

Faculty of Engineering, Computing and Environment

School of Computer Science and Mathematics

Kingston University London

CI7800 Digital Media Final Project - Final Report

MSc GAME DEVELOPMENT (PROGRAMMING)

Leveraging Large Language Models for Dynamic
Game Narratives: Become Human

Prajwal Shetty Vijaykumar - K2371155

Body of Creative Work
Email: k2371155@kingston.ac.uk

Supervisor: Prof. Vasileios Argyriou

Email: vasileios.argyriou@kingston.ac.uk

Release date: 10th January 2025

2

Table Of Contents:
Introduction and background: 3

Aims: 3

Objectives: 3

Literature Review: 4

Current State of the Art: 4

Inspirations: 5

Method: 5

Development Process: 6

Project Planning and Design: 6

LLM Integration: 6

Entity Component System In Unreal: 7

Prompting LLMs: 7

Level Design and Environment: 8

Subsystems and Runtime: 9

Testing and Optimisation: 10

Tools and Technologies 10

Project Structure: 10

Outcomes: 11

Cost breakdown: 11

Key Scenarios and Player Feedback: 12

Ethics: Social, Legal, Data Security: 12

Legal and Copyright Issues: 12

Ethical Considerations: 13

Discussion and conclusions: 13

Strengths: 13

Limitations: 14

Future Work: 15

References: 15

3

Introduction and background:
The modern-day story-driven, role-playing games have evolved into complex, sprawling franchises.
While these carefully crafted experiences often result in highly satisfying outcomes for players, as
seen in titles like Uncharted (PlayStation, n.d.), and Red Dead Redemption (Games, n.d.), they also
come with some drawbacks. Firstly, the development of such games is an incredibly time-consuming
and labor-intensive process. As game scopes continue to expand, development teams face
tremendous pressure to create ever-larger and more immersive experiences, pushing the
boundaries of what's feasible within the current production scale. Secondly, despite the substantial
scale of these games, the overall outcome always stays consistent across the millions of players
who buy these games. While this consistency allows developers to maintain control over the
gameplay experience, it can also limit the potential for more diverse and personalized adventures.
With the rise of large language models (LLMs), there is an opportunity to revolutionize the whole
development process. These systems have reached a level of sophistication where they can
understand and respond to many of the natural human languages, including English, with near real-
time response speed. The generated replies are also contextually aware and smart, opening up new
possibilities for player-game world interactions. By leveraging LLMs, we can begin to break free from
the constraints of predefined paths in game design. Players can now experience dynamic game flow
and NPC interactions, potentially leading to storylines and endings that even the game developers
themselves couldn't have anticipated.

Aims:

The primary aim of this project is to develop a proof-of-concept game that showcases the potential
of LLM integration for dynamic narrative and gameplay experiences. The concept of "dynamic
narration" involves crafting a gameplay experience where the story progression, player interactions,
and NPC behavior adapt fluidly to the player's choices and investigative path. While maintaining a
fixed urban environment as the game's backdrop, the project emphasizes the use of AI-driven
dialogue and decision-making systems to enhance replayability and engagement. Additionally, the
project aims to explore the feasibility and impact of simulating a busy urban environment with
numerous LLM-driven NPC agents, enabling crowd dynamics and examining how player interactions
with them contribute to narrative development.

Objectives:

1. Dynamic Narrative Integration: Setting up an LLM-driven narrative system to set the overall
mission context and eventual progress.

2. Crowd Simulation: Simulate a bustling urban crowd using LLM-driven NPC agents each with
unique life stories, purpose, and behaviors.

3. Dialogue and Interaction System: Create a dialogue system for players powered by LLMs,
allowing for natural, context-aware interactions with individual NPCs.

4. Game Environment and Spatial Awareness: Develop a compact, urban environment with
distinct landmarks (e.g., fast food chain, cinema, park) that serve as narrative touchpoints
allowing the agents to plot stories around them.

4

5. Replayability and Scalability: Focusing on a replayable experience making each gameplay
session unique. Develop a modular, scalable LLM and Code integration architecture that can
eventually scale to bigger projects.

