
Lightweight, Simulation-Based Software Delivery
Process Improvement

Facilitating model-driven engineering and simulations in software
delivery using a domain-specific discrete event simulation platform

Nodematic Labs

Software Delivery Simulator Nodematic Labs

Abstract

While model-driven engineering and simulation are commonplace for software development, they are rarely applied to the
domain of software delivery. Software delivery, the people, processes, and tools involved in bringing software developments to the
market, is a core component of the software application lifecycle. Mastering software delivery leads to innovation acceleration,
cost reduction, and risk mitigation. The limited use of model-driven engineering and simulation in software delivery could be due
to limited frameworks, platforms, and off-the-shelf products to facilitate this engineering work. A lightweight, domain-specific,
and easy to use simulator could be pivotal in bringing model-driven engineering and simulation to software delivery. This report
investigates the feasibility of combining lightweight client-side technologies and a focus on time to value to create the foundation
for a software delivery simulation platform.

CONTENTS

I Background 3

II Simulator Design 3
II-A Principle Objective . 3
II-B Design Tradeoffs . 3
II-C Key Features . 3
II-D Event Relationship Graphs for Atomic Models . 5
II-E Hierarchical Simulation Constructions . 5

III Simulator Implementation 6
III-A Technology Choices . 6
III-B WebAssembly . 7
III-C Rust Programming Language . 7
III-D Components and Modules . 7
III-E Creating and Extending Models . 8

IV Verifications and Validations 9

V Simulator Analysis 9
V-A Performance Analysis Setup . 9
V-B Initialization Performance . 11
V-C Steady State Performance . 11
V-D Usability . 12

VI Conclusions and Future Work 12

References 13

Appendix A: Model Event Relationship Graphs 14

Appendix B: Google Page Speed Results 18

Appendix C: Development Tools Screenshots 20

Software Delivery Simulator Nodematic Labs

I. BACKGROUND

Enterprises and small businesses alike face challenges in de-
livering new software capabilities to the market. The software
development itself is only one piece of the puzzle. Software
delivery, the process of getting new software developments out
to the market, can add considerable cost, risk, and time to the
firm’s software projects. Simulation, for systems analysis and
design, may hold great potential as a tool to improve software
delivery systems.

Organizations are constrained in their ability to carry out
simulation-based process improvement projects. With soft-
ware providing the backbone for many organization’s value
proposition, the baseline, “day-to-day” demands on software
engineers are high. With a continued skilled labor shortage
in software engineering, many organizations are constrained
in their ability to scale engineering capacity and meet these
day-to-day demands, let alone execute non-business-critical
projects [1]. The inability to undertake simulation-based pro-
cess improvement projects is exacerbated by the lack of
off-the-shelf tools to facilitate this simulation. The resource
demands are simply too high - leading organizations to skip
simulation-driven, model-driven, and data-driven software de-
livery improvement projects. A purpose-built software delivery
simulation platform may bridge the gap - making simulation-
driven process improvement a reality for more organizations.

II. SIMULATOR DESIGN

A. Principle Objective

The Software Delivery Simulator is an experiment in opti-
mizing around time to value, while using modern, lightweight
web technologies. A lower time to value means less time and
effort required to create valuable simulations and insights -
a benefit which would accelerate the adoption of simulation
in the software delivery domain. The experimental question is
investigated through direct practice - designing, implementing,
analyzing, and validating a simulator.

B. Design Tradeoffs

The lens of design tradeoffs can provide unique insights
into the philosophy, architecture, and implementation of a
simulator. A particularly insightful tradeoff analysis for the
simulator is across the domains of “ease of use”, “problem
domain breadth”, and “level of detail”. While not mutually
exclusive, per se, optimizations around one dimension tend to
negatively impact the others. For example, a simulator with
no constraints on the problem domain and capabilities for
arbitrary levels of simulation detail would be exceptionally
challenging to use. In fact, this would essentially be a general-
purpose programming language. A custom-made application,
built for a specific industry, specific organization, and specific
problem, could have exceptional simulation detail and ease
of use, but this is only possible by constraining the problem
space to a single specific problem. For the Software Delivery
Simulator, optimizing around time to value suggests a heavy
weighting of “ease of use”. Of the other two factors, simulation
detail is preferred over breadth of problem domain.

