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Overview

@ Introduction
@ Spatial Bayesian Networks
@ Rhino Anti-Poaching

o Evaluation
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Introduction

Background
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Spatial Statistics - Status Quo

@ Spatial statistics for wildlife conservation and protection
@ Focus and objective: Counting and tracking
@ Species: Elephants, red foxes, baboons and vesper sparrows

e Common spatial statistics approach: point patterns
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Introduction

Background
Challenges

Facts about Rhino

@ Second largest land mammal (after elephants).
@ White rhinos are grey

@ Rhinoceros horns are made from keratin, the same
substance that fingernails and hair are made of.

@ Rhino have very poor eyesight.
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Poaching Crisis

@ Rhino horn trade value:
$60,000 per kg (estimated)

o KNP is a transnational
park (no borders)

@ Poacher intrusion rate
increase

@ Methods more violent and
cruel
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Conservation Strategies

@ Dehorn orphans
@ Translocation

@ Legalisation of trade (much
debated)

e Education
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Challenges

@ Sparse datasets
o Kruger National Park - £1900km?
e Say 1200 poaching per year
@ Operational challenges
Poachers enter by foot
Poacher stay in the park for days, surveilling

Corruption
KNP is a tourist destination - many civilians
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Spatial Bayesian Networks

Bayesian networks in a geospatial space

Include latent variables that experts understand
Include context variables
Train with expert knowledge and data

Not only prediction, but also reasoning (what-if)

Fuse prior knowledge, GIS info, and sensor data (soft and
hard) at runtime




Model Description
Case Study S 1 Implementation
Probability Heatmap

Rhino Anti-poaching Model

Generate spatially discrete probability maps
Application: Anti rhino poaching

Maps should identify areas with a high poaching risk
Output - probability heatmap

Use predictions to optimise the use of available resources
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Routine Activity Theory
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PRESENT RANGER

RHINO CORRUPT/
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Model Description
Spatial Implementation

Probability Heatmap

BN model consists of two portions:
@ Causal portion
o Combines the necessity to have a poacher and rhino
present, and ranger absent.
e Parameterised using domain experts.
o Classifier portion

o Indication of historic vulnerability of an area

e Parameterised using historic poaching data

o Leaf nodes represents spatial attributes (covariates)
o Water availability
o Proximity to roads
e Proximity to camps

e Machine learning algorithm: Naive Bayes Classifier
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Model Description
Study Spatial Implementation

Probability Heatmap
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1 1 Description
Case Study S al Implementation
I \bility Heatmap

Spatial Application of BN Model

e KNP are is subdivided in 1km? cells (19000 square cells)
o For each cell

o all relevant covariates are calculated

e an instance of the model is created

e a Bayesian inference process is executed

e an output is generated - P(poaching)
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Spatial Implementation

Probability Heatmap
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al 1entation
Plo}nblllh Heatmap

Output: Probability of a poaching event

@ Calculated for each cell

@ Spatially discretised
probability heatmap

@ Probabilities are
normalised over map
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Model Descriptio
Spatial Implementation
Probability Heatmap

Output: Probability of a poaching event

@ Calculated for each cell

@ Spatially discretised
probability heatmap

@ Probabilities are
normalised over map
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Model Description
Case Study Spatial Implementation
Probability Heatmap

Implementation

@ Implemented in command
and control system

@ Currently operational

@ Used for:

e long term trend analysis
e positioning of sensors




Evaluation Preprocessing

. Evaluation Metrics
Evaluation

Evaluation Metrics

Challenges
e Typically n << m - many more cells than samples

@ Cells are sparsely populated with samples

e Zero counts

o Large degrees of freedom

o Expected counts for all cells are typically << 1, since
n<<m

o Comparative evaluation
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Evaluation Preprocessing

@ Spatially discrete maps can be ‘unrolled’ into a one
dimensional probability mass function
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Evaluation Preprocessing

@ Spatially discrete maps can be ‘unrolled’ into a one
dimensional probability mass function
e The probability distribution of model P; is

parameterised by probability values P; = [p1, pa, ..., Pm],
where m is the number of cells contained in the map.
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Evaluation Preprocessing

@ Spatially discrete maps can be ‘unrolled’ into a one
dimensional probability mass function

e The probability distribution of model P; is
parameterised by probability values P; = [p1, pa, ..., Pm],
where m is the number of cells contained in the map.

@ The data vector is given by X = [z1, 22, ..., T),], where x;
corresponds to the sample count in cell ¢, which in turn is
parameterised by probability p;.

@ The total number of samples is given by n =Y ", x;.

@ Multinomial distribution




Evaluation Preprocessing
T, Evaluation Metrics
Evaluation

Log-likelihood

e Compare log-likelihoods of the data given some model M;
parameterised by P;

o First two terms are constant for evaluating different models
(independent of P;)

e The term ) ", x;log(p;) causes a problem (next slide).

Definition
The log-likelihood of a multinomial distribution is given by:

H(X|Py) = log(n!) — 3212 log(xi!) + 322, @i log(pi)
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Evaluation Preprocessing

T, Evaluation Metrics
Evaluation

The problem with ", x; log(p;)

@ Cells with low probabilities containing samples are
penalised significantly, owing to the log(p;) term.

o Cells with significant probabilities which do not have any

samples are not penalised at all. They are omitted from
the sum, owing to the cell count x; being zero.

e Analog of false alarm (saying that a cell has high
probability, but which doesn’t reveice a sample) are not
penalised
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g-likelihood (40 samples)




Evaluation Preprocessing

Evaluation Evaluation Metrics

Distance metric

e For all cells, sort P(poaching)

o Select highest 5%

e Calculate distance between highest 5% probabilities and
poaching events (in test set)

@ For each poaching, choose shortest distance between
highest 5% probabilities and poaching event

o 5000 10000 15000 20000




Evaluation Preproce
Evaluation Metrics

Evaluation

Distance metric - comparing two models

Data Model Expert odel
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Average distance: 1.95 Average distance: 8.04




Conclusions

Future Work

@ Historical poaching data

e Alternative classification models (Logistic regression,
Kriging, GMM)

Point process models

Feature selection

Optimal time frames to take into account changing patterns
Smaller areas (sub-sections)

Non-uniform cells

o Evaluation

e Kolmagorov-Smirnoff Test
e Evaluation of complete BN, not only classification portion
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