Literature Review:
The field of AI and game development is evolving at an unprecedented pace, with new approaches
and tools emerging almost daily. Large Language Models (LLMs) like GPT-4 and Claude are
improving rapidly, enabling capabilities that were unimaginable just a few years ago. These
advancements have opened up exciting possibilities for creating dynamic, adaptive, and immersive
storytelling experiences in games. The quick evolution of LLMs allows for real-time, context-aware
interactions, making the line between scripted and emergent narratives increasingly blurry.

Current State of the Art:

The use of Artificial Intelligence (AI) and Role-Playing Video Games(RPGs) has been increasing
interest in recent times, especially by improving how Non-Player Character NPCs interact with
players. Existing research has shown how large language models (LLMs), like ChatGPT, can create
dynamic and context-aware dialogues for NPCs that adapt to the actions, choices, and environments
within a game (Csepregi, 2021). The study focuses on context-aware NPC dialogues but misses
how they can help create a connected and consistent story, which can lead to disconnected
storytelling. In addition, Gallotta et al. (2024) talk about how new LLM technologies are changing
game design. These include things like autonomous players, random content generation, and
dynamic game mastering. These models can help create realistic dialogues and maintain the feel of
the game by making NPCs act like real people. However, they still face challenges like memory
issues and sometimes giving wrong or inconsistent information. A Survey on Large Language Model-
Based Game Agents (Hu et al., 2024) identifies significant advancements in the architecture of LLM-
based game agents, including perception, memory, and reasoning modules. However, the report
mostly focuses on how to improve the gameplay side of things, instead of continuous storytelling.
While it talks about grounding LLMs into in-game environments, they don’t focus on how NPCs can
adapt to long-term player choices, which stays underexplored. This report aims to fill that gap by
proposing methods to ensure NPC interactions dynamically adapt to player choices and keep the
story consistent throughout long gameplay sessions, creating a more engaging experience.

The report also builds on the ideas explored in SceneCraft (Kumaran et al., 2023) where the agentic
dialogues were attempted to make dynamic by giving contexts in terms of the generated scenes.
However, it does not fully explore the potential of dynamic narration as its focus lies on
conversations. There is also a project that explores players and LLMs working together to solve
quests (Rao et al., 2024), the paper explores how the LLM-NPCs can help the player to make the
game more immersive and also help them solve the game faster in Minecraft (Mojang, 2011).
Kalbiyev (2022) investigated the effectiveness of LLM-generated dialogues by comparing them to
actual human-generated dialogue datasets from Fallout 4 (Bethesda. n.d.). This was 2022 so the
project was built upon fine-tuned GPT-2. Another paper that researches script generation instead of
dialogues is The Turing Quest (Chen Gao and Emami, 2023), it demonstrates that their pipeline,

5

with GPT-3, generates NPC scripts that can successfully deceive judges into believing they were
written by humans. Now with even more advanced reasoning and large language models, the project
aims to achieve even more realistic conversations between the player and NPCs while also
impacting the overall narrative.

Inspirations:

The project’s title “Become Human” is taken from the game “Detroit: Become Human” (Quantic
Dream, 2018) as the project’s initial inspiration came from it. The game, although was from pre-LLM
and ChatGPT times, explored dynamic narration to a great extent, even today it is one of the best
examples of giving the player “choices” and how their choices can change the story of the game, the
game itself had a lot of endings which heavily depended on player choices throughout the gameplay.
The movies The Matrix Resurrections (Warnerbros.com, 2024) and Free Guy (20thcenturystudios,
n.d.) also played a role in conceptualizing the project, as they both explore human-like NPCs who
eventually gain consciousness.

Method:

Figure 1: A simplified architecture diagram of the project

The development of the project followed an iterative and agile methodology. The primary focus was
to integrate LLM-driven capabilities with Unreal Engine’s ECS features to create a dynamic and
interactive detective game. The methodology combined testing, iterative refinement, and modular
design to ensure scalability and flexibility in the system. The development was structured into bi-
weekly sprints, over the course of the initial three months, and then an additional two-week sprint
towards the end of the deadline. The Project was built using Unreal Engine 5.3 with most of its

6

components written in Unreal C++, it leverages the available ECS plugins called MassEntity,
MassGameplay, and uses OpenAI GPT APIs to process LLM jobs. It also includes subsystems and
actor runtimes to generate dynamic prompts, process LLM responses, and execute these
interactions seamlessly within the game level, ensuring a high degree of context awareness and
narrative coherence (Figure 1).

