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 Dependability :

— Reliability is the ability of an entity to accomplish its
required function in some given conditions for a time
period. (Binary hypothesis)

— Availability is the ability of an entity to accomplish its
required function in some given conditions, at an
instant or during a time period given that any means
needed are provided (Binary hypothesis).

e Satisfiability
— It’s the ability of an entity to satisfy an expected

accomplishment level of its function (Non Binary
hypothesis).
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Sources of uncertainty(ies)

Two levels problems

* Data:

— The instant of a basic event (failure) is unknown
(randomness)

— Few amount of data (Problem of exhaustiveness)

— Experts judgments given with different expressions
(Imprecision and doubt)

— Sparse data (Incompleteness)
— Variations of operational conditions (different from labs)
— Validity of data provided

* Models
— Partial models
— Incomplete models
— Concurrent models



Forms of uncertainty(ies)

Two main forms of uncertainty(ies)

e Aleatory uncertainty

— Due to the random character or natural variability of
physical phenomenon. The value are precise but different
due to natural variations).

— We are talking about stochastic uncertainty or variability.

— It is usually associated to observable quantities and
considered as not reducible.

* Epistemic uncertainty

— Due to the imprecise character of the information or to a
lack of knowledge.

— It is usually associated to non observable quantities, or
observable quantities with a doubt.

— |t is considered reducible.
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Some possible frameworks

Probability and other languages

* Probability theory
— Well suited for modeling the natural variability
— Two possible interpretations: Objective, Subjective

* Non additive Theories
— Well suited for modeling epistemic uncertainty
— Interval Theory (Imprecision)
— Theory of possibility (Imprecision, Certainty)
— Evidence Theory (Incompleteness, Ignorance)

— Imprecise Probabilities (Sets of probability functions
and intervals)

Remark: No universal framework but different languages of uncertainty(ies)



Modeling uncertainty(ies)

Interval Valued Probability

P(x) P(x)
C n
5 L N

* The real value of p(x) is unknown but lies
between the two bounds p(x) and p(x)

e The intervals are convex

* The results of computation should be convex
intervals



Modeling uncertainty(ies)

Fuzzy valued Probability

e Aleatory uncertainty+Imprecision+credibility
with probability+Interval+o cut
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Modeling uncertainty(ies)

Probability boxes

* P-Box : Family of probability distributions bounded by upper
and lower cumulative distributions
A A
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Remark: Sets of interval valued probabilities with weight



* Definitions of studied problems

* Forms and Sources of uncertainties

* Theoretical Frameworks for modeling

* Encoding in Bayesian Network

* Applications to dependability assessment



Encoding interval valued probabilities in BN

Dempster Shafer Theory

* Frame of discernment Q=H1,Hp,....Hg§

* Dempster-Shafer Structure (power set of €2)
A€ 29 48, A = {H} . Ay ={Hg b Ager ={H1,Hz}- A q_ ={Hy,.. H I

* Basic Mass Assignment

m:22 10,1 m()=0 > m(A;)=1
A.e28
* Measures (bounds) i
Bel (A;)< P(A;)< Pis(A;) 0 1
Bel(A))= > m(B) Pis(A))= Y m(B)
B BIA; O S Belief >|< Doubt

* Mobbius Transform Bel -3l

mia)= 3 (1 Pleeie) " Qfe

BIBC A;
Uncertainty



Encoding interval valued probabilities in BN

Dempster Shafer Theory

* All nodes encode the Dempster-Shafer Structure

4e2° B4 ={H )4, ~H ) 4,0 ={H1,H2},...,A2q_1={H1,...,Hq}}
* Allocation of masses in each set under the constraint
Zm(A,.)=1

* Prior masses are computed from interval valued probabilities and the Mdbius
transform (root nodes)

IE(H,- )J—)(Hl- )J= [Bel(Hi ), PZS(HZ- )] My =|0P(4) Z (—1)|Ai|_|B| P(B)---

B|Bc 4;

e Child nodes integrate conditonal belief mass on the cartesian product of each
variables

My, 1M pa(x;)

* Computation of masses through the junction tree and the bayesian inference
extended to belief masses



Encoding interval valued probabilities in BN

Binary case for dependability analysis

* Each node has the following frame of discernment

7 = {Up,Down,{Up, Down}}

* Interval valued probability to mass distribution through Mobius transform

My =P, ={upd) (1-P(x, ={upd) (PLx, = fup))-PLx, = {Up))

1

* In dependability analysis, conditional probability tables are mainly based on

binary logic but extended to the frame of discernment (AND, OR, KooN ...)

