at Chemours (then DuPont)
- 2009 Chemours replaced PFOA with GenX
- Drinking water in Cape Fear River Basin affected by both groundwater transport and surface water (downstream) and air deposition (upstream)



https://epi.dph.ncdhhs.gov/oee/a_z/pfas.html https://factor.niehs.nih.gov/2019/3/feature/2-feature-pfas

Challenges of Modeling PFAS in Groundwater

- PFAS properties high number of chemicals, different adsorptions, transport interactions, hydrophobic/-philic
- Difficult to get data on soil measurements
- Difficult to predict fluxes through saturated, vadose zones
- Complex transport, irregular occurrence patterns
- Accuracy of transport principles at very low levels (ppt)
- Time to model/calibrate fate & transport of multiple chemicals

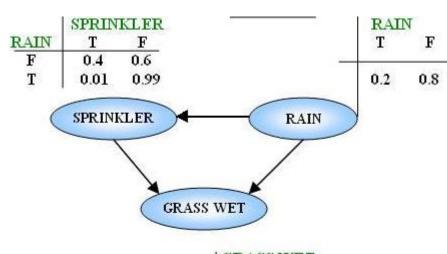
Bayesian Network

Coined in 1985

Based on Bayesian statistics (how good is a model given assumed evidence)

Components to a Bayesian network:

- Directed acyclic graph
- Conditional probability distributions



		WET	
SPRINKLER	RAIN	T	\mathbf{F}
F	F	0.0	1.0
\mathbf{F}	T	0.8	0.2
\mathbf{T}	\mathbf{F}	0.9	0.1
T	T	0.99	0.01

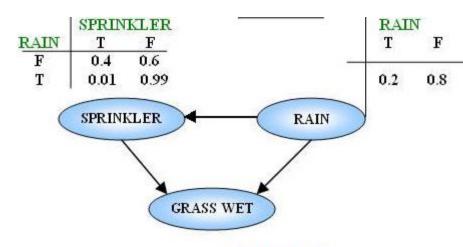
Machine-Learned Bayesian Network

Two components to a Bayesian network:

- Directed acyclic graph
- Conditional probability distributions are "learned" from data.

Model complexity vs accuracy optimized by minimizing "min description length" (MDL) score:

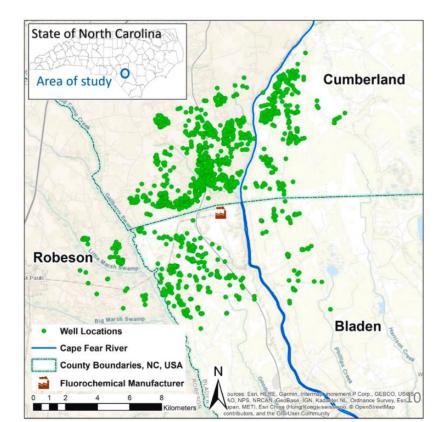
MDL= $\alpha \times [bits \ to \ store \ model]$ + $[bits \ to \ store \ data \ given \ model]$



	GRASS WET		
SPRINKLER	RAIN	T	\mathbf{F}
F	F	0.0	1.0
\mathbf{F}	T	0.8	0.2
T	\mathbf{F}	0.9	0.1
T	T	0.99	0.01

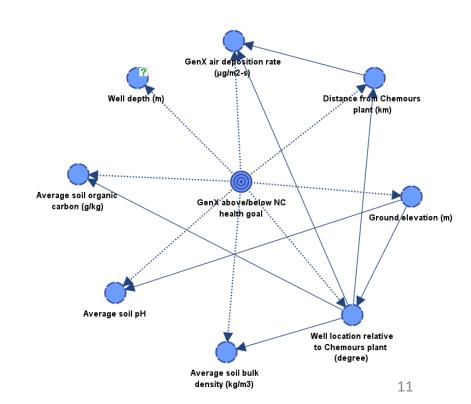
Previous Work

Dataset curation



Previous Work

- Dataset curation
- Train MLBN with same inputs as mechanistic GW flow model
- Model validation
- Spatial risk maps



Roostaei et al. 2021

Models compared

Goal: compare predictive performance of models with low- to high-mechanistic modeler effort:

Models compared labeled by input effort:	GW model inputs	GW flow model outputs	FT model output conc.
Low-effort BN (Roostaei et al. 2021)	√		
Medium-effort BN	√	√	
High-effort BN	√	√	✓
Mechanistic FT model	√	√	✓

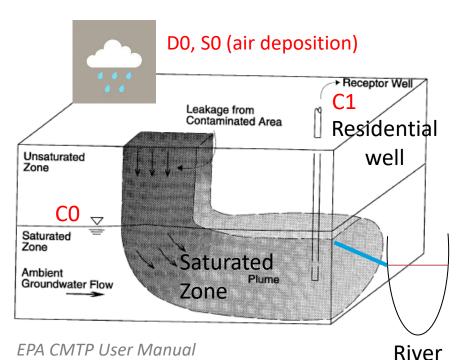
Mechanistic modeling effort required:

1 mo.