Development Process:

Project Planning and Design:

One of the first things the project aimed to achieve was picking a foundational LLM API for the game,
so most of the research involved comparing the output qualities across various ranges of models,
this was before reasoning models like O1, O3, and Deepseek, so GPT-4o was picked as a suitable
model for the project as its narrative and dialogue responses were satisfactory, especially after giving
some context about the project, the model was also well priced and OpenAI also has one of the most
reliable LLM APIs among the bunch. Once the reasoning models were released on a later date, the
project also attempted to integrate them but the latency of response time with the O1 preview models
made sure that they weren’t the best models for real-time gameplay scenarios, at least at the current
state.
Another aspect of planning and design went into picking the right kind of environment and level for
the project and to set the overall scope and complexity. Initially the plan was to integrate a big city
chunk from the Epic’s City Sample Project as the level for crowd spawning and interactions but it
was quickly dropped after evaluating the complexity that comes with large levels. The project now
has a small custom city block with multiple points of interest.

LLM Integration:

Multiple tools for LLM Integration were explored in Github and Unreal Marketplace but although none
of them satisfied the requirements the project did well. It required a plugin that can support multiple
LLMs from different organizations, especially during the testing phases, and also it should be
lightweight as it didn't require multiple other API features like image generation, etc. So a custom
Unreal Plugin was developed for the project called “UnrealGenAISupport” and iteratively added more
API features as the requirement changed, it now supports multiple OpenAI models and has support
for Chat completion and Structured Output features, which is a way to ask LLMs to respond in a
JSON format based on the given Schema.
Since the LLM apis was set up as an entirely different scope it helped massively in debugging any
issues with either LLM responses or its handling on the project side. The initial LLM outputs were
indeed problematic in terms of coherence as they used to just generate good made-up stories that
couldn't be traced back to the environment. The initial hunch was that the LLMs of the time were not
good enough to understand the prompts well to perfectly act like an NPC, but eventually, it was
pinpointed to lack of contextual information in the prompting which resulted in them picking up
whatever ideal case response they could make up. So later on in the project, a more complex prompt
system was set up.

7

Entity Component System In Unreal:

Figure 2 and 3: Shows early-stage crowd performance tests

During the project proposals time, there was no plan to setup AI with Unreal’s ECS system as a few
NPCs in the level felt more than sufficient at the time, but after setting up a basic crowd system it
was observed that a higher number of NPCs always resulted in better range and randomness to the
interactions, it also made the enemy harder to find or track and also made the city block look more
alive. But Unreal’s regular Behaviour tree and AI Controller-based framework had some serious
performance bottlenecks as the NPC count scaled up, so a switch was made to Unreal’s ECS system
called MassEntities. (Figures 2 and 3)
One of the hardest parts of integrating MassEntities into Unreal is the absolute lack of
documentation. A significant amount of time was spent reading engine source code and sample
projects from Epic and Github to make sense of the implementation. Some things that could have
been easily built with the usual behavior trees actually took weeks of effort with the Mass System. It
also increased the project’s complexity by a considerable amount as anything related to AI had to
be computed using Processors with data being set up in Fragment, Traits, and Archetypes. But the
upside of all this was the huge scalability boost and performance improvements, so overall in the
end it was an excellent choice for the current project as it became easier to scale the NPC count in
the level.

Prompting LLMs:

The next step was to write things in regular English and build Unreal C++ systems around it to tune
the LLM instances for the game. This proved to be a crucial step to getting the right dialogues and
story, the LLM instances when lacked context gave a basic random output that was not useful for
the player to solve the case, they also needed to communicate with each other to note down game
progress and be constantly “context-aware” throughout the gameplay session. All prompts used in
the project are attached as a separate document along with the rest of the project artifacts. The game
now has a few prompt instances, a generic prompt that explains the scope of the project, what it is
about and etc. A narrative prompt explains the restrictions on the type of stories that the narrative
system can generate in the game, similarly, there are Spawn System Prompts, Spatial prompts that
explain the direction of the level, and etc.

