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Overall Project
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1. Build computational models to predict
PFAS risk in private wells
* Mechanistic fate/transport model
« Machine-learned Bayesian Network
» Integrated mechanistic/MLBN model
* Model validation
2. Conduct citizen-science well monitoring
campaign
3. Develop user-friendly risk map

Community
Partner(s)

Major Potential
PFAS Source(s)

Population Relying
on Private Wells

Airway Heights,
Spokane County, WA

« Washington

Depatment of Health

« Spokane Regional

Health District

« Fairchild Air Force Base

59,506

A

Washington
County, MN

« Minnesota

Department of Health

- Waste disposal sites used

by the 3M Company

47,417

Monroe
County, IN

« Monroe County
Health Department

« No known point sources;

potential diffuse sources

7,380

£
il

Robeson
County, NC

« Robeson County Health

Department

« North Carolina Division of

Public Health

« American Indian Mothers

« Chemours Fayetteville Works
« Land application of biosolids

40,250 2
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PFAS)

* Increases risk of cancer, infertility, liver damage,
obesity, affects birthweight, child development,
immune function, cholesterol, thyroid function

» Most Americans exposed through drinking water,
most water treatment doesn’t remove legacy PFAS

(EPA 2021)

 PFAS detectable in blood of most Americans

(Lewis et al. 2015)

https://epi.dph.ncdhhs.gov/oee/pfas/PFAS_Factsheet.pdf
https://genxstudy.ncsu.edu/our-findings/

PFAS Exposure

» Persistent in body (especially legacy/long-chain
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g
d
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Transfer
to infants
e Breast milk
e Cord blood

I

> Environment
and drinking water

USGS 2022

https.//content.ces.ncsu.edu/Guide-to-Understanding-and-Addressing-PFAS-in-our-communities
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PFAS Types
Long-chain/Legacy PFAS Short-chain
* Includes PFOA, PFOS * Includes GenX

 Predominant until 2000

3PeLp0 000 o o 1

\/\/\/\?a

G 6560 6 ébébﬁéf

PFOA (C8) GenX
Xuetal 2021 Xuetal 2021
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PFAS Regulation in NC

« 2017 NCDEQ established provisional health goal of 140 ppt for GenX

« 2023 EPA proposed MCL NPDWR for 6 PFAS (finalized in 2024, +3 years
to meet MCLS)

— MCLs are 4 ppt for PFOA and PFOS, hazard index for 4 others
including GenX

Hazard Index = ([GEHXwater]) n ([PFESwater]) n ([PFNAwater]) n ([P'FHXSwater]) <1

[10 ppt] [2000 ppt] [10 ppt] [9.0 ppt]

https://www.epa.gov/system/files/documents/2023-03/How%20d0%201%20calculate%20the%20Hazard%20Index.__3.14.23.pdf
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Chemours Fayetteville Works Facility

1980 production began at b ;o
° &
Chemours (then Du Pont) .BladenBqufWTF"FinishedWater %
« 2009 Chemours replaced PFOA X &r ..
with GenX g
« Drinking water in Cape Fear River e
BaS|n aﬁeCted by bOth (7} R'E;d:”s"rd'ﬁsw.cliszr:zv\{\r::/:::r
groundwater transport and surface ELm— Sea
Water (downstream) and a”’ GenX Samples - All Facilities (4/2018 - Current)
deposition (upstream)
wc....m _-..e_;-w., it ‘nu" "-.'Lw..‘_,ﬂ-,w . ~_.._~_M..,

https.//epi.dph.ncdhhs.gov/oee/a_z/pfas.html

https.//factor.niehs.nih.gov/2019/3/feature/2-feature-pfas 6
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Challenges of Modeling PFAS in Groundwater

* PFAS properties — high number of chemicals, different adsorptions, transport
interactions, hydrophobic/-philic

 Difficult to get data on soil measurements

 Difficult to predict fluxes through saturated, vadose zones

« Complex transport, irregular occurrence patterns

« Accuracy of transport principles at very low levels (ppt)

« Time to model/calibrate fate & transport of multiple chemicals

Simon et al. 2019
Roostaei et al. 2021
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Bayesian Network

SPRINKLER RAIN

Coined in 1985 RAIN | - T
F I 04 06
T 001l 099 02 08

Based on Bayesian statistics (how good @ @
is a model given assumed evidence)
Components to a Bayesian network: @