C. Key Features

The key features of the simulator arise from the princi-
ple objective: optimizing around time to value, while using
modern, lightweight web technologies. In accordance with this
objective, the simulator features:

1) A no-code approach for end user simulator use
2) Alignment with the Discrete Event System Specification

(DEVS) formalism
3) Business Process Modeling Notation (BPMN) compo-

nents and representations
4) Scalable, purely client-side browser-based technologies
1) No-Code: Historically, efforts to simplify the modeling

process have been over-optimistic. Attempts to create high-
level to low-level model translations, interactive program
generators, and natural language interfaces have encountered
severe limitations in modeling generality - this machinery is
unable to accommodate the unavoidable complexity of real
world systems [2]. However, most success has been seen with
simulation systems designed for narrow domains [2]. This
is precisely the strategy adopted by the Software Delivery
Simulator - heavily constrain the problem domain in order to
dramatically improve ease of use and simulation project time
to value.

A no-code approach for software delivery simulation dra-
matically lowers the barrier to entry for simulator use. A no-
code design makes the simulator accessible for engineering
managers, project management professionals, and business
analysts - people who often have a high stake in software
delivery systems, but do not necessarily have a simulation
engineering skill set. Templatization, collaboration structures,
and sharing systems can further improve the no-code value
proposition by enabling even faster simulation projects (via
reuse) and by connecting simulations to best practices and
common patterns.

2) Discrete Event System Specification: While the choice
of modeling formalism most significantly affects the simu-
lator engine, the user experience and simulation representa-
tion formats are also impacted. The Discrete Event System
Specification (DEVS) is a natural choice of formalism, due
to its modularity, hierarchical constructions, rigorous formal
definition, and intuitive core abstractions. The modularity and
hierarchical constructions in DEVS facilitate the modeling
of large, complex sociotechnical systems (e.g., software de-
livery). Modular atomic models can be defined and reused
for the people, processes, and tools in software delivery -
such as continuous integration tools, chat systems, and manual
approval processes. Systems-of-systems can be broken down
into manageable pieces, while maintaining the possibility of
emergent behavior in the resulting simulations. The rigorous
formal definition imposes a concrete structure to the simulator
and models, for predictable behavior and controlled addition
of new models and extensions. The model couplings and inter-
component messages of DEVS are conceptually similar to
the communication across humans and machines in software
delivery.

Software Delivery Simulator Nodematic Labs

Fig. 1. Software Delivery Simulator design tradeoffs

3) Business Process Modeling Notation: The DEVS for-
malism will underpin the simulator operation, in the simulator
engine, but the addition of BPMN structures (encapsulated
in DEVS models) will make the simulator more intuitive.
The target audience for the simulator includes people with
no direct software development experience and no simulation
engineering experience. For these users, BPMN may offer a
thread of familiarity that makes the simulator less imposing.

4) Browser-Based, Client-Side: Modern software applica-
tions are increasingly run over the internet, and provided as a
service - not just packaged and shared over the internet. This
shift has many implications, but most importantly, for sim-
ulation engineering is the increased portability, accessibility,
and approachability of simulators. Modern web development
technologies account for, and abstract away, the nuances of
browser implementations. In practice, a web application can be
written once and used on nearly any operating system, nearly
any browser, and nearly any device. The user is provided
with HTML, JavaScript, CSS, and WebAssembly, and the
simulation work can begin. No installs, no special compiling,
and (almost) no server-side requirements. Users are naturally
hesitant about traditional software installs on their machines,

particularly in professional settings. Software installs carry
long-term resource demands like disk space, can “crowd”
a machine (making it more difficult or less enjoyable to
operate), and require security due diligence. These concerns
are non-existent, or at least mitigated, for a browser-based web
application. All else equal, a browser-based application will be
more accessible and approachable for new users.

The simulator will be delivered with Cloudflare’s cloud-
native, “edge computing” technologies. This method of hosting
is only possible for client-side simulator web applications, so
is relatively unexplored in both academic and professional sim-
ulator projects. SMB commercial applications and academic
projects, in particular, could benefit from this architecture,
based on the alignment of low budgets and low system
operation costs. Despite the low costs, the performance of this
web application architecture could be exceptional.

In addition to potential cost and performance benefits, a
client-centric architecture holds potential for risk reduction.
Maintaining and updating large server-centric software sys-
tems can be risky and time-consuming. The high risk and
resource requirements are driven by system couplings, team
inter-dependencies, and system-of-systems complexity. The

Software Delivery Simulator Nodematic Labs

deployment of a typical enterprise Java application could re-
quire deep expertise across networking, security, infrastructure,
frontend web technologies, backend web technologies, and
databases. By using a fully client-side implementation, on an
edge computing, cloud-native platform, people responsible for
the application only need to concern themselves with “pushing
out the new frontend”.