8

Figures 4 and 5: LLM generated NPC data JSON

There was also a problem with the quality of dialogues being generated even with expensive LLMs,
so since the level was set up in NewYork, a plan was made to integrate parts of dialogues from a
popular movie set in New York to teach LLM the way of conversation in that region. This actually
solved the problem to a great extent proving once again how important prompting is to set up context.
Also for NPC data generation, there were two revelations, one, gpt4o-mini was good enough for this
particular task while it fell short for every other LLM query. The images show the quality of output it
generated (Figures 4 and 5). Two, LLMs are slow when it comes to generating bigger token size
text, for example generating this above data for 100s of NPCs was taking more than 10-15 seconds
even for the faster model GPT-4o-mini. So the implementation was changed to more lazy loading
NPC data and then attaching them on the go based on race and gender or spawned NPC entities.

Level Design and Environment:

This involved setting up the city block using external 3D assets and setting up zone graphs for the
entity systems movement, the Zone Graphs also had rules to set up for turnings, road crossings, one
was pedestrian streets, etc. The level was also set up with multiple trigger points to log player and
Enemy movements across the city block. Metahuman, City Sample’s Crowd, and Mixamo Assets
were used to set up the crowd system with the previously built MassAI system.

Figures 6 and 7: Zone Graphs for Crowd Movement

9

The Zonegraphs also had tools to control the flow of NPC “traffic” at junctions and other hotspots,
with the foundation set for entity movement there were also initial plans to add a vehicle lane as well,
but the process of setting it up increased the complexity of the project and added additional overhead
to rendering, so it was later on dropped to focus on crowds alone. (Figures 6 and 7)

Subsystems and Runtime:

The project architecture featured several core subsystems that worked in tandem to deliver a
seamless gameplay experience. These included the Narrative Runtime, Agentic Runtime, and
Spawn Manager, each of which played an important role in making the game dynamic and context-
aware.

Figure 8: Conversation flow with an NPC

The Agentic Runtime subsystem focused on NPC-specific interactions. It enabled NPCs to
dynamically decide their actions, such as leaving a conversation or providing misleading clues. This
runtime ensured every NPC interaction was unique and relevant to the current game state,

10

enhancing replayability (Figure 8). The Narrative Runtime subsystem handled the overarching story
structure, ensuring that the narrative adapted to the player’s choices and performance. The Spawn
Manager was responsible for optimizing NPC management within the level. It worked with Unreal’s
ECS system to spawn NPCs.

Testing and Optimisation:

Dialogue generation and narrative progression were tested iteratively, with continuous feedback
loops to refine the LLM prompt system. A combination of static and dynamic prompts improved the
quality and relevance of NPC dialogues, making them more meaningful for gameplay. Specific tests
focused on ensuring NPCs remained context-aware over extended play sessions, or at least they
ended the conversation themselves if it went on for a longer time. The crowd system underwent
rigorous stress tests to evaluate its scalability. Early crowd performance tests highlighted challenges
with frame rate drops when NPC density increased. The Mass System had some LOD actor swap
feature for optimisation which mitigated the issue to a good extent.

Tools and Technologies

● Unreal Engine 5.3: Picked for its extensive library of game development-related features,
full source code availability, easier environment setup, and better ways to set up
programming scope by leveraging blueprint and C++ preprocessors and setting up a custom
plugin. However, it did add significant complexity to the project because of the sheer volume
of features available mainly focused on larger teams.

● OpenAI API: GPT-4o for critical narratives and GPT-4o-mini for secondary interactions. As
discussed in the earlier section of the document this was picked mainly for its ease of
integration, pricing, reliability, and fast response times.

● Development Tools: JetBrains Rider for C++ coding, Postman for API testing, and GitHub
for version control of the scripts and blueprint excluding any third-party content. The project
size was well over 25 GBs before optimizations so it was a struggle to set up proper version
control, initially, Perforce was explored too by setting its instance up in the Google Cloud
platform but it proved to be increasing the complexity for the current project's timeline.