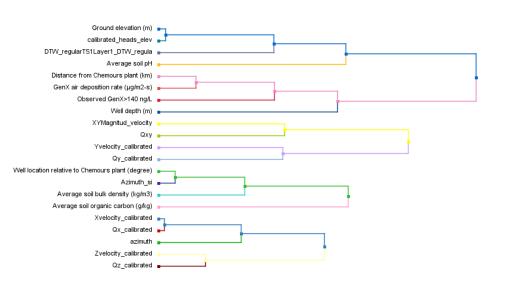
1 mo.

Mechanistic Model

- Modflow 2005 & MT3D engines in Groundwater Vistas Model parameterized using data from NC DEQ, Chemours reports
- Model C₁ (concentration at wells) using only parameters used in MLBN:
 - steady state/long-term transport (saturated zone)
 - empirical relationship between concentration at water table C₀ and modeled air deposition rates



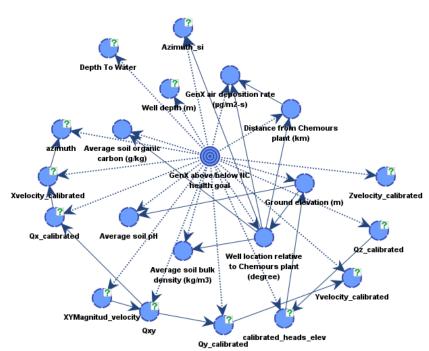
MLBN Model Development



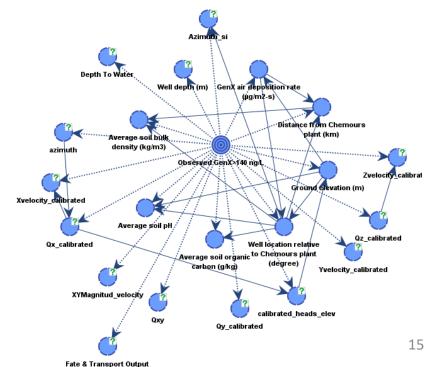
- Imputation of missing data
- Discretize variables
- Supervised learning
- Structural coefficient analysis
- Adjustment of included variables, discretization
- Supervised learning
- Cross-validation analysis

MLBN Model Development

Medium-effort model



High-effort model



Model Performance Comparisons

 Area under receiver operating characteristic curve (AU-ROC)

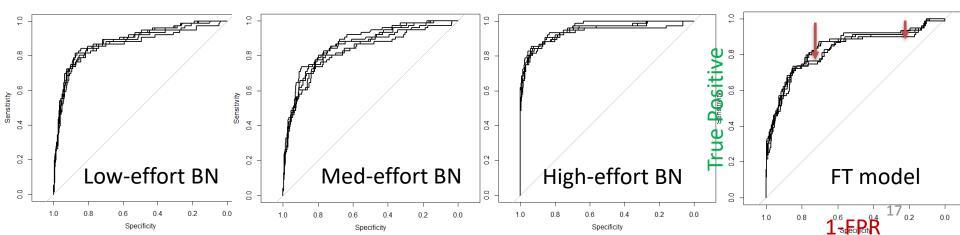


Model Performance Comparison (AU-ROC)

5-fold cross-validation (n=5), wells with depths (n=424):

5 CV sets' Average ± StdDev (final model)

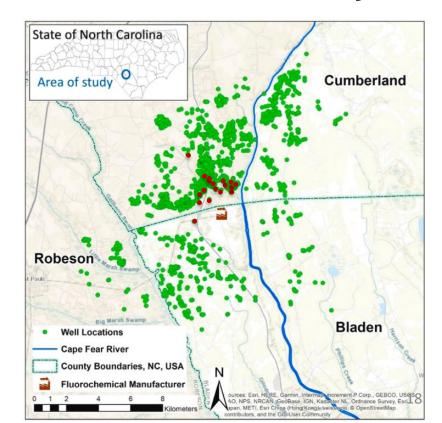
Low-effort BN	Med-effort BN	High-effort BN	FT model
0.854±0.010	0.845±0.0123	0.868±0.0061	0.832±0.0055
(0.905)	(0.908)	(0.916)	(0.803)