— Directed acyclic graph

» T GRASS WET
Conditional probability distributions SPRINKLER RAIN| T F

F F 00 10

F T 08 02

T F 09 01

T T 099 001
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Machine-Learned Bayesian Network

SPRINKLER RAIN

Two components to a Bayesian network: gamy | T F T F
— Directed acyclic graph IT? I (?.641 g'gg 0z of
— Conditional probability distributions

are “learned” from data. @'@

Model complexity vs accuracy optimized @

by minimizing “min description length”

(MDL) score: GRASS WET
SPRINKLER RAIN| T F
F F | 00 10
MDL _ F T | 08 02
= a X |[bits to store model] T F| 09 o1
T T | 099 o0l

+ [bits to store data given model]
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Previous Work

NC STATE E]
UNIVERSITY INDIANA UNIVERSITY
?

« Dataset curation Well dept (]

« Train MLBN with same inputs as
mechanistic GW flow model

[ ] M Odel Va,l id ati On et an. ............................................
carbon (g/kg) enX'abovel/below NC
« Spatial risk maps :

Distg_nc'é.fr Chemours
" plant (km)

<" health goal

Average soil pH

Well location relative
to Chemours plant
(degree)

Average soil bulk

Roostaei et al. 2021 density (kg/m3) 11
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Models compared

Goal: compare predictive performance of models with low- to high-mechanistic
modeler effort:

GW GW flow
model model FT model
Models compared labeled by input effort: inputs outputs output conc.
Low-effort BN (Roostaei et al. 2021) v
v v
High-effort BN v v v
Mechanistic FT model v v v

Mechanistic modeling effort required: 1 mo. .
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MRTI Mechanistic Model

INTERNATIONAL

« Modflow 2005 & MT3D engines in DO, SO (air deposition)

Groundwater Vistas Model ~+RecepiorWe
parameterized using data from NC DEQ, / Lokagotom El -
Chemours reports s 1 q
. . Unsaturated iy We”
* Model C; (concentration at wells) using Zone
only parameters used in MLBN: 0
— steady state/long-term transport Satuated =

(saturated zone) Ambient

Groundwater Flow

— empirical relationship between T
concentration at water table C, and
modeled air deposition rates

EPA CMTP User Manual River
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MLBN Model Development

e T} | « Imputation of missing data
e - Discretize variables

Distance from Chemours plart (km)

GenX air deposttion rate (ugim2-s) =

SN — | « Supervised learning

Well depth (m)
¥ Magnitud_velocity

« Structural coefficient analysis

YWwelocity_calibrated
Qy_calibrated

Well location relative to Chemours plam_(degree) :_f } i Adj u Stm e nt Of i n CI u d e d Var i ab I es y

Awverage soil bulk densty (kaim3) T - d I S C r etl Z atl O n

Average soil organic carbon (gikg)

R « Supervised learning

Zvelocty_calibrated

e » Cross-validation analysis

14
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MLBN Model Development

High-effort model

Medium-effort model

Chemours

@

. Zvelocity_calibrated
wation (m)

i Well Iot;'a:tion relative
to Chemiours pla
(degree)

Rve‘l"‘age soil bulk :
density (kg/m3)

XY¥Magnitud_veloci

calibrated_heads_elev
Qy_calibrated

Well Ication relative

") Qz_calibrated
A‘

Average soil orl'ganit:t'o Ch(::{lours]pl ant
b ree . )
n tufks? es-_' Yvelocity_calibrated

!y

X\"Magni‘tud_velot.:.ii‘:‘y '?

calibrated_heads_elev
Qxy

Qy_calibrated

15

Fate & Transport Output
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Model Performance Comparisons

* Area under receiver operating
. . Perf??t CLURE
characteristic curve (AU-ROC) | e, oo

0.5

True positive rate

0.0 0.5 1.0
False positive rate

16
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Model Performance Comparison (AU-ROC)
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00

5-fold cross-validation (n=5),

wells with depths (n=424):

(final model)

5 CV sets’ Average +=StdDev

Low-effort BN Med-effort BN High-effort BN FT model
0.85410.010 0.84510.0123 0.86810.0061 0.83210.0055
(0.905) (0.908) (0.916) (0.803)