● External Assets: MetaHumans for diverse NPC models, City Sample Crowds for
background population, and Mixamo for some additional animations. It was a time-consuming
task to bring these different skeletons under a single retarget IK so that some of the
animations could be interwoven between the skeletal meshes.

● Other Tools: Canva was used to create some of the images in the project, and online formats
like Jsonformatter by Curiousconcept and Tokenizer by OpenAI were used to evaluate JSON
integrity and cost.

Project Structure:

The project’s implementation mainly spreads out in three setups, first is the custom Unreal Plugin
developed to handle the LLM API request, it acts like a black box for the rest of the project so that it
can be extremely easy to switch to any future model, even from a different organization.

11

Figures 9, 10, and 11: Project directory hierarchy

The rest of the source code is the main Unreal project, with most of the project's code written in C++
and widget/UI logic written in Blueprint. The blueprints are located in the BecomeHuman folder inside
the contents folder in the editor. (Figures 9, 10 and 11)

Outcomes:

The outcomes of the project were evaluated across two primary fronts:

Cost breakdown:

Figure 12: Usage reports for a one-hour extensive game session by one player

With one hour of non-stop heavy gameplay, the GPT-4o model used about 350k tokens of input
tokens out of which ~83% were cached prompts (Openai.com, 2024) and 7k output tokens. In
addition to this the same session also consumed 158k GPT4o-mini’s input tokens, with again 79%
of it being cached prompts. So given the current pricing at the time of the release of the report this
would cost approximately 0.57$ for GPT4o and 0.051$ (with 0.014$ for output and 0.037$ for
input) for GPT4o-mini (Figure 12).

This test session can be considered the worst-case scenario as it was played nonstop for multiple
investigations with continuous conversations with the NPC, Narrative Instance, and Spawn
instances. So in an ideal case for a regular player, with additional game-side API optimizations,
especially for the output tokens and future cheaper LLM launches the cost can quickly go down
another 70% to 80%! Although its number is just a prediction, with such a cost it becomes

12

inexpensive to include them in almost every game with some basic OS-wide subscription service like
the current PlayStation Plus.

Player Feedback:

Player feedback was gathered through gameplay observation among friends and family. Key
highlights included:

● Quantitative Analysis:
○ The average playtime was recorded at 12 minutes, a promising start for a prototype.
○ Survey ratings on a 1-5 scale showed an average score of 4.2 for immersion, 3.8 for

narrative coherence, and 3.7 for replayability.
○ Metrics on response delays showed an average NPC response time of 1.8 seconds

during gameplay, with occasional spikes randomly based on API reliability.
● Qualitative Analysis:

○ People appreciated the freedom to explore investigative approaches, leading to
diverse outcomes.

○ Areas for improvement were identified, including instances of repetitive NPC
dialogues limited NPC-to-NPC interactions, and a lack of crowd-unique animations.

● Strengths:
○ Immersive and varied NPC dialogues created a dynamic urban environment.
○ Players appreciated the freedom to approach the investigation in their style, leading

to diverse outcomes.
○ The replayable nature of the game encouraged multiple playthroughs to explore

alternative story paths.
● Areas for Improvement:

○ Instances of repetitive or generic NPC dialogues during extended sessions.
○ Occasional delays in NPC responses during high interaction density, are attributed to

LLM processing times.
○ Limited NPC-to-NPC communication, which could enhance world-building and overall

immersion.

Ethics: Social, Legal, Data Security:

Legal and Copyright Issues:

1. Generative AI and Copyright: The generative AI systems used (OpenAI GPT-4o and GPT-
4o-mini) are trained on vast datasets, including copyrighted material. This raises potential
legal concerns if the generated dialogue inadvertently reproduces copyrighted text. To
mitigate this, the project employs some prompt engineering and content moderation
techniques to avoid unintended infringements.

2. Game Monetization: The project does not include loot boxes or other monetization features
that could be construed as gambling. Any future monetization strategies will adhere to local
laws and ethical guidelines, avoiding predatory practices.

13

3. Social Stereotypes: The design actively avoids including harmful stereotypes or offensive
content. All NPCs are generated with neutral or contextually appropriate behavior, ensuring
a diverse and inclusive experience for players.