Low detection rate vs low identification accuracy

 If only 10 % of wells are contaminated, a model can have 90 % accuracy and never detect any positives (low power)

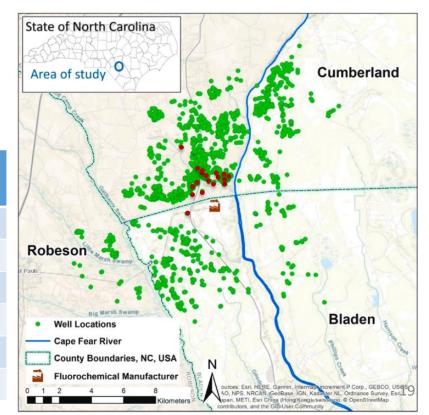
	Low-effort BN (DT=50%)	FT Model (DT=140ppt)
TPR	58-61%	22-32%
TNR	91-92%	98-100%
FPR	8-9%	0-2%
FNR	39-42%	65-75%
Precision	59-62%	80-96%
Accuracy	85-86%	85-87%



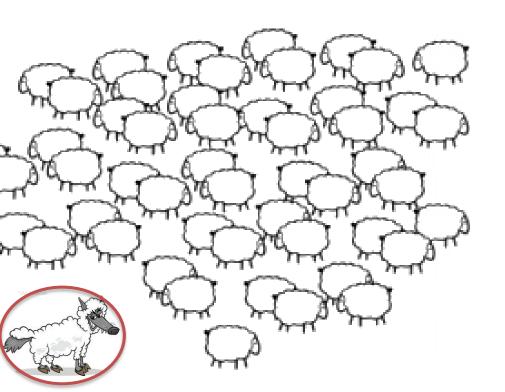
Low detection rate vs low identification accuracy

 CV (non-stratified k-folds) made FT model TPR and FNR worse

	Low-effort BN (DT=50%)	FT Model (DT=140ppt)
TPR	58-61% (68%)	22-32% (46%)
TNR	91-92% (92%)	98-100% (95%)
FPR	8-9% (7%)	0-2% (5%)
FNR	39-42% (32%)	65-75% (54%)
Precision	59-62% (67%)	80-96% (67%)
Accuracy	85-86% (87%)	85-87% (86%)



Model Performance Comparisons



- F1 score
 - Balances true positive rate and positive predictive value
- F2 score
 - Better score reduces false negatives (Type II Error)

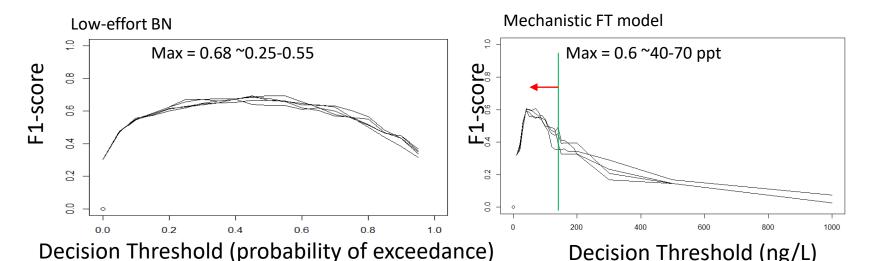
Low wolf detection rate?

Low wolf identification accuracy?

Which is worse in environmental engineering?

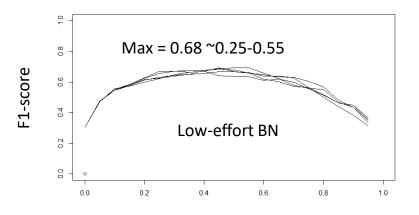
Model Performance Comparison (F1-score)

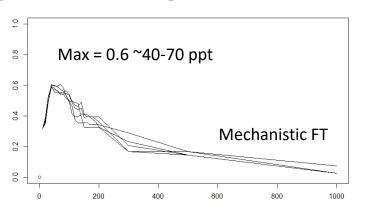
- BN models & Mechanistic FT model have similar accuracy (86%)
- Mechanistic FT model had high PPV but low TPR (tradeoff in model performance/risk of FP and FN based on decision threshold (posterior probability for BN, concentration for mechanistic—baked into mechanistic model calibration)