Low-effort BN

T T T T
1.0 08 0.6 0.4 0.2
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00
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08
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1.0 08 06 04 02
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T
0.0
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Low detection rate vs low identification accuracy

° |f Only 10 % Of We”S are State of North Carolina
contaminated, a model can have 90 | < { e I
% accuracy and never detect any e =
positives (low power) [ Y €
Low-effort FT Model f \ :
BN (DT=50%) | (DT=140ppt) / % IR\ —

TPR 58-61% 22-32% x \z-.i(-; <

TNR 91-92% 98-100% R°beS°"4

FPR 8-9% 0-2% T

F N R 39_42% 65'75% ®  Well Loca;ions B'aden

Precision 59-62% 80-96% o Pk

AC Cura Cy 85_86% 85_87% 031 leuorocllemical :ﬁanufat;turer \I] . nx&;ﬂ:;?& Eujisg
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Low detection rate vs low identification accuracy

« CV (non-stratified k-folds) made FT S
model TPR and FNR worse 0

f| Area of study

® Cumberland

=19

[ 3 Y 4
(DT=50%) (DT=140ppt) / G SV RAGR
TPR 58-61% (68%)  22-32% (46%) - "*c—-«:_f:’. ‘
TNR 91-92% (92%) 98-100% (95%) R°beS°"4
FPR 8-9% (7%) 0-2% (5%) T /
FNR 39-42% (32%) 65-75% (54%) o 'Wellocsoos Bladen

Cape Fear River

PreCiSion 59'62% (67%) 80‘96% (67%) {1 county Boundaries, NC, USA "\\'
ACCU ra cy 85-86% (87%) 85—87% (86%) L ﬂ1 leuorocllemical Manufacturer ‘I"{A:;c:

6 8 12
Kilometers = /.
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Model Performance Comparisons

LS
S
Relice e

(2

 F1 score

— Balances true positive rate
and positive predictive value

e F2 score
— Better score reduces false
negatives (Type Il Error)

Low wolf detection rate?

Low wolf identification accuracy?

Which is worse in environmental
engineering? 20
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Model Performance Comparison (F1-score)

BN models & Mechanistic FT model have similar accuracy (86%)

« Mechanistic FT model had high PPV but low TPR (tradeoff in model
performance/risk of FP and FN based on decision threshold (posterior
probability for BN, concentration for mechanistic—baked into mechanistic
model calibration)

Low-effort BN Mechanistic FT model

=] @

- Max = 0.68 ~0.25-0.55 | Max = 0.6 ~40-70 ppt

o _|
o

w ]
(=1

s — o
- o, ~ |
=T W <
o~ o
= =
— o

= _|
[=]

F1-score

T T T T T T
00 02 04 06 08 10 0 200 400 600 800 1000

Decision Threshold (probability of exceedance) Decision Threshold (ng/L) -
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Model Performance Comparison (F1 scores)

o Max = 0.68 ~0.25-0.55 =1 Max=0.6~40-70 ppt
o = o
o ° °
O
(%]
- 3 2
- Low-effort BN 3
. Max = 0.8 ~0.45-0.85 .| Max=0.65"~0.35-0.60
v © ©
o = o
O
(%] < <
:I ° o
“ High-effort BN o
° = Med-effort BN
s = 22

0.0 02 04 06 08 1.0 0.0 02 04 06 0.8 10
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Model Performance Comp

F2-score
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Model Performance Comparison (F2 scores)
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Takeaways, Limitations

« MLBN model and mechanistic FT models have similar accuracy and AU-
ROC metrics; integrated MLBN models make small gains in predictive
power

« MLBNSs appear more robust to different decision thresholds (for mechanistic
model, decision threshold is baked into calibration)

« Mechanistic model is more susceptible to imbalanced datasets in CV

* Recalibrating mechanistic model to give more weight to high concentrations
(improve TPR) would take a lot of additional effort, but incorporating this
knowledge to improve performance in the hybrid BN is trivial 25
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Importance, Applications

* In this particular case study area, low-
effort MLBN by itself performs as well as
more time-consuming mechanistic model
(at the selected level of sophistication) —
MLBN very promising for PFAS modeling

« Improving risk prediction and awareness,
particularly for vulnerable communities/
private well owners is timely
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QUESTIONS?
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