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My Introduction to 
Bayesian Networks

Articles

50 AI MAGAZINE

u n d e r s t a n d i n g
(Ch arn iak an d Gold-
m an  1989a, 1989b ;
G o ld m a n  1 9 9 0 ),
vision  (Levitt, Mullin ,
an d  Bin fo rd  1989 ),
h e u r i s t i c  se a r ch
(Han sson  an d Mayer
1989), an d  so  on . It
i s  p ro b a b ly  fa i r  t o
sa y  t h a t  Ba y e sia n
n e t w o r k s a r e  t o  a
l a r g e  se gm e n t  o f  
t h e  AI-u n ce r t a in t y
c o m m u n i t y  w h a t
reso lu t io n  t h eo rem
provin g is to th e AI-
lo g ic  co m m u n i t y .

Neverth eless, despite wh at  seem s to be th eir
obvious im portan ce, th e ideas an d tech n iques
h ave n ot  sp read  m uch  beyon d  th e research
co m m u n it y  resp o n sib le  fo r  t h em . Th is is
probably because th e ideas an d tech n iques are
n ot  th at easy to un derstan d. I h ope to rectify
th is situat ion  by m akin g Bayesian  n etworks

m ore accessible to
th e p robabilis-

tically un so-

O v e r  t h e  l a s t  fe w
years, a  m et h o d  o f
r e a so n in g  u sin g
p ro b a b il i t ie s,  va r i -
o u sly  ca l le d  b e l ie f
n et wo rks, Bayesian
n e t w o r ks ,  k n o w l -
ed ge  m a p s,  p ro b a -
b i l i s t i c  c a u sa l
n etworks, an d so on ,
h as becom e popular
with in  th e AI proba-
bility an d un certain -
ty com m un ity. Th is
m eth od is best  sum -
m a r ize d  in  Ju d e a
Pearl’s (1988) book,
b u t  t h e id eas a re a
p ro d u ct  o f m an y h an d s. I ad o p t ed  Pearl’s
n am e, Bayesian  n etworks, o n  th e grou n d s
th at  th e n am e is com p letely n eu t ral abou t
th e status of th e n etworks (do th ey really rep-
resen t  beliefs, causality, or wh at?). Bayesian
n etworks h ave been  app lied to  p roblem s in
m edical diagn osis (Heckerm an  1990; Spiegel-
h alter, Fran klin , an d Bull 1989), m ap learn ing
(Dean  1990), lan -
g u a g e

Bayesian  Networks 
with ou t Tears

Eugene Charniak

I give an introduction to Bayesian networks for
AI researchers with a lim ited grounding in prob-
ability theory. Over the last  few  years,  th is
m ethod of  reasoning using probabilit ies has
becom e popular within the AI probability and
uncertainty com m unity. Indeed, it is probably
fair to say that Bayesian networks are to a large
segm ent of the AI-uncertainty com m unity what
resolution  theorem  proving is to the AI-logic
com m unity. Nevertheless, despite what seem s to
be their obvious im portance,  the ideas and
techniques have not spread m uch  beyond the
research com m unity responsible for them . This is
probably because the ideas and techniques are
not that easy to understand. I hope to rectify this
situation by m aking Bayesian networks m ore
accessible to the probabilistically unsophisticated.

0738-4602/91/$4.00 ©1991 AAAI

…m aking
Bayesian 

networks m ore 
accessible to

the probabilis-
tically

unsophis-
ticated.

AI Magazine Volume 12 Number 4 (1991) (© AAAI)

Carnegie Mellon, 2003

Required class for all PhD 
students in Engineering and 
Public Policy
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Outline

• Introduction  
- U.S. regulation of chemicals in drinking water

- Arsenic in drinking water

- Bayesian networks for improving arsenic risk assessment

• Methods
- Low birthweight

- Diabetes

• Results:  Bayesian network vs. traditional methods
• Discussion:  Future vision for risk assessment of 

chemicals in water
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U.S. Safe Drinking Water Act Requires 
Risk Assessment of Chemicals

• “Maximum contaminant levels” 
are established via risk 
assessment
- < 1/10,000 excess lifetime mortality 

risk

• Two key risk assessment steps:
- Quantify chemical “dose”
- Quantify lifetime illness risk 

associated with this dose
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Environmental Protection Agency (EPA) 
Uses Two Methods to Calculate Risk

Cancer Other illnesses

“slope factor” “reference dose”
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EPA Approaches Have 
Many Limitations

• Cancer and noncancer risk assessment methods differ
- Probability of illnesses other than cancer not quantified

• Nonlinear relationships not captured
• Inter-individual variability (e.g., genetic differences) 

not captured
• Integration of evidence from multiple studies not 

possible
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Research Objectives

• Demonstrate Bayesian networks as alternative to 
current risk assessment approach

• Compare risk prediction capability to currently used 
methods

• Arsenic in water as case study
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Arsenic Has Many Health Effects

• High doses long known to cause 
blackfoot disease

• Established associations with lung, 
bladder cancers

• Emerging evidence of adverse birth 
outcomes, diabetes
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Methods
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Develop Bayesian Networks Using 
Data from Two Cohorts

Diabetes
1,050 adults

Low birthweight
200 mothers and 

infants

Gómez Palacio, Durango Chihuahua
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Prior Study Associated 
Arsenic and Birthweight

Birthweight decreased as urinary mono-methylated 
arsenic (MMA) increased.
- Linear regression (Laine et al., 2015)

Maternal Metabolites
• Inorganic As
• Monomethylated arsenic (MMA)
• Dimethylated arsenic (DMA)
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A Separate Study Associated 
Arsenic and Diabetes

Diabetes decreased as MMA increased but increased as 
DMA increased (Mendez et al., 2016).