D. Event Relationship Graphs for Atomic Models

While the DEVS formalism provides a concrete struc-
ture for the simulation, the atomic model definitions can
quickly become complex. The standard algebraic semantics
used for DEVS atomic models can hinder conceptualization
and rationalization. A graphical modeling language, used to
define atomic models, may help atomic model designers,
implementers, and users overcome modeling complexity.

Considerable precedent exists for dynamical system rep-
resentation via modeling languages, and particularly UML.
However, UML and its variants lack an efficient and effective
way to characterize atomic DEVS models. A combination
of UML sequence diagrams and UML state diagrams might
be required to characterize model behavior - leading to a
disjointed model definition. Event relationship graphs are
an efficient and effective alternative - enabling full atomic
model characterization in a single graph [3]. While aligned
particularly well to the domain of discrete event simulation,
event relationship graphs are more broadly able to characterize
any dynamic system [3]. Event relationship graphs are Turing
complete [4].

The best precedent for event relationship graphs as a mod-
eling language for discrete event simulation might be SIGMA.
From the SIGMA website [5]:

“SIGMA is based on the simple and intuitive Event
Relationship Graph (sometimes called an ERG or
Event Graph) approach to simulation modeling. The
SIGMA project began as an effort to implement the
notion of Event Relationship Graphs on personal
computers and has evolved into a powerful and
practical method for simulation modeling. SIGMA,
the Simulation Graphical Modeling and Analysis
system, is an integrated, interactive approach to
building, testing, animating, and experimenting with
discrete event simulations, while they are running.
SIGMA is specifically designed to make the funda-
mentals of simulation modeling and analysis easy.”

Event scheduling, state variables, and state transitions within
atomic models can be handled with standard event rela-
tionship graph notation and construction. However, the Dis-
crete Event System Specification (DEVS) message exchanges
among atomic models require special attention. Sending and
receiving messages is not native to the event relationship graph
approach, but can be accommodated with relative ease. For the
Software Delivery Simulator, we consider receiving a message
to be an event, within the event relationship graph framework.
Sending a message is treated as a state change operation.

The event relationship graph for the generator atomic model
is shown in Figure 3. This atomic model is a good example
of event relationship graph concepts, because it is relatively
complex among the set of Software Delivery Simulator atomic
models, and contains a wide variety of elements.

The event relationship graph characterizes the dynamic
system that is the Generator atomic model - a model with
stochastic generation of messages. The generator immediately
begins generating these messages, upon model initialization.
Any message received on the deactivation port for the gen-
erator will cause the generator to passivate and cease all
message generation. Subsequent activation by a message on
the activation port will resume generator operations.

The “Run” event and associated state variable definitions
set the initial conditions and parameterization of the model.
The two Pin ports are dedicated to activation and deactivation.
The single Pout port is for sending generated jobs. The inter-
departure time of messages is characterized by an exponential
distribution, of rate λ. The generated job number is initialized
to 0, and incremented as new jobs are generated.

The “Begin Generation” event is where a random variate
from the exponential distribution is generated. Furthermore,
the event self-schedules with an arrow directed at itself, with
a delay of ti (the value of the exponential random variate).
After the delay of ti, should no other event change the
scheduling, the “Send Job” event is triggered, along with a
new “Begin Generation”. The “Send Job” increments the job
number and sends a message on the output port, while the
“Begin Generation” maintains the loop of generation events.

The two Message events are triggered upon receiving a mes-
sage at either the activation or deactivation port. In the former
case, the “Begin Generation” event is rescheduled at no delay,
if the generator is currently passive (has been deactivated).
In the latter case, job generation and message sending are
canceled. The event cancellations from the deactivation event
create a generator state where no events are scheduled. Unless
an activation message is received, the generator will remain
passive and do nothing through perpetuity.

E. Hierarchical Simulation Constructions

The ability to hierarchically compose models provides im-
measurable value for modelers. Human minds are limited in
the ability to conceptualize and work with large interconnected
systems. Composing systems into systems of (smaller) systems
makes the simulation work far more approachable to simula-
tion engineers. In the application architecture, it’s important
to make this realization, that hierarchical constructs are useful
almost exclusively on the “human side” of the simulation
construction. The computer is not similarly challenged with
networks of large interconnected models. In fact, logical
structures that have no impact on simulation execution have
the potential to deteriorate system performance.

Given the componentization of the simulation engine (We-
bAssembly) and frontend (traditional web application tech-
nologies), hierarchical constructs are best addressed as a
pure frontend consideration. Users can leverage hierarchical

Software Delivery Simulator Nodematic Labs

Fig. 2. Web application infrastructure, deployment, and tooling systems

Fig. 3. Generator event relationship graph

constructions, for ease of modeling, but those hierarchies are
flattened before execution.