4. Data Privacy and GDPR Compliance: The game does not store personal data beyond what
is necessary for gameplay. Should player data be sent over the network, it would be
encrypted and handled in compliance with GDPR and other relevant regulations. Players
would also be informed about data usage and given the ability to opt-out.

Ethical Considerations:

1. Informed Consent: If the project were to involve external playtesting or player data
collection, obtaining explicit consent from participants would be essential. This includes
clearly explaining the purpose of the data collection and how it will be used.

2. Confidentiality: Any personal or gameplay-related data collected from players during testing
must remain confidential. Measures like data anonymization and secure storage mechanisms
would ensure that individual privacy is maintained.

3. Minimizing Harm: Careful design considerations have been made to avoid offensive or
harmful content in NPC dialogues and game scenarios. For example, the game avoids
promoting social stereotypes, such as exaggerated or offensive portrayals of NPCs, and
ensures that all interactions remain inclusive and respectful.

4. Conflict of Interest: The project has no known conflicts of interest, with all technologies and
assets used falling under proper licensing agreements or permissions.

5. Transparency: Currently it does not disclose to players that the contents are AI-generated.
For example, NPC dialogues and responses can be explicitly described as being powered
by AI to manage expectations and promote trust, although that would affect the immersion to
a great extent.

6. Right to Withdraw: In any future commercialization, players should have the right to opt out
of any data collection processes without impacting their gameplay experience.

Discussion and conclusions:

The project has successfully demonstrated the potential of integrating Large Language Models
(LLMs) into dynamic narrative-driven games. By leveraging Unreal Engine’s Mass AI ECS system
and a custom OpenAI plugin, the game achieved realistic NPC interactions and a dynamic storyline.
Each gameplay session feels unique even with many ground rules like the player character, and
location remaining the same.

Strengths:

● Immersive NPC Interactions: The LLM-driven dialogues provided contextually aware,
realistic NPC responses, creating an immersive gameplay experience. The NPCs spoke
about the location they were in and changed their dialogues based on their personality type,
some knew about the case but were too rude to answer properly, and some others were part
of the enemy gang and tried to dodge the question or mislead the player. They also left the

14

conversation on their own will whenever they felt the conversation was going nowhere or the
player was asking weird questions. Also having the questions as choices helps in immersing
into the conversation for the players especially in the beginning when they were not sure of
what they were looking for yet.

● Dynamic Narration: The narrative agent showed hints of unpredictable story progression
based on player actions, enhancing replayability. The Narrative Instance had the free will to
decide when the enemy gang flees hence resulting in players making careful conversation
decisions. There were no set rules to play the game in the right way as it was ultimately in
the hands of the Narrative Instance to judge the investigation style.

● Scalability: The project’s setup proved to be extensively scalable, as it leveraged the Unreal
Engine’s Mass AI ECS system enabled the seamless management of large numbers of
NPCs, creating a bustling city environment with next-generation NPCs

● Cost Feasibility: The project proves that even the current generation LLMs are relatively
cheaper to run a game session like Become Human, especially the inexpensive model like
the GPT-4o-mini can be extensively used in the games already with a minimal monthly or
yearly subscription like the game pass.

Limitations:

● NPC to NPC Communication: One of the biggest improvements that can happen in
immersion is to allow NPCs to talk to each other, but this would also come in other kinds of
challenges on how many iterations of conversations can happen and the control over API
rate limits, etc.

Figure 13 and 14: Rate Limits set by OpenAI

● Performance and Rate Limit Constraints: While optimization efforts improved NPC
response times, occasional latency persisted during high NPC density scenarios, and also
the project relies on the backend LLM APIs to work all the time, if they go down or if the
project exceeds their rate limits then it would be difficult to keep the sessions reliable. The
pictures show an example of the OpenAI rate limits for a tier 1 developer account. (Figures
13 and 14)

● Narrative Coherence: Even with all the prompts and smart models, there is still some
additional coherence that goes mission once in a while from the conversation, or sometimes
the LLMs still sound robotic or the replies are mundane. However, this is something that will
automatically get better as more and more LLM models hit the market.