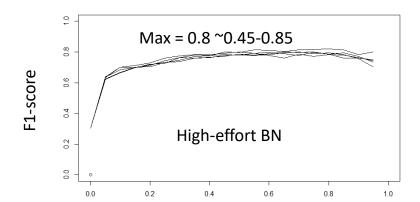


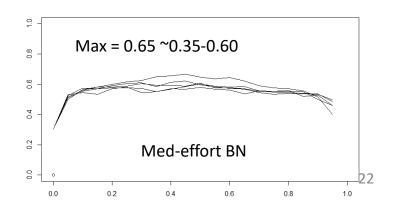
21

Model Performance Comparison (F1 scores)

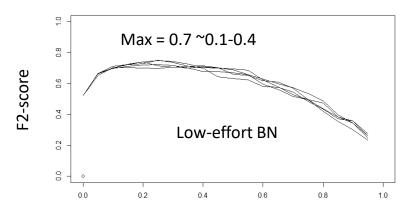


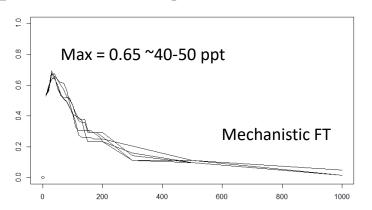


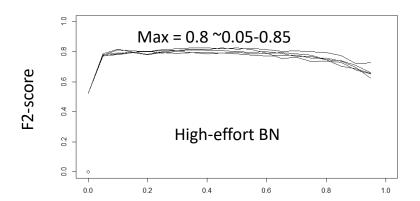


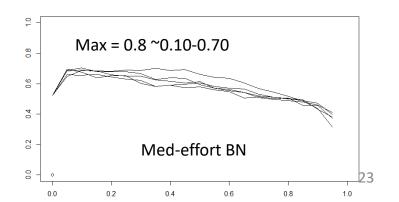


Model Performance Comparison (F2 scores)

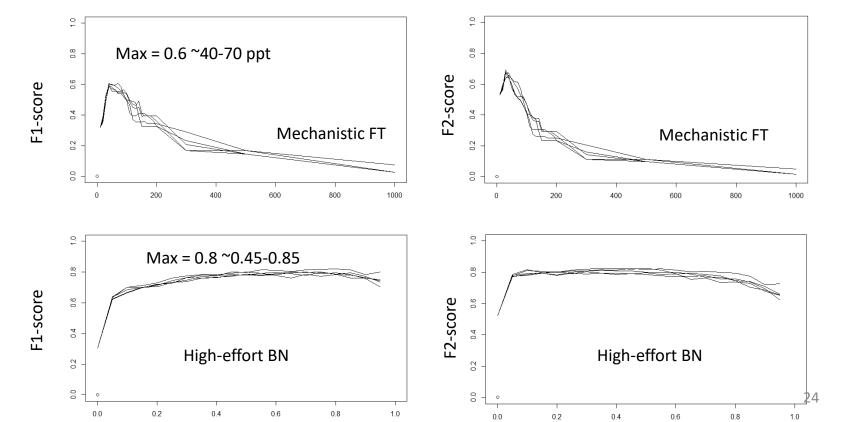








Model Performance Comparison (F2 scores)



Takeaways, Limitations

- MLBN model and mechanistic FT models have similar accuracy and AU-ROC metrics; integrated MLBN models make small gains in predictive power
- MLBNs appear more robust to different decision thresholds (for mechanistic model, decision threshold is baked into calibration)
- Mechanistic model is more susceptible to imbalanced datasets in CV
- Recalibrating mechanistic model to give more weight to high concentrations (improve TPR) would take a lot of additional effort, but incorporating this knowledge to improve performance in the hybrid BN is trivial

Importance, Applications

- In this particular case study area, loweffort MLBN by itself performs as well as more time-consuming mechanistic model (at the selected level of sophistication) – MLBN very promising for PFAS modeling
- Improving risk prediction and awareness, particularly for vulnerable communities/ private well owners is timely

Acknowledgements

Jacqueline MacDonald Gibson, PhD Head of the Department of Civil, Construction, and Environmental Engineering, Professor Modeling Team

Hana C Long Postdoc

Krishna Ganta Student

RTI:
Rohit Warrier
Riley Mulhern
Jennifer Hoponick
Redmon
Ted Lillys

QUESTIONS?