III. SIMULATOR IMPLEMENTATION

A. Technology Choices

The technology choices support the aforementioned design
objectives. The resulting implementation exhibits the follow-
ing:

• Written in Rust and executed in the browser as We-
bAssembly.

• Uses a YAML configuration format to define model
configurations, initial conditions, component connections,
and system state during execution.

• Implements atomic and coupled models to simulate code
repository developments, software builds, artifact scans,

systems tests, deployments, notifications, and manual
software delivery tasks.

• Leverages hierarchical model constructions, with coupled
components.

• Includes a configurable implementation of key BPMN 2.0
gateways “Exclusive” and “Parallel”.

• Accessible over a public URL, and featuring delivery with
CloudFlare Workers - CloudFlare’s commercial cloud-
native, edge computing technology.

• Leverages JSON string inter-component messages.
While future implementations will include a graphical

“drag-and-drop” frontend interface, the initial implementation
instead focuses on the simulator core - complementing that on
the frontend with just a simple text editor web page:

• Input box (yaml configuration of initial simulation state)

Software Delivery Simulator Nodematic Labs

Fig. 4. Flattening hierarchical model constructions before execution

• Output box (yaml representation of current simulation
state)

• A set of controls for stepping through the simulation and
manual message injection

B. WebAssembly

The simulator will take advantage of modern WebAssem-
bly technologies and tooling. WebAssembly’s objective is to
provide safe, fast, portable low-level code on the web [6]. As
an abstraction on top of modern hardware, it is not tied to any
specific language, hardware, or platform. While WebAssembly
is not the first attempt at low-level code on the web, it is
the first truly portable solution for fast low-level code, is an
official W3C recommendation, and is adopted by all the major
browsers [6], [7].

WebAssembly dethrones JavaScript as the only natively-
supported programming language on the web (a position
attained through “historical accident”), but it does not replace
JavaScript [6]. As a complement to JavaScript, the addition of
WebAssembly gives application developers more capabilities
and flexibility. Furthermore, to arrive at the final JavaScript
and WebAssembly running in the browser, a wide variety
of development technologies and programming languages can
be used. Web applications can be developed with languages,
frameworks, and tooling that compile to WebAssembly -
expanding on the historical limitation of JavaScript and lan-
guages that transpile to JavaScript. The expanded solution
space for development technologies increases the overlap
between the problem spaces and solutions spaces.

For simulation applications specifically, WebAssembly pro-
vides not only the simulation execution benefits of safe, fast,
portable low-level code, but also the developer experience
benefits of using programming languages and technologies
that are well suited to simulation development, but are his-
torically poorly suited to web development. The performance
of WebAssembly improves the simulator time to value, not
just in experimental run duration, but also in terms of simu-
lation setup time. Setting up a simulation may require many
cycles of development, execution for verification/validation,
and debugging - a performant simulator will accelerate these
cycles.

C. Rust Programming Language
The value of the Rust programming language is becoming

apparent, and it’s poised to possibly become the de facto stan-
dard for systems and lower-level programming (a replacement
to C and C++). At Open Source 101 at Home 2020, Ryan
Levick (from Microsoft), claims that Rust is the industry’s
best chance at safe systems programming [8]. 70% of CVEs
at Microsoft are attributable to memory safety issues, and the
associated cost of these memory safety issues is conservatively
in the billions USD [8]. Assessments like these suggest an
exceptionally high value in modern C/C++ replacements, like
Rust. With simulators being commonly written in C and
C++, Rust is inherently an interesting candidate for simulation
development. Rust is known to be used at Microsoft, Face-
book, Amazon, Google, DropBox, Intel, ARM, CloudFlare,
and Mozilla [9].

Object-oriented programming languages are a recom-
mended, natural choice for DEVS software development [10].
However, there is no consensus on what specifically defines
an object-oriented programming language. Rust does meet the
definition, as defined in the book Design Patterns: Elements
of Reusable Object-Oriented Software, “Object-oriented pro-
grams are made up of objects. An object packages both data
and the procedures that operate on that data. The procedures
are typically called methods or operations,” [11]. However,
the benefits of inheritence often underpin recommendations
around object-oriented programming for DEVS [10]. Rust
does not support inheritance. The Rust Programming Lan-
guage suggests [12]:

“Inheritance has recently fallen out of favor as a
programming design solution in many programming
languages because it’s often at risk of sharing more
code than necessary. Subclasses shouldn’t always
share all characteristics of their parent class but will
do so with inheritance. This can make a program’s
design less flexible. It also introduces the possibility
of calling methods on subclasses that don’t make
sense or that cause errors because the methods don’t
apply to the subclass. In addition, some languages
will only allow a subclass to inherit from one
class, further restricting the flexibility of a program’s
design.”