Future Work:

1. Enhanced Optimization: Maybe the costs can be further cut down when cheaper models
launch similar to GPT4o-mini but are also as smart as GPT4o or later. The mass system as

15

well as the room to further optimize the frame rate and to increase the NPC counts in the
level by a large extent.

2. Deeper NPC Personalities: Currently the NPCs have a lot of traits like their gender race or
occupation, and they look like their gender and race as well, but where it can be improved is
the game world impact of their traits, for example, if a NPC is a barista at a local pub if it can
be set up in a way they go to the bar every night on workdays and come back late night. Also
they get salary credited to their account biweekly which makes them visit cinemas or
restaurants on those weekends, etc.

3. Commercialization Readiness: To commercialize the project, steps would include
additional legal reviews, pricing model adjustments, and scalable infrastructure setup for API
management.

4. Vision API Integration: Exploring the use of vision APIs for richer environmental storytelling,
such as NPCs reacting to specific visual cues in the game world.

5. Audio: Audio integration can be a major improvement for the overall immersion.

In conclusion, while the project remains a proof of concept, it opens new possibilities for AI-driven
dynamic storytelling in games. With further refinement, it has the potential to revolutionize how
narratives are experienced in interactive entertainment.

References:
PlayStation. (n.d.). Discover UNCHARTED. [online] Available at: https://www.playstation.com/en-
gb/uncharted/.
Games, R. (n.d.). Red Dead Redemption. [online] Rockstar Games. Available at:
https://www.rockstargames.com/reddeadredemption.
Hu, S., Huang, T., Ilhan, F., Tekin, S., Liu, G., Kompella, R. and Liu, L. (2024). A Survey on Large
Language Model-Based Game Agents. [online] arXiv.org.
doi:https://doi.org/10.48550/arXiv.2404.02039.
Csepregi, L. M. (2023) The Effect of Context-aware LLM-based NPC Conversations on Player
Engagement in Role-playing Video Games. Aalborg Universitet.
Gallotta, R., Todd, G., Zammit, M., Earle, S., Liapis, A., Togelius, J. and Yannakakis, G.N. (2024).
Large Language Models and Games: A Survey and Roadmap. [online] NASA ADS.
doi:https://doi.org/10.48550/arXiv.2402.18659.
Kumaran, V., Rowe, J., Mott, B. and Lester, J. (2023). SceneCraft: Automating Interactive
Narrative Scene Generation in Digital Games with Large Language Models. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, [online] 19(1),
pp.86–96. doi:https://doi.org/10.1609/aiide.v19i1.27504.
Rao, S., Xu, W., Xu, M., Leandro, J., Lobb, K., DesGarennes, G., Brockett, C. and Dolan, B. (2024).
Collaborative Quest Completion with LLM-driven Non-Player Characters in Minecraft. [online] arXiv.org. Doi:
https://doi.org/10.48550/arXiv.2407.03460
Mojang (2011). Minecraft official site. [online] Minecraft.net. Available at:
https://www.minecraft.net/en-us.
Kalbiyev, A. (2022). Affective dialogue generation for video games. [online] essay.utwente.nl.
Available at: https://essay.utwente.nl/89325/.
Bethesda. (n.d.). Fallout 4. [online] Available at: https://fallout.bethesda.net/en/games/fallout-4.

16

Chen Gao, Q. and Emami, A. (2023). The Turing Quest: Can Transformers Make Good NPCs?
[online] pp.93–103. Available at: https://aclanthology.org/2023.acl-srw.17.pdf
Quantic Dream (2018). Detroit: Become Human | Official Site | Quantic Dream. [online]
www.quanticdream.com. Available at: https://www.quanticdream.com/en/detroit-become-human.
Warnerbros.com. (2024). WarnerBros.com | The Matrix Resurrections | Movies. [online] Available
at: https://www.warnerbros.com/movies/the-matrix-resurrections [Accessed 9 Jan. 2025].
20thcenturystudios. (n.d.). Free Guy. [online] Available at:
https://www.20thcenturystudios.com/movies/free-guy
Openai.com. (2024). OpenAI Platform. [online] Available at:
https://platform.openai.com/docs/guides/prompt-caching.