* Finally, from any node, the belief and plausibility measures give the bounds of

probability

Bel(X ;= Up) = Zm(X ;= stal‘e) — E(X ;= Up) PlS(X ;= Up) = Zm(X 5 = State) — I_’(X ;= Up)

state|statecUp state|stateNUp#D

[Bel (x, = Up), Pis(X; = Up)]= [P(x; = Up) P(x, = Up)



Conditional probability table for series systems

AND Logic with 3 states

» AND 1
%1 - Node Edition
Mode selection : | ARND 1 b |
CMP2 CMP5
Mode type Wiy mocde
Label v | Determinist | | Equation
Yalues ChiPS Chip2 LIp Dizhym LP Doz
(P LIp 100,000 0.000 0.000
(DT UP Cozhym 0.000 100,000 0.000
(UP_CoZhfr] P _DoCiig) 0.000 0.000 100.000
LIp 0.000 100,000 0.000
Cozhyr CoZhyd 0.000 100,000 0.000
P _DoCiig) 0.000 100,000 0.000
LIp 0.000 0.000 100.000
P Do) CoZhfy] 0.000 100,000 0.000
P _D2ie 0.000 0.000 100.000
Zenerste natnes ] [ Generste modalties l [ Cotnplete l ’ Mormalize ] ’ Ratdomize
’ Accept ” Cancel l




Conditional probability table for // systems

OR Logic with 3 states

41 Mode Edition

Maode selection : [OR 1 b | CMP1 AND 1
Mode type Wiewy mode
Lakel “'": Determinizt l l Ecqustion
Yalues ChaP AR LIp CoZih) LIP_ Dot
(P LIP 100.000 0,000 0,000
(DzhAm P DT 100.000 0,000 0,000
(LI Do UP DT 100.000 0,000 0,000
LIp 100.000 0,000 0,000
DTy DT 0000 100.000 0,000
UP_DCh 0.000 0,000 100.000
LIp 100.000 0,000 0,000
LIP_ Do DT 0,000 0,000 100.000
UP_DCh 0000 0,000 100.000
ehetate natmes l l zenerate modalities l [ Complete ] [ Mormalize l l Rahdomize
l Accept l l Cancel l



Conditional probability table for KooN

Logic with 3 states

Mode de visualisation

Déterministe | | Equation

Cl c2 =3 Up Down Up.Down
Up 100,000 0,000 0,000
Up Down 100,000 0,000 0,000
Up.Down 100,000 0,000 0,000

Up 100,000 0,000 0,000 C1
Up Daown Down 0,000( 100,000 0,000
Up.Down 0,000 0,000 100,000
Up 100,000 0,000 0,000
Up.Down Down 0,000 0,000 100,000
Up.Down 0,000 0,000 100,000
Up 100,000 0,000 0,000

Up Down 0,000 100,000 0,000 C2 kfn

Up.Down 0,000 0,000 100,000
Up 0,000 100,000 0,000
Down Down Down 0,000 100,000 0,000
Up.Down 0,000( 100,000 0,000
Up 0,000 0,000 100,000
Up.Down Down 0,000( 100,000 0,000
Up.Down 0,000 0,000 100,000

Up 100,000 0,000 0,000 C3
Up Down 0,000 0,000 100,000
Up.Down 0,000 0,000 100,000
Up 0,000 0,000 100,000
Up.Down Down Down 0,000( 100,000 0,000
Up.Down 0,000 0,000 100,000
Up 0,000 0,000 100,000
Up.Down Down 0,000 0,000 100,000
Up.Down 0,000 0,000 100,000

Compléter | | Normaliser | | Aléatoire



Conditional probability table for Belief measure

Logic formulation of belief measure

Bel(X = Up) = Zm(state)

state|statecWork

41 Mode Edition

Mode selection . Bel(Reliakility) +

Mode type Wiewy mode
Lakel |+ Determinist l ’ Equation
Yalues =ystem =tate Believe MotEelieve
BEelieve Lp 100,000 0.000
MotBelieve DTy 0.000 100,000 BE'{ REllablllt}f}
UP Do 0.000 100,000

System state

Zenerate names ” zenerate modalties ] [ Complete H Mormalize ” Fandomize ]

[ Accept ” Cancel ‘




Conditional probability table for Plausibility measure

Logic formulation of plausibility measure

Pls(X = Up) = Zm(X = State)

statdUpstatetD
47 Node Edition
Mode selection . |Ple(Reliakilty w

Mode type ey mode

Lakbel W Determinist ” Equiation

Yalues =yatern state | Plausibilty Implausikilty
Plauzibility P 100.000 0.000
Irrplauzibility Lo 0.000 100.000