Going one last step deeper, the suggestion for inheritance in
DEVS programming may ultimately boil down to the benefits
of polymorphism, encapsulation, abstraction and code reuse
[10]. The Rust programming language includes all of these
features. A comparison of Rust with traditional, inheritance-
heavy object-oriented programming is presented in Table I.

D. Components and Modules
A good simulator will not only abide by good software

architecture principles, but also reflect effective design patterns
for simulators specifically. The Rust code, which makes up
the simulator, is broken into many modules and submodules.
Encapsulation is leveraged so that module interfaces are con-
trolled. The frontend requires much less code and complexity,

Software Delivery Simulator Nodematic Labs

Fig. 5. Hierarchical model constructions and BPMN

TABLE I
A COMPARISON OF RUST FEATURES TO OBJECT ORIENTED

PROGRAMMING FEATURES

Feature Object Oriented Rust
Programming

Code reuse Inheritence Default trait method
implementations

Polymorphism Subclasses (inheritence) Trait objects
Encapsulation Yes Yes

Abstraction Yes Yes

compared to the Rust simulator core. If the frontend were to
grow in size and complexity in future work, well-established
patterns for JavaScript code quality and organization can be
leveraged. The most important parts of the codebase are the
simulator and models modules, and the associated submodules.
The simulator module handles executing the simulation, and
the network of associated models. The models module contains
the atomic models (each its own submodule) which define the
behavior of that specific model. The design pattern optimizes
around componentization and modularity.

Establishing the scope of operations and responsibilities
for a simulator and it’s models is a delicate balancing act.
Essentially, repetitive logic and structures can and should
be extracted from models, and brought into the simulator.
Meanwhile, the models should be relatively independent,
modular, componentized, and autonomous - with enough self-
contained logic and structures to describe the associated real-
world phenomenon. The Software Delivery Simulator balances
the scope of these two logical systems, as shown in Figure 8.

E. Creating and Extending Models

While a good simulator can be reused across a wide variety
of applications, models may not be as portable across simula-
tion problems. New use cases will involve new phenomenon

that can only be captured by new models. As such, the amount
of boilerplate code and “plumbing” to create a new model has
major implications for extensibility. Given the time to value
objective of the Software Delivery Simulator, extensibility is a
relatively low priority, but it is nonetheless considered. In the
Software Delivery Simulator, two short functions are required
for essential model plumbing, while another four functions
are used to define the specific dynamics and behavior of the
model.

1) Model Plumbing: Upcasting and ID access are required
for the model to properly operate within a larger simulation.
These functions are fairly generic, “boilerplate” model code.

2) Events External: In alignment with the DEVS formal-
ism, this function triggers model behavior based on messages
received by the model [13]. The model behavior may depend
on the port that the message is received on and/or the message
contents. Messages are strings, but more complicated behavior
can be modeled by passing JSON strings, and parsing these
upon message arrival. The events external function can itself
produce output messages.

3) Events Internal: The model events list contains a list of
scheduled events that the model will execute after set periods
of time have elapsed. These events can be cancelled or changed
- most commonly due to an “events external” execution. If no
such disruption occurs, and the time until the next event in
the list elapses, then the events internal function will trigger
the model behavior. While the events internal execution does
not occur due to message arrival, the execution can generate
output messages, for transmission to other models.

4) Time Advance: A model’s event list contains the sched-
uled list of events, should no disruptions occur. The time
advance function reduces the time until the event, for all the
events in the list. This time advance may bring the time until
the next event to zero - in which case, the associated events
will fire. It is possible for the time advance function to do

Software Delivery Simulator Nodematic Labs

Fig. 6. Running a large simulation in the GUI

more than just reschedule the events list. For example, non-
stationary model behavior would be driven by the time advance
function. In the Software Delivery Simulator, no such non-
stationary model behavior exists.

5) Until Next Event: The “until next event” function simply
checks the next scheduled event(s) from the event list, and
reports the elapsed time required to reach those scheduled
events. A simulation with many models will use this until
next event function, across all models in the simulation, to
understand the global time until the next event.

IV. VERIFICATIONS AND VALIDATIONS

Simulator and model verifications and validations is a
research field in it’s own right. Challenges, like how to actually
know the expected result from a test simulation, require
unique verification and validation methods, compared to other
software applications.

