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Spatial Statistics - Status Quo

Spatial statistics for wildlife conservation and protection

Focus and objective: Counting and tracking

Species: Elephants, red foxes, baboons and vesper sparrows

Common spatial statistics approach: point patterns
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Facts about Rhino

Second largest land mammal (after elephants).

White rhinos are grey

Rhinoceros horns are made from keratin, the same
substance that fingernails and hair are made of.

Rhino have very poor eyesight.
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Poaching Crisis

Rhino horn trade value:
$60,000 per kg (estimated)

KNP is a transnational
park (no borders)

Poacher intrusion rate
increase

Methods more violent and
cruel
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Conservation Strategies

Dehorn orphans

Translocation

Legalisation of trade (much
debated)

Education
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Challenges

Sparse datasets

Kruger National Park - ±1900km2

Say 1200 poaching per year

Operational challenges

Poachers enter by foot
Poacher stay in the park for days, surveilling
Corruption
KNP is a tourist destination - many civilians
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Bayesian networks in a geospatial space

Include latent variables that experts understand

Include context variables

Train with expert knowledge and data

Not only prediction, but also reasoning (what-if)

Fuse prior knowledge, GIS info, and sensor data (soft and
hard) at runtime
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Rhino Anti-poaching Model

Generate spatially discrete probability maps

Application: Anti rhino poaching

Maps should identify areas with a high poaching risk

Output - probability heatmap

Use predictions to optimise the use of available resources

BayesiaLab Conference— Sep 29th, 2017 13/29



Introduction
Spatial Bayesian Networks

Case Study
Evaluation

Conclusions

Model Description
Spatial Implementation
Probability Heatmap

Routine Activity Theory

BayesiaLab Conference— Sep 29th, 2017 14/29



Introduction
Spatial Bayesian Networks

Case Study
Evaluation

Conclusions

Model Description
Spatial Implementation
Probability Heatmap

BN model consists of two portions:

Causal portion

Combines the necessity to have a poacher and rhino
present, and ranger absent.
Parameterised using domain experts.

Classifier portion

Indication of historic vulnerability of an area
Parameterised using historic poaching data
Leaf nodes represents spatial attributes (covariates)

Water availability
Proximity to roads
Proximity to camps

Machine learning algorithm: Naive Bayes Classifier
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Spatial Application of BN Model

KNP are is subdivided in 1km2 cells (±19000 square cells)

For each cell

all relevant covariates are calculated
an instance of the model is created
a Bayesian inference process is executed
an output is generated - P(poaching)
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Output: Probability of a poaching event

Calculated for each cell

Spatially discretised
probability heatmap

Probabilities are
normalised over map
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Implementation

Implemented in command
and control system

Currently operational

Used for:

long term trend analysis
positioning of sensors
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Evaluation Metrics

Challenges

Typically n << m - many more cells than samples

Cells are sparsely populated with samples

Zero counts
Large degrees of freedom
Expected counts for all cells are typically << 1, since
n << m

Comparative evaluation
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Evaluation Preprocessing

Spatially discrete maps can be ‘unrolled’ into a one
dimensional probability mass function

The probability distribution of model Pj is
parameterised by probability values Pj = [p1, p2, ..., pm],
where m is the number of cells contained in the map.

The data vector is given by X = [x1, x2, ..., xm], where xi
corresponds to the sample count in cell i, which in turn is
parameterised by probability pi.

The total number of samples is given by n =
∑m

i=1 xi.

Multinomial distribution
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Log-likelihood

Compare log-likelihoods of the data given some model Mj

parameterised by Pj

First two terms are constant for evaluating different models
(independent of Pj)

The term
∑m

i=1 xi log(pi) causes a problem (next slide).

Definition

The log-likelihood of a multinomial distribution is given by:

ll(X|Pj) = log(n!)−
∑m

i=1 log(xi!) +
∑m

i=1 xi log(pi)
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The problem with
∑m

i=1 xi log(pi)

Cells with low probabilities containing samples are
penalised significantly, owing to the log(pi) term.

Cells with significant probabilities which do not have any
samples are not penalised at all. They are omitted from
the sum, owing to the cell count xi being zero.

Analog of false alarm (saying that a cell has high
probability, but which doesn’t reveice a sample) are not
penalised
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Log-likelihood (40 samples)
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Distance metric

For all cells, sort P(poaching)

Select highest 5%

Calculate distance between highest 5% probabilities and
poaching events (in test set)

For each poaching, choose shortest distance between
highest 5% probabilities and poaching event
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Distance metric - comparing two models
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Future Work

Historical poaching data

Alternative classification models (Logistic regression,
Kriging, GMM)
Point process models
Feature selection
Optimal time frames to take into account changing patterns
Smaller areas (sub-sections)
Non-uniform cells

Evaluation

Kolmagorov-Smirnoff Test
Evaluation of complete BN, not only classification portion
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