Metabolites
• Inorganic As
• Monomethylated arsenic (MMA)
• Dimethylated arsenic (DMA)
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Analysis 1:  Predict Lower Birthweight 
for Gestational Age

16

Lower birthweight 
for gestational age 
(BWGA)

25th percentile

Birthweight
________________________________________________________________________________________________________

Gestational age
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Analysis 2:  Predict 
Diabetes Risk

• Diabetes defined according to World Health 
Organization guidelines:
- Fasting plasma glucose ≥ 126 mg/dL

- Two-hour plasma glucose ≥ 200 mg/dL

- Self-reported diabetes diagnosis or medication use
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Both Risks (Lower Birthweight, Diabetes) 
Assessed with BayesiaLab

Lower Birthweight Diabetes
• 11 predictor variables 

- Discovered via unsupervised 
learning

• Continuous variables 
discretized into 5 states using 
R2-GenOpt

• Network structure and 
probability tables learned 
with augmented naïve Bayes 
algorithm

• 11 predictor variables based 
on expert knowledge

• Continuous variables 
descretized into three states 
using R2-GenOpt

• Network structure developed 
through expert consultation
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We Compared Bayes Net to EPA Method 
for Noncancer Risk Assessment

Compute reference 
dose:

Divide no observed 
effects level by 3

ࡼ ࢙࢙ࢋ࢔࢒࢒࢏ ൌ ૙	ࡰࢌࡾࢋ࢙࢕ࡰࢌ࢏ ൏ ૚૚	ࢌ࢏	ࡰࢌࡾࢋ࢙࢕ࡰ ൒ ૚

Reference 
dose (RfD)

No observed 
effects level
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We Also Compared Bayes Net to EPA 
Cancer Risk Assessment Method

• Fit regression to the data.
• Compute upper 95% 

confidence interval on 
regression line slope.

ࡼ ࢘ࢋࢉ࢔ࢇࢉ ൌ ࢋ࢖࢕࢒࢙ ൈ ࢋ࢙࢕ࡰ
Regression 
line fit to data

Upper 95% 
confidence 
interval on 
regression 
line
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Results:  Arsenic Association with 
Birthweight
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No Clear “Safe Dose”—Lower 
Birthweights at Lowest Doses
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Existing Approaches Have Very Poor 
Discriminative Capability

0% 20% 40% 60% 80% 100%

Reference Dose Method

Regression Method

Specificity Sensitivity
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Network Structure From Experts; 
Parameters from Data
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BayesiaLab Model Improves 
Discriminative Capability

0% 20% 40% 60% 80% 100%

Reference Dose Method

Regression Method

Bayesian Network

Specificity Sensitivity
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Future Steps

• Automated learning of 
network structure
- Existing structure is based 

on expert beliefs
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Results:  Arsenic Association with 
Diabetes
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Reference Dose Based on Data Is 
Zero — “Everyone At Risk”

Reference dose from data = 0

P(diabetes)=1
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Group Cohort Into Dose Groups to 
Estimate “Slope Factor”



-30-

Group Cohort Into Dose Groups to 
Estimate “Slope Factor”

ࡼ ࢙ࢋ࢚ࢋ࢈ࢇ࢏ࢊ ൌ ૙. ૙૙૚ૢ ൈ ࢔࢕࢏࢚ࢇ࢚࢘࢔ࢋࢉ࢔࢕࡯
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As for Birthweight, Existing Methods 
Have Poor Discrimination Ability

0% 20% 40% 60% 80% 100%

Reference Dose Method

Regression Method

Specificity Sensitivity
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Machine-Learned Structure Consistent 
with Prior Knowledge
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Bayesian Network Greatly Improves 
Discrimination Capability

0% 20% 40% 60% 80% 100%

Reference Dose Method

Regression Method

Bayesian Network

Specificity Sensitivity
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Future Steps

• Optimize network 
structure.

- Improved  performance 
under cross-validation?
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Conclusions
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Summary

• Current U.S. EPA methods for health risk assessment:
- Are inconsistent for cancer and noncancer illnesses

- Have poor discrimination capability

- Cannot be customized based on age, gender, genetics, etc.

• Bayesian networks could provide a new approach.
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How Risk Assessors Quantify Risks 
in Current Practice

Step 1:  Look up chemical information on EPA Integrated 
Risk Information System (IRIS) web site
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Step 2:  Look up Reference Dose, and 
Compute Noncancer “Risk”

If hazard quotient > 1, 
then assume all are at 
risk of noncancer
effects.
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Step 3:  Look up Slope Factor, and 
Compute Cancer Risk

×
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New Vision:  Risk Assessment via 
Bayesian Network Web Simulator
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Risk Assessor Could Enter Multiple 
Characteristics for Customized Estimate
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Receiver-Operating Characteristic 
Curve Shows Discrimination Strength