For the Software Delivery Simulator, there are two core
levels of testing. The first is low-level verifications - checking
for program correctness with unit-like testing, as is common
with other software applications. The second level of testing
is test simulations, which serve some level of verification, as
well as validation.

The test simulations are complicated enough to verify
complicated simulator and atomic model behavior, but are
typically simple enough to have closed-form analytical results.
For example, Markovian processor chains can be analyzed
through queueing theory, and the subsequent results can be

used within the test oracle. For effective test simulations, the
simulator leverages:

• Seeded random number generation, for deterministic
tests.

• Confidence intervals, instead of point estimates, for test
simulation outputs.

• Varied strategies for initial conditions specification, in-
cluding reducing initialization bias with time series pro-
cessing techniques.

• Queuing theory utilization, for determination of some
expected results.

V. SIMULATOR ANALYSIS

With functional capabilities of the simulator verified by the
two levels of automated testing, a foundation is established
for the analysis of non-functional attributes. Non-functional
attributes of particular interest are performance and usability.
The focus on these non-functional attributes arises from the
project focus on a lightweight, low time-to-value simulator.
Performance analysis ensures that the simulator shows suf-
ficient performance, despite the use of only browser-based,
client-side resources. The usability analysis sheds light into
how intuitive the application is, throughout the simulation
lifecycle, so that value can be rapidly realized in a simulation
project.

A. Performance Analysis Setup
For this performance testing, the application is loaded, a

simulation initialized, and the simulation is executed. The

Software Delivery Simulator Nodematic Labs

Fig. 7. Layers and modules of the simulator

Fig. 8. Simulator and model scoping

example simulation is an extension, or scaling, of a standard
generator-processor-storage simulation. All timing is stochas-
tic, and chosen to follow an exponential distribution. Given the
stochastic nature of the models, they may behave differently.
However, the models in each category (generator, processor,
and storage) have an identical model definition and configu-
ration. This setup for simulation testing does not analyze the
performance of the simulator in a wide variety of scenarios
and projects. Rather, the analysis provides a single lens of
insight, by using a specific, highly-structured simulation setup
and execution. The performance analysis setup is driven by
order-of-magnitude intuitions, rather than concrete frameworks
or heuristics. The design can be summarized as hundreds of

Fig. 9. Model functions

models, hundreds of connections, and a handful of simulation
steps per second.

Simulation setup:

• 100 generator models
• 200 generator-to-processor connectors (1:2 connection)
• 100 processor models
• 200 processor-to-storage connectors (1:2 connection)
• 100 storage models
• 300 total models
• 400 total model connectors

This simulation is then executed:

• 10 simulation steps per second

Software Delivery Simulator Nodematic Labs

Fig. 10. Load testing configuration of generator, processor, and storage
models

Fig. 11. Performance testing configuration

• 100 seconds of simulation stepping
• 1000 simulation steps
As a result of the models and couplings, each generated job

will be processed twice, and accepted by a storage model four
times. The simulation involves a relatively large number of
models, connections, and message exchanges, for the problem
domain of software delivery simulation.

B. Initialization Performance

A promising possibility for the Software Delivery Simulator,
and other simulators with a similar architecture, is an unprece-
dented cost-to-performance ratio. A simulator application,
deployed with “edge technologies” is particularly promising
in its initialization performance.

Google PageSpeed Insights are a standard service for eval-
uating web application initialization. Testing the application
with this service provides insights on one key dimension of
performance. This performance testing tool has a reputation
for being rigorous and very demanding, which can help to
differentiate among the high tiers of application performance.
For example, the https://gmail.com login page scores a 22 out
of 100 for mobile and 81 out of 100 for desktop. The simulator
scores a 98 out of 100 for mobile and a 100 out of 100 for
desktop.

By combining edge technologies, no images/videos, and a
light frontend it’s no surprise that the performance scoring
is exceptional. An implementation with additional branding,

“getting started” content, and interface styling would see a
lower score. However, the tested application configuration
shows that a WebAssembly-based simulation engine does not
inherently carry a high initial load cost.

In addition to the page/application initialization, one must
consider the simulation initialization. This initialization, trig-
gered by the “Simulate” button in the GUI, prepares the
simulation for execution. Models are instantiated, hydrated,
and connected to a core simulation engine. This initialization
consumes the main browser thread, so the interface is inter-
operable during this initialization. Initialization is noticeable,
but not so long as to be problematic - taking a total of 262
ms. Taking this initialization off the main thread would be
a relatively simple operation, but is outside the scope of the
initial implementation.

