

SPATIAL MODELING OF WILDLIFE CRIME EVENTS

Alta de Waal

Department of Statistics University of Pretoria, South Africa

Overview

- Introduction
- Spatial Bayesian Networks
- Rhino Anti-Poaching
- Evaluation

Spatial Statistics - Status Quo

- Spatial statistics for wildlife conservation and protection
- Focus and objective: Counting and tracking
- Species: Elephants, red foxes, baboons and vesper sparrows
- Common spatial statistics approach: point patterns

Rhino

Facts about Rhino

- Second largest land mammal (after elephants).
- White rhinos are grey
- Rhinoceros horns are made from keratin, the same substance that fingernails and hair are made of.
- Rhino have very poor eyesight.

Poaching Crisis

- Rhino horn trade value: \$60,000 per kg (estimated)
- KNP is a transnational park (no borders)
- Poacher intrusion rate increase
- Methods more violent and cruel

Poaching Crisis

- Rhino horn trade value: \$60,000 per kg (estimated)
- KNP is a transnational park (no borders)
- Poacher intrusion rate increase
- Methods more violent and cruel

Conservation Strategies

- Dehorn orphans
- Translocation
- Legalisation of trade (much debated)
- Education

Challenges

- Sparse datasets
 - Kruger National Park $\pm 1900 \text{km}^2$
 - Say 1200 poaching per year
- Operational challenges
 - Poachers enter by foot
 - Poacher stay in the park for days, surveilling
 - Corruption
 - KNP is a tourist destination many civilians

Introduction Spatial Bayesian Networks Case Study Evaluation

Background Challenges

Bayesian networks in a geospatial space

- Include latent variables that experts understand
- Include context variables
- Train with expert knowledge and data
- Not only prediction, but also reasoning (what-if)
- Fuse prior knowledge, GIS info, and sensor data (soft and hard) at runtime

Rhino Anti-poaching Model

- Generate spatially discrete probability maps
- Application: Anti rhino poaching
- Maps should identify areas with a high poaching risk
- Output probability heatmap
- Use predictions to optimise the use of available resources

Routine Activity Theory

BN model consists of two portions:

- Causal portion
 - Combines the necessity to have a poacher and rhino present, and ranger absent.
 - Parameterised using domain experts.
- Classifier portion
 - Indication of historic vulnerability of an area
 - Parameterised using historic poaching data
 - Leaf nodes represents spatial attributes (covariates)
 - Water availability
 - Proximity to roads
 - Proximity to camps
 - Machine learning algorithm: Naive Bayes Classifier

Spatial Application of BN Model

- KNP are is subdivided in 1km^2 cells (± 19000 square cells)
- For each cell
 - all relevant covariates are calculated
 - an instance of the model is created
 - a Bayesian inference process is executed
 - an output is generated P(poaching)

Output: Probability of a poaching event

- Calculated for each cell
- Spatially discretised probability heatmap
- Probabilities are normalised over map

Output: Probability of a poaching event

- Calculated for each cell
- Spatially discretised probability heatmap
- Probabilities are normalised over map

Implementation

- Implemented in command and control system
- Currently operational
- Used for:
 - long term trend analysis
 - positioning of sensors

Evaluation Metrics

Challenges

- Typically $n \ll m$ many more cells than samples
- Cells are sparsely populated with samples
 - Zero counts
 - Large degrees of freedom
 - Expected counts for all cells are typically <<1, since n<< m
- Comparative evaluation

• Spatially discrete maps can be 'unrolled' into a one dimensional probability mass function

- Spatially discrete maps can be 'unrolled' into a one dimensional probability mass function
- The **probability distribution** of model P_j is parameterised by probability values $P_j = [p_1, p_2, ..., p_m]$, where m is the number of cells contained in the map.

- Spatially discrete maps can be 'unrolled' into a one dimensional probability mass function
- The **probability distribution** of model P_j is parameterised by probability values $P_j = [p_1, p_2, ..., p_m]$, where m is the number of cells contained in the map.
- The data vector is given by $X = [x_1, x_2, ..., x_m]$, where x_i corresponds to the sample count in cell i, which in turn is parameterised by probability p_i .

- Spatially discrete maps can be 'unrolled' into a one dimensional probability mass function
- The **probability distribution** of model P_j is parameterised by probability values $P_j = [p_1, p_2, ..., p_m]$, where m is the number of cells contained in the map.
- The data vector is given by $X = [x_1, x_2, ..., x_m]$, where x_i corresponds to the sample count in cell i, which in turn is parameterised by probability p_i .
- The total number of samples is given by $n = \sum_{i=1}^{m} x_i$.

- Spatially discrete maps can be 'unrolled' into a one dimensional probability mass function
- The **probability distribution** of model P_j is parameterised by probability values $P_j = [p_1, p_2, ..., p_m]$, where m is the number of cells contained in the map.
- The data vector is given by $X = [x_1, x_2, ..., x_m]$, where x_i corresponds to the sample count in cell i, which in turn is parameterised by probability p_i .
- The total number of samples is given by $n = \sum_{i=1}^{m} x_i$.
- Multinomial distribution

Log-likelihood

- Compare log-likelihoods of the data given some model M_j parameterised by P_j
- First two terms are constant for evaluating different models (independent of P_j)
- The term $\sum_{i=1}^{m} x_i \log(p_i)$ causes a problem (next slide).

Definition

The log-likelihood of a multinomial distribution is given by:

$$ll(X|P_j) = \log(n!) - \sum_{i=1}^{m} \log(x_i!) + \sum_{i=1}^{m} x_i \log(p_i)$$

The problem with $\sum_{i=1}^{m} x_i \log(p_i)$

- Cells with low probabilities containing samples are penalised significantly, owing to the $log(p_i)$ term.
- Cells with significant probabilities which do not have any samples are not penalised at all. They are omitted from the sum, owing to the cell count x_i being zero.
- Analog of false alarm (saying that a cell has high probability, but which doesn't reveice a sample) are not penalised

Log-likelihood (40 samples)

Distance metric

- For all cells, sort P(poaching)
- Select highest 5%
- Calculate distance between highest 5% probabilities and poaching events (in test set)
- For each poaching, choose shortest distance between highest 5% probabilities and poaching event

Distance metric - comparing two models

Average distance: 1.95

Average distance: 8.04

Future Work

- Historical poaching data
 - Alternative classification models (Logistic regression, Kriging, GMM)
 - Point process models
 - Feature selection
 - Optimal time frames to take into account changing patterns
 - Smaller areas (sub-sections)
 - Non-uniform cells
- Evaluation
 - Kolmagorov-Smirnoff Test
 - Evaluation of complete BN, not only classification portion

