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Definitions

• Dependability :
– Reliability is the ability of an entity to accomplish its 

required function in some given conditions for a time 
period. (Binary hypothesis)

– Availability is the ability of an entity to accomplish its 
required function in some given conditions, at an 
instant or during a time period given that any means 
needed are provided (Binary hypothesis).

• Satisfiability
– It’s the ability of an entity to satisfy an expected

accomplishment level of its function (Non Binary
hypothesis).
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Two levels problems

Sources of uncertainty(ies)

• Data:
– The instant of a basic event (failure) is unknown 

(randomness)
– Few amount of data (Problem of exhaustiveness)
– Experts judgments given with different expressions 

(Imprecision and doubt)
– Sparse data (Incompleteness)
– Variations of operational conditions (different from labs)
– Validity of data provided

• Models
– Partial models
– Incomplete models
– Concurrent models



Two main forms of  uncertainty(ies)

Forms of uncertainty(ies)

• Aleatory uncertainty
– Due to the random character or natural variability of 

physical phenomenon. The value are precise but different 
due to natural variations).

– We are talking about stochastic uncertainty or variability.
– It is usually associated to observable quantities and 

considered as not reducible.
• Epistemic uncertainty

– Due to the imprecise character of the information or to a 
lack of knowledge.

– It is usually associated to non observable quantities, or 
observable quantities with a doubt.

– It is considered reducible.
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Probability and other languages

• Probability theory
– Well suited for modeling the natural variability
– Two possible interpretations: Objective, Subjective

• Non additive Theories
– Well suited for modeling epistemic uncertainty
– Interval Theory (Imprecision)
– Theory of possibility (Imprecision, Certainty)
– Evidence Theory (Incompleteness, Ignorance)
– Imprecise Probabilities (Sets of probability functions 

and intervals)
– ...

Remark: No universal framework but different languages of uncertainty(ies)

Some possible frameworks



Interval Valued Probability

• The real value of p(x) is unknown but lies 
between the two bounds p(x) and p(x)

• The intervals are convex
• The results of computation should be convex

intervals

Modeling uncertainty(ies)



Fuzzy valued Probability

Modeling uncertainty(ies)

• Aleatory uncertainty+Imprecision+credibility
with probability+Interval+α cut
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Fuzzy valued probabilities are 
sets of embodied interval
valued probabilities defined
by α-cuts



Probability boxes

Modeling uncertainty(ies)

• P-Box : Family of probability distributions bounded by upper
and lower cumulative distributions
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Remark: Sets of interval valued probabilities with weight
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Dempster Shafer Theory

Encoding interval valued probabilities in BN

• Frame of discernment
• Dempster-Shafer Structure (power set of Ω)

• Basic Mass Assignment

• Measures (bounds)

• Möbius Transform
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Dempster Shafer Theory

• All nodes encode the Dempster-Shafer Structure

• Allocation of masses in each set under the constraint

• Prior masses are computed from interval valued probabilities and the Möbius 
transform (root nodes)

• Child nodes integrate conditonal belief mass on the cartesian product of each
variables

• Computation of masses through the junction tree and the bayesian inference
extended to belief masses 
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Encoding interval valued probabilities in BN



Binary case for dependability analysis

• Each node has the following frame of discernment

• Interval valued probability to mass distribution through Möbius transform

• In dependability analysis, conditional probability tables are mainly based on 

binary logic but extended to the frame of discernment (AND, OR, KooN ...)

• Finally, from any node, the belief and plausibility measures give the bounds of 

probability
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AND Logic with 3 states

Conditional probability table for series systems



OR Logic with 3 states

Conditional probability table for // systems



Logic with 3 states

Conditional probability table for KooN



Logic formulation of  belief measure
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Conditional probability table for Belief measure



Logic formulation of  plausibility measure
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Conditional probability table for Plausibility measure
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Application to system reliability

• There is a set of paths from left to right
• A path is defined by a set of working

components

Reliability block diagram of  a simple complex system



Without precise probability

( ) ( ) ( ) 0,85=TR=UpPls=UpBel FS

System reliability



Without precise probability

( ) ( ) ( ) 0,870,850,82 =UpPls<=TR<=UpBel FS

System reliability with precise probabilities
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Study of a High Integrity Safety System (Fuzzy Probabilities)

Assessing the probability of  failure on demand

P
T1

P
T2

P
T3

Logic
Solver
2oo3

SV2

SV1

SDV1 SDV2

W1

Composants du SIS λD (h-1) DC β (%) 
CCF 

MTTR Ti (h)

PT 2.70E- 7 0 <3, 5, 8> 0 T1 = 1460
SDV 5.70E- 6 0 <8, 10,13> 0 T2 = 1460
SV 5.70E- 6 0 <8, 10,13> 0 T2 = 1460

Logic Solver 5.00E- 6 1 - 10 -
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Reliability Bloc Diagramme or Faul Tree Modeling of  the System
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Study of a High Integrity Safety System

Reliability Block Diagram Fault Tree



Algorithm for inference with fuzzy probability
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Fuzzy Fault tree
Fuzzy Markov Chains

SIL 4 SIL 3

For α from 0 to 1
Define I(α), the set of α-cut of the inputs

ForAll inputs
Define the corresponding basic probability assignment

EndFor
Compute the basic mass assignment of each output in O by inference
ForAll ouputs,

Build the α-cuts of O(α) from the output basic mass assignments
EndFor

EndFor
ForAll outputs

Embody the nested intervals
EndFor

where I is the set of input fuzzy numbers and
O is the set of output fuzzy numbers.

Computing fuzzy probability into the network
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Study of a High Integrity Safety System (p-boxes)

Assessing the probability of  failure on demand

P
T1

P
T2

P
T3

Logic
Solver
2oo3

SV2

SV1

SDV1 SDV2

W1

Composants du SIS λ (h-1)

β (%) 
CCF

Ti (h)

Cas 1

PTi 7.00E- 7 U ( [3, 5];[5, 8] ) T1 = 2190

SDV 3.10E- 6 U ( [8, 10];[10,13] ) T2 = 2190

SV 2.60E- 6 U ( [8, 10];[10,13] ) T2 = 2190

Logic Solver 2.15E- 7 - T3 = 2190
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Results :
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Study of a High Integrity Safety System

For an arbitrarily large value
For each input

Choose a value N in [0,1]
Define the interval from the p-box corresponding to $N$.
Define the weight at 1/N
Transform the interval into a bpa.

EndFor
Compute the outputs by EN inference.
For each output

Transform each resulting bpa in an interval.
Transform the set of intervals and

weights in a p-box.
EndFor

EndFor



Conclusion

• Bayesian networks can model 
• dependability analysis problems (binary

hypothesis)
• Satisfiabilty problems(non binary problems) 
• Risk analysis

• Bayesian network handle several forms of 
uncertainty
• Interval valued probability
• Fuzzy valued probability
• Family of probability

• Results are as best case/worst case computation
• Bayesialab is our polyvalent tool for modeling



• Complexity of Models regarding the complexity 
of Systems (managing complexity)

• Model Uncertainty of large systems
• Model validation to increase the confidence
• Dependencies between events
• Sequence of Events
• Incoherent Systems
• Modeling Human behavior
• Integrating new information (according to the 

theoretical framework used)

Open problems
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