TABLE II
INITIALIZATION TIMING

Initialization Component Time
Initial configuration yaml deserialization 46 ms
Simulation initial state yaml serialization 43 ms

Simulation initialization 50 ms
Layout (GUI) updates 121 ms

Fig. 12. Breakdown of initialization time

As shown in Table II, the majority of the initialization
time is tied up in tasks related to the user interface - yaml
serialization, yaml deserialization, and GUI layout updates.
Only about 19% of the initialization time is related to the
actual core simulation initialization.

Heap memory is allocated for the simulation object during
initialization. The performance testing suggests an increase
of 1.2 MB (from 4.1 MB to 5.3 MB) in initialization. 1.2
MB of heap memory is unlikely to overwhelm a browser or
client machine, so it’s safe to assume that users will be able
to reliably initialize simulations of this scale.

C. Steady State Performance

The second key dimension of application performance is
steady-state execution. Running the specified configuration of
10 steps per second, for 100 seconds, results in no obvious
problems in the GUI (such as freezing or crashing). However,
the 100 ms step execution target is not actually realized. At

Software Delivery Simulator Nodematic Labs

the beginning of the run, steps take about 122 ms. At the end
of the run, steps take about 136 ms.

As with the initialization, the vast majority of the time is
attributed to user interface work. Near the middle of the run,
a typical step takes 0.13 ms to run the simulation step, 13
ms for simulation state yaml serialization, and 120 ms for the
layout (GUI) updates. The actual simulation execution takes
two orders of magnitude less time than updating the GUI -
which is just appending the new message(s) to the message
record table and updating the simulation state yaml.

TABLE III
SIMULATION STEP TIMING

Simulation Step Component Time
Core simulation stepping 0.13 ms

Simulation state yaml serialization 13 ms
Layout (GUI) updates 120 ms

Fig. 13. Breakdown of simulation step timing

The steady-state memory use is no cause for concern.
The heap memory fluctuates between 3.1 MB and 4.3 MB.
History is not persistent within the simulation core. For
example, messages are not recorded after they are generated
and subsequently consumed. Message records are, however,
maintained in the GUI, within a table of message records. As
such, we could expect the heap memory usage to grow over
time. However, in practice, an exceptionally long simulation
run would be required to hit considerable memory usage.

D. Usability

While a more subjective measurement than performance,
usability is critical for understanding the time to value for the
Software Delivery Simulator. Usability can be conceptually
broken down into initial access, simulation setup, simulation
execution, and analysis of results.

1) Initial Access: Providing a great user experience during
initial simulator access is critical. Users only need to point
their browser of choice, on their device of choice, to the
URL for the simulator. There is no provisioning, builds,
installations, or setup work. Compared to native desktop in-
stalls or command-line programs ran on platformized compute
environments, it’s an order of magnitude improvement to
usability.

2) Simulation Setup: Browsers are perhaps the most com-
mon interface for interacting with software applications today.
Furthermore, graphical user interfaces offer a common and
intuitive form of user interaction. While the simulator currently
uses a text editor interaction format, a natural extension of the
application would be a drag-and-drop interface. Converting
from a no-code text editor interface to a no-code drag-and-drop
interface would improve the usability, from good to great.

3) Simulation Execution: Dedicated buttons and inputs
provide a simple, yet effective, mechanism for simulation
execution and control. Like the DEVS Suite, this interface can
be a small panel within the larger graphical user interface.
The Software Delivery Simulator features simulation setup,
simulation stepping, and input injection controls.

4) Analysis of Results: The Software Delivery Simulator,
in it’s current incarnation, gets low marks for analysis of
simulation results. Expansion with plots, tables, animations,
data exports, and visualizations would improve the usability
of the simulator. However, these features were out of scope
for the initial application implementation.

VI. CONCLUSIONS AND FUTURE WORK

By building the Software Delivery Simulator with client-
side, modern web application technologies, this project pro-
vides evidence for the feasibility of shifting simulator appli-
cations to the web, with serverless edge technologies. The
simulator is architected for low-cost and high performance,
and that design objective was realized in practice. The no-code
simulator design, ease of simulator access/use, and prebuilt,
domain-tailored models provide a solid foundation for quick
value generation in simulation projects.

From the perspective of a full Software Delivery Simulator
platform, considerable risks and uncertainties remain. This
project did not address all the core components of a simula-
tion platform - model building, model debugging, animation,
interactive running of models, input data analyzers, and output
analyzers [2]. It’s possible that by extending the Software
Delivery Simulator foundation to a full simulation platform,
insurmountable or unnecessarily challenging hurdles will be
encountered.

It’s clear that there exist some “low-hanging fruit” opportu-
nities for improving the Software Delivery Simulator founda-
tion. For example, optimizations around the user interface have
the potential for dramatic improvements. This is particularly
true for the steady-state performance, which could see orders
of magnitude improvement.

