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My Introduction to
Bayesian Networks

Carnegie Mellon, 2003
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students in Engineering and
Public Policy
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Bayesian
networks more
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the probabilis-
tically
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Outline

Introduction

- U.S. regulation of chemicals in drinking water

- Arsenic In drinking water

- Bayesian networks for improving arsenic risk assessment
Methods

- Low birthweight

- Diabetes

Results: Bayesian network vs. traditional methods

Discussion: Future vision for risk assessment of
chemicals in water




U.S. Safe Drinking Water Act Requires
Risk Assessment of Chemicals

 “Maximum contaminant levels”
are established via risk

assessment THE SAFE DRINKING WATER ACT
AS AMENDED BY
- <1/10,000 excess lifetime mortality THE SAFE DRINKING WATER ACT
ris k (PUBLIC LAW 25-339, JUNE 19, 1986)

* Two key risk assessment steps:
- Quantify chemical “dose”

1986

- Quantify lifetime illness risk
associated with this dose
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Environmental Protection Agency (EPA)
Uses Two Methods to Calculate Risk

Cancer Other illnesses

= Dose
P(cancer) = a Hazard —
[ RfD

f

“slope factor” “reference dose”




EPA Approaches Have
Many Limitations

Cancer and noncancer risk assessment methods differ
- Probability of ilinesses other than cancer not quantified
Nonlinear relationships not captured

Inter-individual variability (e.g., genetic differences)
not captured

Integration of evidence from multiple studies not
possible



Research Objectives

Demonstrate Bayesian networks as alternative to
current risk assessment approach

Compare risk prediction capability to currently used
methods

33

Arsenic Iin water as case study 3

74.92160

Arsenic
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Arsenic Has Many Health Effects

® High doses long known to cause
blackfoot disease

® Established associations with lung,
bladder cancers

®* Emerging evidence of adverse birth
outcomes, diabetes

Sk E



Methods
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Develop Bayesian Networks Using
Data from Two Cohorts

Low birthweight Diabetes
200 mothers and 1,050 adults
infants

Gomez Palacio, Durango Chihuahua



Prior Study Associated
Arsenic and Birthweight

Birthweight decreased as urinary mono-methylated
arsenic (MMA) increased.

- Linear regression (Laine et al., 2015)

Maternal Metabolites
* Inorganic As

_.

 Dimethylated arsenic (DMA)
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A Separate Study Associated
Arsenic and Diabetes

Diabetes decreased as MMA increased but increased as
DMA increased (Mendez et al., 2016).

Metabolites
* Inorganic As
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Analysis 1: Predict Lower Birthweight
for Gestational Age

Lower birthweight
for gestational age
(BWGA)

Birthweight
Gestational age

25t percentile
-16-
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Analysis 2: Predict
Diabetes Risk

® Diabetes defined according to World Health
Organization guidelines:

- Fasting plasma glucose 2 126 mg/dL
- Two-hour plasma glucose 2 200 mg/dL

- Self-reported diabetes diagnosis or medication use

17-




Both Risks (Lower Birthweight, Diabetes)
Assessed with BayesialLab &

€%
Lower Birthweight Diabetes S
* 11 predictor variables based * 11 predictor variables
on expert knowledge - Discovered via unsupervised
learning

« Continuous variables
descretized into three states Continuous variables
using R2-GenOpt discretized into 5 states using
R2-GenOpt

* Network structure developed
through expert consultation

Network structure and
probability tables learned
with augmented naive Bayes
algorithm
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We Compared Bayes Net to EPA Method
for Noncancer Risk Assessment

. Compute reference
eference .
__ dose (RfD) o dose:
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We Also Compared Bayes Net to EPA
Cancer Risk Assessment Method

Uoper 95% | * Fit regression to the data.