LP_DCHM 100.000 0.000 Pls{Reliability)
— : : System state
zenerate names ” enerate modalties ] [ Complete ” Mormalize ” Fandatnize ]
’ Accept ” Cancel ]
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Application to system reliability

Reliability block diagram of a simple complex system

* There is a set of paths from left to right

* A path is defined by a set of working
components

C1 C3 —

c2 c4




System reliability

Without precise probability

Bayesialab - C:\USERS\Weber\RAPPORTS\2006'4 RES2006\5imontsys_com... B@§|

Metwork  Data sources  Edit Wiew  Learning Options  Help

DEeEE sRood QAXGOL =20

sys_complexel.xbl

0

helieve{up)

plausibility{up)

helievelup)

believeiup)
ather

plauikility ()

plauzikility ()
ather




System reliability with precise probabilities

Without precise probability

Bayesialab - CAUSERS\Weber\RAPPORTS\2006\A RES2006\Simon'sys_com... | D g|

Mebwork  Data sources  Edit Yiew  Learning Jptions  Help

DEEHE {fBood@ QARGOL 20

sys_complexel.xbl
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Study of a High Integrity Safety System (Fuzzy Probabilities)

Assessing the probability of failure on demand

Logic |oe
Solver [o¢
O 2003 @ T —

— o
@
@

Wi —L—ol S

Sbv1 SDV2
Composants du SIS Aj (h?) DC B (%) MTTR Ti (h)
CCF
PT 2.70E- 7 0 <3,5, 8> 0 T1 = 1460
SDV 5.70E- 6 0 <8, 10,13> 0 T2 = 1460
SV 5.70E- 6 0 <8,10,13> 0 T2 = 1460
Logic Solver 5.00E- 6 1 - 10 -
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CCF
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PT3

Reliability Block Diagram

Study of a High Integrity Safety System

Reliability Bloc Diagramme or Faul Tree Modeling of the System

SDV1 Svi
(Failedto [~ | (Failed to
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Computing fuzzy probability into the network

Algorithm for inference with fuzzy probability

Foro.fromOto 1

efine 1%, the set of o-cut of the inputs

ForAll inputs

Define the corresponding basic probability assignment

EndFor
Compute the basic mass assignment of each output in O by inference

orAll ouputs,
T Build the o-cuts of O from the output basic mass assignments  ruz sis proug

T T
—>— Fuzzy Fault tree

EndFor 09| —— Fuzzy Markov Chains
EndFor 08 «— — — —— N
ForAll outputs T 1 SIL 3

0.6+

Embody the nested intervals ol
EndFor o4

0.3-

where I is the set of input fuzzy numbers and il

0.1+

O is the set of output fuzzy numbers.

L
0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
PFDavg x10°



Study of a High Integrity Safety System (p-boxes)

Assessing the probability of failure on demand

Sv1

SV2

Wi — Lk

Logic |oe

Solver [o¢

2003 Ot——

— o
@
@

SDV1  SDV2
B (%) Ti (h)
Composants du SIS 2 (h) CCF Cas 1
PTi 7.00E- 7 U (3, 5%[5, 8] ) T1=2190
SDV 3.10E-6 U ([8,10];[10,13]) T2=2190
SV 2.60E-6 U ([8,10];[10,13]) T2=2190
Logic Solver 2.15E-7 - T3=2190




Study of a High Integrity Safety System

For an arbitrarily large value

For each input
Choose a value N in [0,1]
Define the interval from the p-box corresponding to SNS.
Define the weight at 1/N

Transform the interval into a bpa. T
EndFor 0ol
Compute the outputs by EN inference. 08
For each output 07}

Transform each resulting bpa in an intervaks, )

Transform the set of intervals and 05/ 7

weights in a p-box. 04f
EndFor 03" /
EndFor 02+ ::'
i
oL

L L | L | 1 1
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 X10_3



Conclusion

 Bayesian networks can model
 dependability analysis problems (binary
hypothesis)
e Satisfiabilty problems(non binary problems)
* Risk analysis
 Bayesian network handle several forms of
uncertainty
* Interval valued probability
* Fuzzy valued probability
 Family of probability
* Results are as best case/worst case computation
 Bayesialab is our polyvalent tool for modeling



Open problems

 Complexity of Models regarding the complexity
of Systems (managing complexity)

 Model Uncertainty of large systems
 Model validation to increase the confidence
 Dependencies between events

* Sequence of Events

* Incoherent Systems

* Modeling Human behavior

* Integrating new information (according to the
theoretical framework used)
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