Agent-based modeling is another interesting possibility for
further development. It is especially well-adapted to problems
like civil violence, infectious disease modeling, and traffic
modeling, but it’s early in terms of industrial and commer-
cial simulation adoption [2]. The limited process modeling
perspective and relatively low adoption in business process
modeling reduce the fitness of agent-based modeling for the
Software Delivery Simulator, but it remains an interesting
formalism for future comparison and investigation.

Software Delivery Simulator Nodematic Labs

Some topics considered briefly in the project, such as the
use of event relationship graphs to define atomic models, or
the relative impacts of user interface work and “core sim-
ulation” execution on performance, could be further studied
independently. Many of these possible branches of additional
investigation are unrelated to the application area of software
delivery - suggesting possible wide applicability of the re-
searched phenomenon, methodologies, and patterns.

REFERENCES

[1] Bureau of Labor Statistics, “Occupational outlook handbook - software
developers.” [Online]. Available: https://www.bls.gov/ooh/computer-
and-information-technology/software-developers.htm

[2] J. Banks, J. C. II, B. Nelson, and D. Nicol, Discrete-event system
simulation, fifth edition ed. Prentice Hall, 2009.

[3] L. Schruben, “Simulation modeling with event graphs,” 1983.
[4] E. L. Savage, L. W. Schruben, and E. Yücesan, “On the generality of

event-graph models,” INFORMS Journal on Computing, vol. 17, p. 3,
2005.

[5] Bio-G, SIGMA, and Custom Simulations, “About - sigma.” [Online].
Available: http://sigmawiki.com/sigma/index.php?title=About

[6] D. L. Schuff, A. Z. Mozilla, J. Bastien, A. Haas, A. Rossberg, B. L.
Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai, and J. F. Bastien,
“Bringing the web up to speed with webassembly,” 2017.

[7] “World wide web consortium (w3c) brings a new language to the web
as webassembly becomes a w3c recommendation.” [Online]. Available:
https://www.w3.org/2019/12/pressrelease-wasm-rec.html.en

[8] R. Levick, “Rust at microsoft : Open source 101,” 5 2020. [Online].
Available: https://opensource101.com/sessions/rust-at-microsoft/

[9] J. Jackson, “Microsoft: Rust is the industry’s ‘best chance’
at safe systems programming,” 2020. [Online]. Avail-
able: https://thenewstack.io/microsoft-rust-is-the-industrys-best-chance-
at-safe-systems-programming

[10] B. P. Zeigler, A. Muzy, and E. Kofman, Theory of Modeling and Simu-
lation: Discrete Event and Iterative System Computational Foundations.
Academic Press, 8 2018.

[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, Design
Patterns: Elements of Reusable Object-Oriented Software, 1995.

[12] S. Klabnik and C. Nichols, The Rust Programming Language (Covers
Rust 2018). No Starch Press, 2019.

[13] B. P. Zeigler and H. S. Sarjoughian, “Introduction to devs modeling and
simulation with java: Developing component-based simulation models,”
2005. [Online]. Available: https://acisms.asu.edu

Software Delivery Simulator Nodematic Labs

APPENDIX A
MODEL EVENT RELATIONSHIP GRAPHS

Fig. 14. Event relationship graph for the exclusive gateway model

Fig. 15. Event relationship graph for the gate model

Software Delivery Simulator Nodematic Labs

Fig. 16. Event relationship graph for the generator model

Fig. 17. Event relationship graph for the load balancer model

Software Delivery Simulator Nodematic Labs

Fig. 18. Event relationship graph for the parallel gateway model

Fig. 19. Event relationship graph for the processor model

Software Delivery Simulator Nodematic Labs

Fig. 20. Event relationship graph for the storage model

Software Delivery Simulator Nodematic Labs

APPENDIX B
GOOGLE PAGE SPEED RESULTS

Fig. 21. Google PageSpeed Insights mobile performance testing data

Software Delivery Simulator Nodematic Labs

Fig. 22. Google PageSpeed Insights desktop performance testing data

Software Delivery Simulator Nodematic Labs

APPENDIX C
DEVELOPMENT TOOLS SCREENSHOTS

Fig. 23. Initialization timing

Fig. 24. Initialization heap memory usage

Fig. 25. Simulation step near the beginning of the simulation run

Software Delivery Simulator Nodematic Labs

Fig. 26. Simulation step near the end of the simulation run

Fig. 27. Memory use during simulation execution

Software Delivery Simulator Nodematic Labs