_confidence \ : . Compute upper 95%

2;2’:8"32 , , confidence interval on
regression line slope.
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P(cancer) = slope X Dose

Chemical Dose (e.g., mg/kg-day)
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Results: Arsenic Association with
Birthweight
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No Clear “Safe Dose”’—Lower
Birthweights at Lowest Doses
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Existing Approaches Have Very Poor
Discriminative Capability

Regression Method I

S m

0% 20% 40% 60% 80% 100%
Specificity m Sensitivity
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Network Structure From Experts;
Parameters from Data
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BayesialLab Model Improves
Discriminative Capability

laindi 00000

Regression Method I
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Future Steps

(] A u to m ate d I e a rn i n g of Inorganic Arsenicin rﬂnkmgwater (ug/L)
‘_ u34’— Malen@caﬂon

network structure

- Existing structure is based
on expert beliefs

lﬁfant Gender

in Urine (pg/L)
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Results: Arsenic Association with
Diabetes
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Reference Dose Based on Data Is
Zero — “Everyone At Risk”
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Group Cohort Into Dose Groups to
Estimate “Slope Factor”
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Group Cohort Into Dose Groups to
Estimate “Slope Factor”

. P(diabetes) = 0.0019 x Conceyt’fation

n
()
)
(<))
0
8
a
Y
@)
>
=
0
©
o)
(@)
| -
o

100 150 200 250
Arsenic Concentration in Water (ug/liter)




As for Birthweight, Existing Methods
Have Poor Discrimination Ability

Regression Method -

S m

0% 20% 40% 60% 80% 100%
Specificity m Sensitivity
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Machine-Learned Structure Consistent
with Prior Knowledge
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Bayesian Network Greatly Improves
Discrimination Capability

ECETE NS ?

Regression Method _

Reeren e Dose Mo I

0% 20% 40% 60% 80% 100%
Specificity m Sensitivity

-33-



Future Steps

* Optimize network r
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Conclusions
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Summary

® Current U.S. EPA methods for health risk assessment:
- Are inconsistent for cancer and noncancer illnesses
- Have poor discrimination capability

- Cannot be customized based on age, gender, genetics, etc.

® Bayesian networks could provide a new approach.
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How Risk Assessors Quantify Risks
in Current Practice

Step 1: Look up chemical information on EPA Integrated
Risk Information System (IRIS) web site

Environmental Topics Laws & Regulations About EPA Q-
conTacTUs  sHARE (f) (w) (P)

Integrated Risk Information System

IRIS Assessments in Review Staying
Connected

byl Alcohol (tert-butanol) (External Review Draft) .
e How IRIS connects with
you

e How you can connect
with IRIS

o Ethyl Tertiary Butyl Ether (ETBE) (External Review Draft

9, Get email alerts




Step 2: Look up Reference Dose, and
Compute Noncancer “Risk”

Dose
RfD

Noncancer Assessment H aZ ard Qu Oti ent:

If hazard quotient > 1,
S lE™ Il then assume all are at
risk of noncancer
effects.

{yperpigmentation, keratosis and
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Step 3: Look up Slope Factor, and
Compute Cancer Risk

Cancer Assessment

Weight of Evidence for Cancer (PDF) (29 pp, 186 K) last updated: 06/01/1995

WOE Characterization Framework for WOE Characterization
A (Human carcinogen) Guidelines for Carcinogen Risk Assessment (US EPA, 1986)

Basis:
¢ Based on sufficient evidence from human data. An increased lung cancer mortality was
observed in multiple human populations exposed primarily through inhalation. Also,

increased mortality from multiple internal organ cancers (liver, kidney, lung, and
bladder) and an increased incidence of skin cancer were observed in populations
consuming drinking water high in inorganic arsenic.

This may be a synopsis of the full weight-of-evidence narrative.

Ouantitative Estimate of Carcinogenic Risk from Oral Exposure (PDF) (29 pp, 186 K)
Oral Slope Factor: 1.5 per mg/kg-day

Drinking Water Unit Risk: 5 x10 ° per ug/L

Extrapolation Method: |ime- and dose-related tormulation of the multistage model
Tumor site(s): Dermal

Tumor type(s): Skin cancer (Tseng, 1977; Tseng et al., 1968; U.S. EPA, 1988)

P(cancer)
=slope factor X Dose
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New Vision: Risk Assessment via
Bayesian Network Web Simulator
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Risk Assessor Could Enter Multiple
Characteristics for Customized Estimate
Bayesia Simulator ®
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Receiver-Operating Characteristic
Curve Shows Discrimination Strength

True Positive Rate for Diabetic = 0 ROC Index: 84.23%
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